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Abstract: Job-shop scheduling problem is one of the most important fields in manufacturing optimization where a set of n 
jobs must be processed on a set of m specified machines. Each job consists of a specific set of operations, which have to 
be processed according to a given order. The Flexible Job Shop problem (FJSP) is a generalization of the above-mentioned 
problem, where each operation can be processed by a set of resources and has a processing time depending on the resource 
used. The FJSP problems cover two difficulties, namely, machine assignment problem and operation sequencing problem. 
This paper addresses the flexible job-shop scheduling problem with sequence-dependent setup times to minimize two kinds 
of objectives function: makespan and bi-criteria objective function. For that, we propose a hybrid algorithm based on genetic 
algorithm (GA) and variable neighbourhood search (VNS) to solve this problem. To evaluate the performance of our algorithm, 
we compare our results with other methods existing in literature. All the results show the superiority of our algorithm against 
the available ones in terms of solution quality.

Key words: Job-shop scheduling problem, Flexible manufacturing systems, Sequence-dependent setup times, Genetic 
algorithms, Local search. 

1. Introduction

Flexible-job-shop scheduling problem (FJSP) is a 
well-known NP-hard problem (Garey et al., 1976), 
which reflect a wide range of scheduling problems 
encountered in real manufacturing systems. For this 
reason, FJSP continues to attract the interests of 
researchers both in academia and industry.

This problem mainly cover two difficulties: the 
first one is resource assignment problem where 
each operation can be processed by more than 
one resource from a set of available resource and 
has, consequently, a processing time depending 
on the resource used. The second one is operation 
sequencing problem with maintaining the feasibility 
conditions. Recently, many researches have been 
made to find the near optimal solution of FJSP using 
a varied range of tools and techniques such as Branch 

and Bound (Fatahi et al., 2007; Zribi et al., 2007) and 
Heuristics (Wang and Yu, 2010; Ziaee, 2014). FJSP 
is known to be strongly NP-hard. Consequently, most 
of the literature related to the FJSP is based on meta-
heuristic methods like genetic algorithms (GAs) 
(Zhou et al., 2006; Pezzella et al., 2008; Zhang et al., 
2011; Zambrano Rey et al., 2014), particle swarm 
optimization (PSO) (Zhang et al., 2009; Nouiri et al., 
2015) simulated annealing (SA) (Najid et al., 2002; 
Yazdani et al., 2009), tabu search (TS) (Brandimarte, 
1993; Fatahi et al., 2007; Vilcot and Billaut, 2011) 
and beam search (BS) (Wang et al., 2008).

Most job-shop scheduling researches reported in 
the literature ignore the setup times or consider 
them as a part of the processing time. However, in 
many real-life situations such as chemical, printing, 
pharmaceutical and automobile manufacturing 
(Kim and Bobrowski, 1994), the setup times are 
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not only often required between jobs but they are 
also strongly dependent on job itself (sequence 
independent) and the previous job that ran on 
the same machine (sequence dependent). Hence, 
reducing setup times is an important task to improve 
shop performance. The FJSP has been widely 
studied. However, few papers have considered this 
problem with setup times.

Among these, Cheung and Zhou (2001) propose a 
hybrid algorithm based on genetic algorithm and 
heuristic rules to solve SDST-JSP with minimizing 
the makespan. For the same problem, Zhou et al. 
(2006) propose an immune algorithm which 
certifies the diversity of the antibody. Moghaddas 
and Houshmand (2008) develop a mathematical 
and heuristic model based on priority rules. Naderi 
et al. (2009) consider the job shop scheduling with 
sequence-dependent setup times and preventive 
maintenance policies using four meta-heuristics 
based on simulated annealing and genetic 
algorithms.

Considering the flexibility constraints, flexible 
job-shop problem presents additional difficulty 
than the classical JSP and requires more effective 
algorithms. In recent decades, many attempts have 
been made to find the near optimal solution of SDST-
FJSP using a varied range of tools and techniques. 
Imanipour (2006) was the first one who investigates 
the SDST-FJSP. The author modeled the problem as 
a non linear mixed integer programming model and 
proposes a tabu search for the same problem.  Saidi-
Mehrabad and Fattahi (2007) presented a Tabu 
Search for solving the SDST-FJSP to minimize 
makespan. They assumed in their research that 
each operation can be performed by two machine 
alternatives. They compared their obtained results 
with the results of the lingo software. Bagheri and 
Zandieh (2011) propose a variable neighborhood 
search (VNS) based on integrated approach to 
minimize an aggregate objective function (AOF) 
where AOF = αF1+(1-α)F2 and α denote the weight 
given respectively to makespan (F1) and mean 
tardiness (F2). To evaluate this model, the authors 
generate randomly 20 problem instances under four 
different classes. Using the same AOF, Sadrzadeh 
(2013) present an artificial immune system 
algorithm (AIS) and a particle swarm optimization 
algorithm (PSO) and prove that both algorithms 
works better than VNS of Bagheri and Zandieh 
(2011). 

Mousakhani (2013) formulate the SDST-FJSP 
as a mixed integer linear programming model to 
minimize total tardiness and present a meta-heuristic 
based on iterated local search for the same problem. 
Oddi et al. (2011) considers the SDST-FJSP to 
minimize the makespan using the iterative flattering 
search (IFS) and propose a new benchmark which 
is denoted SDST-HUdata. It consists of 20 instances 
produced as an extension of the existing well-
known benchmarks of FJSP of Hurink et al. (1994).  
Gonzàlez et al. (2013) develop memetic algorithm 
to minimize the makespan which the tabu search 
was applied to every chromosome generated by the 
genetic algorithm. In order to evaluate their model, 
they used the same benchmark as in Oddi et al. (2011) 
and prove that the memetic algorithm has obtained 
a better result than the IFS. Recently, Rossi (2014) 
investigate the SDST-FJSP with transportation 
times using ant-colony algorithm with reinforced 
pheromone. The most recent comprehensive survey 
of scheduling problem with setup times is given by  
Allahverdi (2015).

Nevertheless, most of the above-mentioned research 
considered only one method optimization to solve 
SDST-FJSP. However, the literature reviews show 
that none of these methods are sufficient on their own 
to solve this NP-hard problem. For that, in this paper, 
we propose a hybrid genetic algorithm (HGA) based 
on GA and VNS for the SDST-FJSP. Then, we show 
that our algorithm can be very effective with respect 
to the state of the art. The remainder of this paper 
is organized as follows. In section 2, we formulate 
the problem and we give an illustrative example. 
Section 3 presents the proposed algorithm to solve 
the SDST-FJSP. Section 4 describes the performance 
of our algorithm on a set of benchmark problems and 
explains the most interesting results. Conclusions 
and some future works are presented in section 5.

2. Problem definition

The SDST-FJSP can be defined as follows: this 
problem consists in performing n jobs on m machines. 
The set machines is noted M, M={M1,... ,Mk}. Each 
job i consists of a sequence of ni operations (routing). 
Each routing has to be performed to complete a 
job. The execution of each operation j of a job 
i (noted Oij) requires one machine out of a set of 
given machines Mi,j (i.e. Mi,j is the set of machines 
available to execute Oij). The problem is to define a 
sequence of operations together with assignment of 
start times and machines for each operation.
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Assumptions considered in this paper are the 
following: (1) jobs are independent of each other; 
(2) machines are independent of each other; (3) 
one machine can process at most one operation at a 
time; (4) no preemption is allowed; (5) all jobs are 
available at time zero; (6) Setup times are dependent 
on the sequence of jobs. When one of the operations 
of a job t is processed before one of those of job i 
(t≠i) on machine Mk, the sequence dependent setup 
time is St,i,k>0.

The current SDST-FJSP based on these assumptions 
is aimed to minimize two kinds of objective 
functions: 

 - Minimize the makespan ( i.e. the time required 
to complete all jobs)

 - Minimize Aggregate objective function (AOF) 
where AOF = αF1+(1-α)F2 and α denote the 
weight given respectively to makespan (F1) and 
mean tardiness (F2). 

FJSP is classified as Total FJSP and Partial FJSP 
(Kacem et al., 2002). In Total FJSP (T-FJSP), 
each operation can be processes by all machines. 
However, in Partial FJSP (P-FJSP), at least one 
operation may not be processed on all machines. 
Several researches pointed out that the P-FJSP is 
more complex as compared to T-FJSP on the same 
scale. In this paper, we consider the P-FJSP. 

To illustrate this problem, we consider an instance 
with three jobs and three machines. In Table 1, we 
show the processing time of each operation. The 
symbol “-” means that the machine can not execute 
the corresponding operation. Table 2 presents 
the sequence dependent setup times of each job. 
For instance, the setup time for job3 after job2 on 

machine M1 is S2,3,1=2 and the setup time for job2 
after job1 on machine M3 is S1,2,3=2.

Table 1. Processing times.

Job Operation M1 M2 M3
J1 O11 4 - 5

O12 - 3 4

O13 6 5 -

J2 O21 3 - 4

O22 4 5 -

O23 - 4 7

J3 O31 5 3 -

O32 - 4 -

O33 4 5 3

Table 2. Sequence-dependent setup times. 

Job

Machine1 Machine2 Machine3

Job1 Job2 Job3 Job1 Job2 Job3 Job1 Job2 Job3
Dummy 3 2 1 2 4 1 4 3 2

Job1 0 1 3 0 2 4 0 2 3

Job2 1 0 2 4 0 3 2 0 4

Job3 1 3 0 2 1 0 3 2 0

Dummy job signifies the starting of a job on each 
machine. When one of the operations of a jobi is the 
first operation executed on machine Mk, the dummy 
job is Di,k. For example, if O3,1 is the first operation 
executed on machine M2, then, dummy job value 
would be D3,1=1. In order to explain better this 
problem, we represent a Gantt Chart of solution on 
Figure 1.

	  

	  
Figure 1. Gantt Chart of solution 

Figure 1. Gantt Chart of solution. 
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3. Hybrid Genetic algorithm for 
SDST-FJSP

Since the discovery of the genetic algorithms by 
Holland (1975), they have been recognized as 
a powerful methods for solving combinatorial 
optimization problems such as scheduling problems. 
GA can find problem solutions by imitating natural 
selection mechanisms, using choosing, crossing and 
mutation operations. In this section, we present the 
step by step algorithm included our adaptation of the 
different HGA parameters to our problem. 

3.1. HGA procedures 
Step1 (Initialization Scheme): Generate an initial 
parent population of N solutions. Here, we propose 
an improved function of initial population which 
is based on three traditional dispatching rules as 
following: 20% using shortest processing time (SPT); 
20% using longest processing time (LPT); 20% 
using heuristic rules based on local search algorithm; 
the remaining with random solution. We coded the 
solution as binary matrix where the rows represent 
Furthermore, the order in which they appear in the 
matrix describes the sequence of operations present 
in the solution. The columns correspond to the used 
machines as described in the Figure 2. 

Step2 (selection): Choose (N/2) members from the 
parent population using tournament selection.

Step3 (Reproduction phase): Regarding to a certain 
probability, we perform crossover, mutation or VNS 
algorithm in order to create the offspring population. 
For that, we use the crossover operator order 1 which 
consists on selecting randomly two positions XP1 
and XP2 in parent1 (which is coded by a binary 
matrix). Subsequently, the middle part is copied to 
the offspring1. The rest of this child is filled from the 
parent2 starting with position XP2+1, and jumping 
elements that are already presented in offspring1. The 
same steps are repeated for the second offspring by 
starting with the parents2. Figure 2 shows an example 
of this procedure. Till now to the mutation operator, 
we use the mutation technique proposed by Pezzella 
et al. (2008), in which, we select one operation with 
the maximum workload (i.e. the amount of work 
that a machine produces in a specified time period). 
Then we assign it to the machine with the minimum 
workload if possible. The VNS algorithm is used as 
a reproduction operator. In the next section, we will 
focus our attention on the specific VNS we have used. 

Step4 (Environmental selection): Fill the new 
population using a replacement strategy. The new 
population is formed with the N best solutions. If the 
stopping criterion is met then return the best solution; 
otherwise, return to Step 2.

Figure 2. Crossover operator.

3.2. VNS algorithm

Traditionally, the hybridization between GA and 
local search algorithm is based on simple local 
search. However, we adapted an advanced local 
search called variable neighborhood search (VNS) 
inspired from Bagheri and Zandieh (2011) and  
Ennigrou and Ghedira (2008) as a local search for 
our algorithm. More in detail, this VNS based on 
three kinds of neighborhood structures presented as 
following:

Step1 (initial solution): we conserve the same 
solution representation as in GA.

Step2 (Generate neighborhood): In this step, we 
determine the neighborhood of the current solution. 
Then, we use three types of moves: 

 - Two positions p1 and p2 are randomly selected 
on the solution and then, the operations between 
them are randomly reordered.
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 - Operation is chosen randomly and then, changing 
the assignment of the selected operation to 
another machine.

 - The combination between the two precedent 
neighborhood structures

Step3 (neighborhood evaluation): After applying 
each of the neighborhood structures described above, 
we execute a local search for certain iteration. We 
use the same local search as in. 

Step4 (Final Stage): After a number of iteration of 
VNS algorithm, the best solution founded is selected 
to the next population.

4. Experimental study

This section evaluates the performance of our 
proposed hybrid algorithm for two kinds of 
objective functions: makespan and Aggregate 
Objective Function (AOF). For that, we compare 
our HGA against the available algorithms in the 
literature including variable neighourbood search 
(VNS) proposed by Bagheri and Zandieh (2011), an 
adapted tabu search (TS) proposed by Ennigrou and 
Ghedira (2008), Artificial Immune System (AIS), 
Particle swarm Optimization (PSO) from Sadrzadeh 
(2013) and our GA. Our proposed algorithm has 
been implemented using JAVA and run on PC with 
core2Duo, 2,6GHZ and 2GB RAM. 

In our experiment, we tested different values for 
our HGA parameters, and computational experience 
proves that the following values are more effective 
for the two problems (i.e. SDST-FJSP with or 
without learning effects:

 - Population size: 150

 - Crossover probability: 0.6

 - Mutation probability: 0.2

 - Local search probability: 0.2

 - Number of iteration of HGA (stopping condition): 
150 or CPU time limit fixed to n×ni×m×0.1S

 - Number of no improvement (stopping condition):20

 - Number of iteration of VNS:30.

For the makespan objective function, we consider 
the same benchmark as in Oddi A. et al. (2011) and 
González, M. et al. (2013) which is denoted SDST-
HUdata. It consists of 20 instances derived from the 
first 20 instances of the FJSP benchmark proposed 

in Hurink et al. (1994). Each instance was created 
by adding to the original instance one setup time 
matrix St,k for each machine k. The same setup time 
matrix was added for each machine in all benchmark 
instances. Each matrix has size n×n, and the value 
St,i,k. indicates the setup time needed to reconfigure 
the machine k when switches from job t to job i. 
These setup times are sequence dependent and they 
fulfill the triangle inequality. The non-deterministic 
nature of our algorithm makes it necessary to carry 
out multiple runs on the same instance in order to 
obtain meaningful results.

After ten runs of each generated instance by the above-
mentioned algorithms, the best solutions obtained 
for each instance (which is named Solmin) are 
calculated. We use the relative percentage deviation 
(RPD) measure to compare the performance of 
algorithms. RPD is obtained as follows:

RPD = SOLalgo−Solmin/Solmin×100

Where SOLalgo is the makespan of each algorithm.

Table 3 show the performance of the proposed HGA 
compared with others algorithms. The instance names 
are listed in the first column, the second column show 
the size (n×m) of each instance. The third column 

Table 3. Summary of results in the SDST-FJSP to minimize 
the makespan: SDST-HUdata benchmark.

Instance 
problem

Size 
n×m VNS TS GA HGA

La01

10×5

2.54 7.36 0.00 0.00
La02 1.58 8.53 2.57 0.33
La03 2.66 5.33 0.13 0.54
La04 3.50 3.66 4.07 0.90
La05 1.11 3.58 0.16 0.24
La06

15×5

4.45 2.79 2.04 0.32
La07 2.92 2.99 1.97 0.34
La08 2.37 2.41 2.86 0.65
La09 3.82 3.21 0.41 0.33
La10 1.84 4.02 0.00 0.62
La11

20×5

3.32 2.08 1.61 0.34
La12 5.33 2.71 2.38 0.60
La13 3.30 3.14 3.02 1.02
La14 1.70 1.76 1.26 0.93
La15 2.37 1.18 1.97 1.95
La16

10×10

2.37 4.04 0.00 0.76
La17 4.34 2.39 0.07 0.14
La18 1.86 5.81 0.91 0.35
La19 6.37 6.67 0.11 0.17
La20 4.84 9.36 2.48 0.35
Average 3.12 4.15 1.40 0.54
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represents the flexibility (i.e. the average number of 
alternative machines for each operation). The third, 
fourth, fifth and sixth columns report the obtained 
results of VNS algorithm (Bagheri and Zandieh, 
2011), TS algorithm (Ennigrou and Ghedira, 2008), 
our GA only and HGA.

The obtained results show that the proposed HGA 
performs better than the others algorithms in 
13 instances. Only in instance La03, La05 La10, 
La16, La17 and La18 GA has gained better results. 
However, in instance La15, TS obtained the better 
results. The proposed HGA outperforms the others 
algorithms with average RPD of 0.54 while the 
worst performing algorithm is TS with average RPD 
of 4.15. Moreover, we notice that HGA obtained the 
best average RPD of 0.35 in the largest number of 
machine against 4.58, 6.48 and 0.71 for VNS, TS and 
GA respectively.

To further evaluate the performance of our algorithm, 
we study the interaction between the performance 
of the algorithm and the problem size in Figure 3. 
We remark that our algorithm keeps its robust 
performance in different problem sizes.

Furthermore, for the AOF, we consider artificial 
benchmarks according to the function proposed by 
Bagheri and Zandieh (2011). We propose four classes 
of instances.These classes are different in number of 
jobs, n, number ofoperations for each job i, ni, and 
number of machines, m, that are denoted as (n×ni×m).
The generated instances have partial flexibility and 
the number of available machines for each operation 
(AMO) is generated randomly according to uniform 
distribution. Table 4 summarizes the characteristics 
of the artificial benchmarks used in this paper. In 

Table 4. characteristics of the artificial benchmarks

n×ni×m AMO Processing time SDST Dummy Jobs
Class1 10×5×5 U(1,5)

U(20,100) U(20,60) U(20,40)
Class2 15×5×8 U(1,8)
Class3 10×10×5 U(1,5)
Class4 15×10×10 U(1,10)

Figure 3. The average RPD of the algorithms versus the 
number of jobs.

Figure 4. The average RPD of the algorithms of each type 
of problem class for α=0.25.

Figure 5. The average RPD of the algorithms of each type 
of problem class for α=0.5

Figure 6. The average RPD of the algorithms of each type 
of problem class for α=0.75.
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order to introduce due dates, we consider the same 
formula as in (Bagheri & Zandieh, 2011). 

Overall, compared to VNS, AIS, PSO and GA, our 
HGA has a superiority result to minimize the AOF 
for all α values. Moreover, from the results shown 
in figures 4, 5 and 6, we remark that HGA is more 
effective with α =0.25 then α = 0.75. Otherwise, our 
algorithms have the best results with mean tardiness 
against makespan objective function.

5. Conclusions

In this paper, we focus on solving the flexible job 
shop scheduling problem where sequence dependent 
setup times are also taken into account. We have 
proposed a hybrid genetic algorithm to minimize 

two kinds of objective functions: makespan and 
aggregate objectives function. For that, we tested 
HGA on two kinds of benchmark. Results showed 
that the present HGA is better than other algorithms. 
In future works, it will be interesting to investigate 
the dynamic scheduling problem to closely reflect the 
real flexible job shop scheduling environment. For 
the same reason, we will consider the multi-criteria 
scheduling problem and the scheduling problems 
with learning effects considerations.
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