
PME

I
J

http://polipapers.upv.es/index.php/IJPME

International Journal of
Production Management
and Engineering

doi:10.4995/ijpme.2017.6618

Received 2016-09-20 Accepted: 2016-10-03

A hybrid algorithm for flexible job-shop scheduling problem
with setup times

 Ameni Azzouz*, Meriem Ennigrou and Lamjed Ben Said
Lab. SOIE. Stratégies d’Optimisation et Informatique IntelligentE,

ISG, Institut Supérieur de Gestion, Université de Tunis, Tunisie.

ameni.azzouz@isg.rnu.tn

Abstract: Job-shop scheduling problem is one of the most important fields in manufacturing optimization where a set of n
jobs must be processed on a set of m specified machines. Each job consists of a specific set of operations, which have to
be processed according to a given order. The Flexible Job Shop problem (FJSP) is a generalization of the above-mentioned
problem, where each operation can be processed by a set of resources and has a processing time depending on the resource
used. The FJSP problems cover two difficulties, namely, machine assignment problem and operation sequencing problem.
This paper addresses the flexible job-shop scheduling problem with sequence-dependent setup times to minimize two kinds
of objectives function: makespan and bi-criteria objective function. For that, we propose a hybrid algorithm based on genetic
algorithm (GA) and variable neighbourhood search (VNS) to solve this problem. To evaluate the performance of our algorithm,
we compare our results with other methods existing in literature. All the results show the superiority of our algorithm against
the available ones in terms of solution quality.

Key words: Job-shop scheduling problem, Flexible manufacturing systems, Sequence-dependent setup times, Genetic
algorithms, Local search.

1. Introduction

Flexible-job-shop scheduling problem (FJSP) is a
well-known NP-hard problem (Garey et al., 1976),
which reflect a wide range of scheduling problems
encountered in real manufacturing systems. For this
reason, FJSP continues to attract the interests of
researchers both in academia and industry.

This problem mainly cover two difficulties: the
first one is resource assignment problem where
each operation can be processed by more than
one resource from a set of available resource and
has, consequently, a processing time depending
on the resource used. The second one is operation
sequencing problem with maintaining the feasibility
conditions. Recently, many researches have been
made to find the near optimal solution of FJSP using
a varied range of tools and techniques such as Branch

and Bound (Fatahi et al., 2007; Zribi et al., 2007) and
Heuristics (Wang and Yu, 2010; Ziaee, 2014). FJSP
is known to be strongly NP-hard. Consequently, most
of the literature related to the FJSP is based on meta-
heuristic methods like genetic algorithms (GAs)
(Zhou et al., 2006; Pezzella et al., 2008; Zhang et al.,
2011; Zambrano Rey et al., 2014), particle swarm
optimization (PSO) (Zhang et al., 2009; Nouiri et al.,
2015) simulated annealing (SA) (Najid et al., 2002;
Yazdani et al., 2009), tabu search (TS) (Brandimarte,
1993; Fatahi et al., 2007; Vilcot and Billaut, 2011)
and beam search (BS) (Wang et al., 2008).

Most job-shop scheduling researches reported in
the literature ignore the setup times or consider
them as a part of the processing time. However, in
many real-life situations such as chemical, printing,
pharmaceutical and automobile manufacturing
(Kim and Bobrowski, 1994), the setup times are

Int. J. Prod. Manag. Eng. (2017) 5(1), 23-30Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 23

https://doi.org/10.4995/ijpme.2017.6618
http://creativecommons.org/licenses/by-nc-nd/4.0/

not only often required between jobs but they are
also strongly dependent on job itself (sequence
independent) and the previous job that ran on
the same machine (sequence dependent). Hence,
reducing setup times is an important task to improve
shop performance. The FJSP has been widely
studied. However, few papers have considered this
problem with setup times.

Among these, Cheung and Zhou (2001) propose a
hybrid algorithm based on genetic algorithm and
heuristic rules to solve SDST-JSP with minimizing
the makespan. For the same problem, Zhou et al.
(2006) propose an immune algorithm which
certifies the diversity of the antibody. Moghaddas
and Houshmand (2008) develop a mathematical
and heuristic model based on priority rules. Naderi
et al. (2009) consider the job shop scheduling with
sequence-dependent setup times and preventive
maintenance policies using four meta-heuristics
based on simulated annealing and genetic
algorithms.

Considering the flexibility constraints, flexible
job-shop problem presents additional difficulty
than the classical JSP and requires more effective
algorithms. In recent decades, many attempts have
been made to find the near optimal solution of SDST-
FJSP using a varied range of tools and techniques.
Imanipour (2006) was the first one who investigates
the SDST-FJSP. The author modeled the problem as
a non linear mixed integer programming model and
proposes a tabu search for the same problem. Saidi-
Mehrabad and Fattahi (2007) presented a Tabu
Search for solving the SDST-FJSP to minimize
makespan. They assumed in their research that
each operation can be performed by two machine
alternatives. They compared their obtained results
with the results of the lingo software. Bagheri and
Zandieh (2011) propose a variable neighborhood
search (VNS) based on integrated approach to
minimize an aggregate objective function (AOF)
where AOF = αF1+(1-α)F2 and α denote the weight
given respectively to makespan (F1) and mean
tardiness (F2). To evaluate this model, the authors
generate randomly 20 problem instances under four
different classes. Using the same AOF, Sadrzadeh
(2013) present an artificial immune system
algorithm (AIS) and a particle swarm optimization
algorithm (PSO) and prove that both algorithms
works better than VNS of Bagheri and Zandieh
(2011).

Mousakhani (2013) formulate the SDST-FJSP
as a mixed integer linear programming model to
minimize total tardiness and present a meta-heuristic
based on iterated local search for the same problem.
Oddi et al. (2011) considers the SDST-FJSP to
minimize the makespan using the iterative flattering
search (IFS) and propose a new benchmark which
is denoted SDST-HUdata. It consists of 20 instances
produced as an extension of the existing well-
known benchmarks of FJSP of Hurink et al. (1994).
Gonzàlez et al. (2013) develop memetic algorithm
to minimize the makespan which the tabu search
was applied to every chromosome generated by the
genetic algorithm. In order to evaluate their model,
they used the same benchmark as in Oddi et al. (2011)
and prove that the memetic algorithm has obtained
a better result than the IFS. Recently, Rossi (2014)
investigate the SDST-FJSP with transportation
times using ant-colony algorithm with reinforced
pheromone. The most recent comprehensive survey
of scheduling problem with setup times is given by
Allahverdi (2015).

Nevertheless, most of the above-mentioned research
considered only one method optimization to solve
SDST-FJSP. However, the literature reviews show
that none of these methods are sufficient on their own
to solve this NP-hard problem. For that, in this paper,
we propose a hybrid genetic algorithm (HGA) based
on GA and VNS for the SDST-FJSP. Then, we show
that our algorithm can be very effective with respect
to the state of the art. The remainder of this paper
is organized as follows. In section 2, we formulate
the problem and we give an illustrative example.
Section 3 presents the proposed algorithm to solve
the SDST-FJSP. Section 4 describes the performance
of our algorithm on a set of benchmark problems and
explains the most interesting results. Conclusions
and some future works are presented in section 5.

2. Problem definition

The SDST-FJSP can be defined as follows: this
problem consists in performing n jobs on m machines.
The set machines is noted M, M={M1,... ,Mk}. Each
job i consists of a sequence of ni operations (routing).
Each routing has to be performed to complete a
job. The execution of each operation j of a job
i (noted Oij) requires one machine out of a set of
given machines Mi,j (i.e. Mi,j is the set of machines
available to execute Oij). The problem is to define a
sequence of operations together with assignment of
start times and machines for each operation.

Int. J. Prod. Manag. Eng. (2017) 5(1), 23-30 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Azzouz, A., Ennigrou, M. and Ben Said, L.

24

http://creativecommons.org/licenses/by-nc-nd/4.0/

Assumptions considered in this paper are the
following: (1) jobs are independent of each other;
(2) machines are independent of each other; (3)
one machine can process at most one operation at a
time; (4) no preemption is allowed; (5) all jobs are
available at time zero; (6) Setup times are dependent
on the sequence of jobs. When one of the operations
of a job t is processed before one of those of job i
(t≠i) on machine Mk, the sequence dependent setup
time is St,i,k>0.

The current SDST-FJSP based on these assumptions
is aimed to minimize two kinds of objective
functions:

 - Minimize the makespan (i.e. the time required
to complete all jobs)

 - Minimize Aggregate objective function (AOF)
where AOF = αF1+(1-α)F2 and α denote the
weight given respectively to makespan (F1) and
mean tardiness (F2).

FJSP is classified as Total FJSP and Partial FJSP
(Kacem et al., 2002). In Total FJSP (T-FJSP),
each operation can be processes by all machines.
However, in Partial FJSP (P-FJSP), at least one
operation may not be processed on all machines.
Several researches pointed out that the P-FJSP is
more complex as compared to T-FJSP on the same
scale. In this paper, we consider the P-FJSP.

To illustrate this problem, we consider an instance
with three jobs and three machines. In Table 1, we
show the processing time of each operation. The
symbol “-” means that the machine can not execute
the corresponding operation. Table 2 presents
the sequence dependent setup times of each job.
For instance, the setup time for job3 after job2 on

machine M1 is S2,3,1=2 and the setup time for job2
after job1 on machine M3 is S1,2,3=2.

Table 1. Processing times.

Job Operation M1 M2 M3
J1 O11 4 - 5

O12 - 3 4

O13 6 5 -

J2 O21 3 - 4

O22 4 5 -

O23 - 4 7

J3 O31 5 3 -

O32 - 4 -

O33 4 5 3

Table 2. Sequence-dependent setup times.

Job

Machine1 Machine2 Machine3

Job1 Job2 Job3 Job1 Job2 Job3 Job1 Job2 Job3
Dummy 3 2 1 2 4 1 4 3 2

Job1 0 1 3 0 2 4 0 2 3

Job2 1 0 2 4 0 3 2 0 4

Job3 1 3 0 2 1 0 3 2 0

Dummy job signifies the starting of a job on each
machine. When one of the operations of a jobi is the
first operation executed on machine Mk, the dummy
job is Di,k. For example, if O3,1 is the first operation
executed on machine M2, then, dummy job value
would be D3,1=1. In order to explain better this
problem, we represent a Gantt Chart of solution on
Figure 1.

	

	
Figure 1. Gantt Chart of solution

Figure 1. Gantt Chart of solution.

Int. J. Prod. Manag. Eng. (2017) 5(1), 23-30Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

A hybrid algorithm for flexible job-shop scheduling problem with setup times

25

http://creativecommons.org/licenses/by-nc-nd/4.0/

3. Hybrid Genetic algorithm for
SDST-FJSP

Since the discovery of the genetic algorithms by
Holland (1975), they have been recognized as
a powerful methods for solving combinatorial
optimization problems such as scheduling problems.
GA can find problem solutions by imitating natural
selection mechanisms, using choosing, crossing and
mutation operations. In this section, we present the
step by step algorithm included our adaptation of the
different HGA parameters to our problem.

3.1. HGA procedures
Step1 (Initialization Scheme): Generate an initial
parent population of N solutions. Here, we propose
an improved function of initial population which
is based on three traditional dispatching rules as
following: 20% using shortest processing time (SPT);
20% using longest processing time (LPT); 20%
using heuristic rules based on local search algorithm;
the remaining with random solution. We coded the
solution as binary matrix where the rows represent
Furthermore, the order in which they appear in the
matrix describes the sequence of operations present
in the solution. The columns correspond to the used
machines as described in the Figure 2.

Step2 (selection): Choose (N/2) members from the
parent population using tournament selection.

Step3 (Reproduction phase): Regarding to a certain
probability, we perform crossover, mutation or VNS
algorithm in order to create the offspring population.
For that, we use the crossover operator order 1 which
consists on selecting randomly two positions XP1
and XP2 in parent1 (which is coded by a binary
matrix). Subsequently, the middle part is copied to
the offspring1. The rest of this child is filled from the
parent2 starting with position XP2+1, and jumping
elements that are already presented in offspring1. The
same steps are repeated for the second offspring by
starting with the parents2. Figure 2 shows an example
of this procedure. Till now to the mutation operator,
we use the mutation technique proposed by Pezzella
et al. (2008), in which, we select one operation with
the maximum workload (i.e. the amount of work
that a machine produces in a specified time period).
Then we assign it to the machine with the minimum
workload if possible. The VNS algorithm is used as
a reproduction operator. In the next section, we will
focus our attention on the specific VNS we have used.

Step4 (Environmental selection): Fill the new
population using a replacement strategy. The new
population is formed with the N best solutions. If the
stopping criterion is met then return the best solution;
otherwise, return to Step 2.

Figure 2. Crossover operator.

3.2. VNS algorithm

Traditionally, the hybridization between GA and
local search algorithm is based on simple local
search. However, we adapted an advanced local
search called variable neighborhood search (VNS)
inspired from Bagheri and Zandieh (2011) and
Ennigrou and Ghedira (2008) as a local search for
our algorithm. More in detail, this VNS based on
three kinds of neighborhood structures presented as
following:

Step1 (initial solution): we conserve the same
solution representation as in GA.

Step2 (Generate neighborhood): In this step, we
determine the neighborhood of the current solution.
Then, we use three types of moves:

 - Two positions p1 and p2 are randomly selected
on the solution and then, the operations between
them are randomly reordered.

Int. J. Prod. Manag. Eng. (2017) 5(1), 23-30 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Azzouz, A., Ennigrou, M. and Ben Said, L.

26

http://creativecommons.org/licenses/by-nc-nd/4.0/

 - Operation is chosen randomly and then, changing
the assignment of the selected operation to
another machine.

 - The combination between the two precedent
neighborhood structures

Step3 (neighborhood evaluation): After applying
each of the neighborhood structures described above,
we execute a local search for certain iteration. We
use the same local search as in.

Step4 (Final Stage): After a number of iteration of
VNS algorithm, the best solution founded is selected
to the next population.

4. Experimental study

This section evaluates the performance of our
proposed hybrid algorithm for two kinds of
objective functions: makespan and Aggregate
Objective Function (AOF). For that, we compare
our HGA against the available algorithms in the
literature including variable neighourbood search
(VNS) proposed by Bagheri and Zandieh (2011), an
adapted tabu search (TS) proposed by Ennigrou and
Ghedira (2008), Artificial Immune System (AIS),
Particle swarm Optimization (PSO) from Sadrzadeh
(2013) and our GA. Our proposed algorithm has
been implemented using JAVA and run on PC with
core2Duo, 2,6GHZ and 2GB RAM.

In our experiment, we tested different values for
our HGA parameters, and computational experience
proves that the following values are more effective
for the two problems (i.e. SDST-FJSP with or
without learning effects:

 - Population size: 150

 - Crossover probability: 0.6

 - Mutation probability: 0.2

 - Local search probability: 0.2

 - Number of iteration of HGA (stopping condition):
150 or CPU time limit fixed to n×ni×m×0.1S

 - Number of no improvement (stopping condition):20

 - Number of iteration of VNS:30.

For the makespan objective function, we consider
the same benchmark as in Oddi A. et al. (2011) and
González, M. et al. (2013) which is denoted SDST-
HUdata. It consists of 20 instances derived from the
first 20 instances of the FJSP benchmark proposed

in Hurink et al. (1994). Each instance was created
by adding to the original instance one setup time
matrix St,k for each machine k. The same setup time
matrix was added for each machine in all benchmark
instances. Each matrix has size n×n, and the value
St,i,k. indicates the setup time needed to reconfigure
the machine k when switches from job t to job i.
These setup times are sequence dependent and they
fulfill the triangle inequality. The non-deterministic
nature of our algorithm makes it necessary to carry
out multiple runs on the same instance in order to
obtain meaningful results.

After ten runs of each generated instance by the above-
mentioned algorithms, the best solutions obtained
for each instance (which is named Solmin) are
calculated. We use the relative percentage deviation
(RPD) measure to compare the performance of
algorithms. RPD is obtained as follows:

RPD = SOLalgo−Solmin/Solmin×100

Where SOLalgo is the makespan of each algorithm.

Table 3 show the performance of the proposed HGA
compared with others algorithms. The instance names
are listed in the first column, the second column show
the size (n×m) of each instance. The third column

Table 3. Summary of results in the SDST-FJSP to minimize
the makespan: SDST-HUdata benchmark.

Instance
problem

Size
n×m VNS TS GA HGA

La01

10×5

2.54 7.36 0.00 0.00
La02 1.58 8.53 2.57 0.33
La03 2.66 5.33 0.13 0.54
La04 3.50 3.66 4.07 0.90
La05 1.11 3.58 0.16 0.24
La06

15×5

4.45 2.79 2.04 0.32
La07 2.92 2.99 1.97 0.34
La08 2.37 2.41 2.86 0.65
La09 3.82 3.21 0.41 0.33
La10 1.84 4.02 0.00 0.62
La11

20×5

3.32 2.08 1.61 0.34
La12 5.33 2.71 2.38 0.60
La13 3.30 3.14 3.02 1.02
La14 1.70 1.76 1.26 0.93
La15 2.37 1.18 1.97 1.95
La16

10×10

2.37 4.04 0.00 0.76
La17 4.34 2.39 0.07 0.14
La18 1.86 5.81 0.91 0.35
La19 6.37 6.67 0.11 0.17
La20 4.84 9.36 2.48 0.35
Average 3.12 4.15 1.40 0.54

Int. J. Prod. Manag. Eng. (2017) 5(1), 23-30Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

A hybrid algorithm for flexible job-shop scheduling problem with setup times

27

http://creativecommons.org/licenses/by-nc-nd/4.0/

represents the flexibility (i.e. the average number of
alternative machines for each operation). The third,
fourth, fifth and sixth columns report the obtained
results of VNS algorithm (Bagheri and Zandieh,
2011), TS algorithm (Ennigrou and Ghedira, 2008),
our GA only and HGA.

The obtained results show that the proposed HGA
performs better than the others algorithms in
13 instances. Only in instance La03, La05 La10,
La16, La17 and La18 GA has gained better results.
However, in instance La15, TS obtained the better
results. The proposed HGA outperforms the others
algorithms with average RPD of 0.54 while the
worst performing algorithm is TS with average RPD
of 4.15. Moreover, we notice that HGA obtained the
best average RPD of 0.35 in the largest number of
machine against 4.58, 6.48 and 0.71 for VNS, TS and
GA respectively.

To further evaluate the performance of our algorithm,
we study the interaction between the performance
of the algorithm and the problem size in Figure 3.
We remark that our algorithm keeps its robust
performance in different problem sizes.

Furthermore, for the AOF, we consider artificial
benchmarks according to the function proposed by
Bagheri and Zandieh (2011). We propose four classes
of instances.These classes are different in number of
jobs, n, number ofoperations for each job i, ni, and
number of machines, m, that are denoted as (n×ni×m).
The generated instances have partial flexibility and
the number of available machines for each operation
(AMO) is generated randomly according to uniform
distribution. Table 4 summarizes the characteristics
of the artificial benchmarks used in this paper. In

Table 4. characteristics of the artificial benchmarks

n×ni×m AMO Processing time SDST Dummy Jobs
Class1 10×5×5 U(1,5)

U(20,100) U(20,60) U(20,40)
Class2 15×5×8 U(1,8)
Class3 10×10×5 U(1,5)
Class4 15×10×10 U(1,10)

Figure 3. The average RPD of the algorithms versus the
number of jobs.

Figure 4. The average RPD of the algorithms of each type
of problem class for α=0.25.

Figure 5. The average RPD of the algorithms of each type
of problem class for α=0.5

Figure 6. The average RPD of the algorithms of each type
of problem class for α=0.75.

Int. J. Prod. Manag. Eng. (2017) 5(1), 23-30 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Azzouz, A., Ennigrou, M. and Ben Said, L.

28

http://creativecommons.org/licenses/by-nc-nd/4.0/

order to introduce due dates, we consider the same
formula as in (Bagheri & Zandieh, 2011).

Overall, compared to VNS, AIS, PSO and GA, our
HGA has a superiority result to minimize the AOF
for all α values. Moreover, from the results shown
in figures 4, 5 and 6, we remark that HGA is more
effective with α =0.25 then α = 0.75. Otherwise, our
algorithms have the best results with mean tardiness
against makespan objective function.

5. Conclusions

In this paper, we focus on solving the flexible job
shop scheduling problem where sequence dependent
setup times are also taken into account. We have
proposed a hybrid genetic algorithm to minimize

two kinds of objective functions: makespan and
aggregate objectives function. For that, we tested
HGA on two kinds of benchmark. Results showed
that the present HGA is better than other algorithms.
In future works, it will be interesting to investigate
the dynamic scheduling problem to closely reflect the
real flexible job shop scheduling environment. For
the same reason, we will consider the multi-criteria
scheduling problem and the scheduling problems
with learning effects considerations.

Acknowledgements

This he authors would like to say thanks to Miguel
A. Gonzalez for providing us with the SDST-FJSP
instances.

References
Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. European Journal of Operational

Research, 246(2), 345-378. https://doi.org/10.1016/j.ejor.2015.04.004

Azzouz, A., Ennigrou, M., Jlifi, B. (2015). Diversifying TS using GA in Multi-Agent System for solving Flexible Job Shop Problem.
In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics, 94-101. https://doi.
org/10.5220/0005511000940101

Azzouz, A., Ennigrou, M., Jlifi, B., Ghedira, K. (2012). Combining Tabu Search and Genetic Algorithm in a Multi-agent System for Solving
Flexible Job Shop Problem. In Artificial Intelligence (MICAI), 2012, 11th Mexican International Conference on, pp. 83-88. IEEE. https://
doi.org/10.1109/micai.2012.12

Bagheri, A., Zandieh, M. (2011). Bi-criteria flexible job-shop scheduling with sequence-dependent setup times Variable neighborhood
search approach. Journal of Manufacturing Systems, 30(1), 8-15. https://doi.org/10.1016/j.jmsy.2011.02.004

Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Journal Annals of Operations Research, 41(3), 157-
183. https://doi.org/10.1007/bf02023073

Cheung, W., Zhou, H. (2001). Using genetic algorithms and heuristics for job shop scheduling with sequence-dependent setup times. Annals
of Operations Research, 107(1), 65-81. https://doi.org/10.1023/A:1014990729837

Fattahi, P., Saidi-Meradbad, M., Jolai, F. (2007). Mathematical Modeling and heuristic approaches to flexible job shop scheduling problems.
Journal of intelligent manufacturing, 18(3), 331-342. https://doi.org/10.1007/s10845-007-0026-8

González, M. A., Rodriguez Vela, C., Varela, R. (2013). An efficient memetic algorithm for the flexible job shop with setup times. In Twenty-
Third International Conference on Automated, pp. 91-99.

Hurink, J., Jurisch, B., Thole, M. (1994). Tabu search for the job-shop scheduling problem with multi-purpose machines. Operations-
Research-Spektrum, 15(4), 205-215. https://doi.org/10.1007/BF01719451

Imanipour, N. (2006). Modeling solving flexible job shop problem with sequence dependent setup times. International Conference on Service
Systems and Service Management. IEEE, 2, 1205-1210. https://doi.org/10.1109/icsssm.2006.320680

Kim, S.C., Bobrowski, P.M. (1994). Impact of sequence-dependent setup time on job shop scheduling performance. The International
Journal of Production Research, 32(7), 1503-1520. https://doi.org/10.1080/00207549408957019

Moghaddas, R., Houshmand, M. (2008). Job-shop scheduling problem with sequence dependent setup times. Proceedings of the
International MultiConference of Engineers and Computer Scientists, 2, 978-988.

Mousakhani, M. (2013). Sequence-dependent setup time flexible job shop scheduling problem to minimise total tardiness. International
Journal of Production Research, 51(12), 3476-3487. https://doi.org/10.1080/00207543.2012.746480

Naderi, B., Zandieh, M., Ghomi, S.F. (2009). Scheduling sequence-dependent setup time job shops with preventive maintenance. The
International Journal of Advanced Manufacturing Technology, 43, 170-181. https://doi.org/10.1007/s00170-008-1693-0

Int. J. Prod. Manag. Eng. (2017) 5(1), 23-30Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

A hybrid algorithm for flexible job-shop scheduling problem with setup times

29

https://doi.org/10.1016/j.ejor.2015.04.004
https://doi.org/10.5220/0005511000940101
https://doi.org/10.5220/0005511000940101
https://doi.org/10.1109/micai.2012.12
https://doi.org/10.1109/micai.2012.12
https://doi.org/10.1016/j.jmsy.2011.02.004
https://doi.org/10.1007/bf02023073
https://doi.org/10.1023/A:1014990729837
https://doi.org/10.1007/s10845-007-0026-8
https://doi.org/10.1007/BF01719451
https://doi.org/10.1109/icsssm.2006.320680
https://doi.org/10.1080/00207549408957019
https://doi.org/10.1080/00207543.2012.746480
https://doi.org/10.1007/s00170-008-1693-0
http://creativecommons.org/licenses/by-nc-nd/4.0/

Najid, N.M., Dauzere-Peres, S., Zaidat, A. (2002). A modified simulated annealing method for flexible job shop scheduling problem.
In proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 5, 6-9. https://doi.org/10.1109/
icsmc.2002.1176334

Nouiri, M., Bekrar, A., Jemai, A., Niar, S., Ammari, A. C. (2015). An effective and distributed particle swarm optimization algorithm for flexible
job-shop scheduling problem. Journal of Intelligent Manufacturing, 1-13. https://doi.org/10.1007/s10845-015-1039-3

Oddi, A., Rasconi, R., Cesta, A., & Smith, S. (2011). Applying iterative flattening search to the job shop scheduling problem with alternative
resources and sequence dependent setup times. In COPLAS 2011 Proceedings of the Workshopon Constraint Satisfaction Techniques
for Planning and Scheduling Problems, pp. 15-22.

Pezzella, F., Morganti, G., Ciaschetti, G. (2008). A genetic algorithm for the flexible job-shop scheduling problem. Computers & Operations
Research, 35(10), 3202-3212. https://doi.org/10.1016/j.cor.2007.02.014

Rossi, A. (2014). Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced
pheromone relationships. International Journal of Production Economics, 153, 253-267. https://doi.org/10.1016/j.ijpe.2014.03.006

Sadrzadeh, A. (2013). Development of both the AIS and PSO for solving the flexible job shop scheduling problem. Arabian Journal for
Science and Engineering, 38(12), 3593-3604. https://doi.org/10.1007/s13369-013-0625-y

Saidi-Mehrabad, M., Fattahi, P. (2007). Flexible job shop scheduling with tabu search algorithms. The International Journal of Advanced
Manufacturing Technology, 32(5), 563-570. https://doi.org/10.1007/s00170-005-0375-4

Vilcot, G., Billaut, J.C. (2011). A tabu search algorithm for solving a multicriteria flexible job shop scheduling problem. International Journal
of Production Research, 49(23), 6963-6980. https://doi.org/10.1080/00207543.2010.526016

Wang, S.J., Zhou, B.H., Xi, L.F. (2008). A filtered-beam-search-based algorithm for flexible job-shop scheduling problem. International
Journal of Production Research, 46(11), 3027-3058. https://doi.org/10.1080/00207540600988105

Wang, S., Yu, J. (2010). An effective heuristic for flexible job-shop scheduling problem with maintenance activities. Computers and Industrial
Engineering, 59(3), 436-447. https://doi.org/10.1016/j.cie.2010.05.016

Yazdani, M., Gholami, M., Zandieh, M., Mousakhani, M. (2009). A Simulated Annealing Algorithm for Flexible Job-Shop Scheduling Problem.
Journal of Applied Sciences, 9(4), 662-670. https://doi.org/10.3923/jas.2009.662.670

Zambrano Rey, G., Bekrar, A., Prabhu, V., Trentesaux, D. (2014). Coupling a genetic algorithm with the distributed arrival-time control for
the JIT dynamic scheduling of flexible job-shops. International Journal of Production Research, 52(12), 3688-3709. https://doi.org/10
.1080/00207543.2014.881575

Zhang, G., Gao, L., Shi, Y. (2011). An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Systems with
Applications, 38(4), 3563-3573. https://doi.org/10.1016/j.eswa.2010.08.145

Zhang, G., Shao, X., Li, P., Gao, L. (2009). An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop
scheduling problem. Computers and Industrial Engineering, 56(4), 1309-1318. https://doi.org/10.1016/j.cie.2008.07.021

Zhou, Y., Beizhi, L., Yang, J. (2006). Study on job shop scheduling with sequence-dependent setup times using biological immune algorithm.
The International Journal of Advanced Manufacturing Technology, 30(1), 105-111. https://doi.org/10.1007/s00170-005-0022-0

Ziaee, M. (2014). A heuristic algorithm for solving flexible job shop scheduling problem. The International Journal of Advanced Manufacturing
Technology, 71(1), 519-528 https://doi.org/10.1007/s00170-013-5510-z

Zribi, N., Kacem, I., El Kamel, A., Borne, P. (2007). Assignment and scheduling in flexible job-shops by hierarchical optimization. In Systems,
Man, and Cybernetics, Part C: Applications and Reviews, IEEE (4), 652-661. https://doi.org/10.1109/TSMCC.2007.897494

Int. J. Prod. Manag. Eng. (2017) 5(1), 23-30 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Azzouz, A., Ennigrou, M. and Ben Said, L.

30

https://doi.org/10.1109/icsmc.2002.1176334
https://doi.org/10.1109/icsmc.2002.1176334
https://doi.org/10.1007/s10845-015-1039-3
https://doi.org/10.1016/j.cor.2007.02.014
https://doi.org/10.1016/j.ijpe.2014.03.006
https://doi.org/10.1007/s13369-013-0625-y
https://doi.org/10.1007/s00170-005-0375-4
https://doi.org/10.1080/00207543.2010.526016
https://doi.org/10.1080/00207540600988105
https://doi.org/10.1016/j.cie.2010.05.016
https://doi.org/10.3923/jas.2009.662.670
https://doi.org/10.1080/00207543.2014.881575
https://doi.org/10.1080/00207543.2014.881575
https://doi.org/10.1016/j.eswa.2010.08.145
https://doi.org/10.1016/j.cie.2008.07.021
https://doi.org/10.1007/s00170-005-0022-0
https://doi.org/10.1007/s00170-013-5510-z
https://doi.org/10.1109/TSMCC.2007.897494
http://creativecommons.org/licenses/by-nc-nd/4.0/

