
Paper—Using Executable Specification and Regression Testing for Broadcast Mechanism…

Using Executable Specification and Regression Testing
for Broadcast Mechanism of Visual Programming

Language on Smartphones
https://doi.org/10.3991/ijim.v13i02.9851

Zulfiqar Ali(*)
Graz University of Technology, Graz, Austria
zulfiqar.ali@student.tugraz.at

Aiman M. Ayyal Awwad
Tafila Technical University, Tafila, Jordan

Wolfgang Slany
Graz University of Technology, Graz, Austria

Abstract—The rapid advancement of mobile computing technology and the
rising usage of mobile apps made our daily life more productive. The mobile app
should operate all the time bug-free in order to improve user satisfaction and of-
fers great business value to the end user. At the same time, smartphones are full
of special features that make testing of apps more challenging. Actually, the qual-
ity is a must for successful applications and it cannot be achieved without testing
and verification. In this paper, we present the behavior driven development meth-
odology and Cucumber framework to automate regression testing for Android
apps. Particularly, the proposed methods use the visual programming language
for smartphones (Catrobat) as a reference. The Catrobat program scripts com-
municate via a broadcast mechanism. The objective is to test the broadcast mech-
anism from different angles and track regression errors as well as specify and
diagnose bugs with the help of executable specifications. The results show that
the methods are able to effectively reveal deficiencies in the broadcast mecha-
nism, and ensure that the app meets end users’ expectations and needs.

Keywords—Mobile Application, Regression Testing, Behavior Driven Devel-
opment, Visual Programming Language, Catrobat.

1 Introduction

Smartphone and its applications now become a key component in our everyday rou-
tine jobs. For the popularity of smartphones, many apps are developed and deployed
every day [1, 2]. Such applications have changed totally the style we perform every
day’s activities, interact with each other, and complete important tasks [2, 3]. However,
to introduce new features to users in any mobile apps requires the mobile software to
be highly reliable [4]. Developing mobile apps is challenged by the demand to keep

50 http://www.i-jim.org

Paper—Using Executable Specification and Regression Testing for Broadcast Mechanism…

moving with matching user’s needs and short release cycles, while still providing high-
quality software – especially as poor quality is immediately visible in app stores and
can have an influence on the app development companies’ reputation [5].

Basically, mobile apps are mostly bugs prone because of developers’ unfamiliarity
with mobile platforms. The increasing complexity of mobile app can arise many chal-
lenges in the testing process in order to make sure the app will operate and meet the
user’s expectations. Smartphones are becoming common; this exposes the necessity for
effective techniques for testing their apps. Mobile app testing plays a vital role in mak-
ing mobile applications more reliable and bug-free [4, 6]. In particular, the complexity
of the mobile applications development and testing them in a mobile platform need a
change in the traditional testing process. For these reasons, testing, and especially re-
gression testing, is one of the most essential activities during app development [5].

Smartphones have different platforms such as Android and iOS. Mobile app devel-
opment companies have to develop applications for each platform. Specifically, the
Android market fragment is large, as well as the several sets of scenarios in which a
mobile app can be used makes the testing of a new app is costly, time-consuming, and
complex task [6].

According to a survey performed by the senior IT-management executives world-
wide in 2017, 39 percent of respondents identified certification of their apps as one of
the focus domains for mobile app regression testingi. Regression testing is an effective
way to declare that the final version of the product remains behaving correctly in ac-
cordance with the new additions. In this type of testing, the manual process is time-
consuming. Thus, to secure the inspection of requirements and promote testing, auto-
mated tests are a key factor to support testing in the software environment [7]. The
regression testing must be executed after modifications and changes to a given app have
been made. It is usually performed by re-running previously run tests and checking
whether new faults have emerged.

Mainly, regression testing is used to assert that the software modification did not
break previously working functionality. For a large number of tests, regression testing
is costly. However, some studies estimate that the testing budget regarding regression
testing can take up to 80% as well as 50% cost for the software maintenance. Therefore,
as the software application grows the cost of regression testing increases. For instance,
Google has examined that their regression testing system has a linear increase in both
the number of software changes as well as the average test suite execution time, leading
to a quadratic increase in the total test suite execution time [8].

Regression testing is a repetitive process of software testing. It aims to ensure that
new faults or defects will not become together or introduced into the extended code or
modification of the app. The usage of regression testing might be increased due to the
growth in an iterative development and reusability of different software application
features [9].

In Android app testing, the developer can test many features with unit tests. New
descendant shows the commitment that the developers would want to test with Behav-
ior-Driven Development (BDD) methodology, which focuses on the behavior of the
users. BDD presents some new concepts, such as ubiquitous language to express the
tests and the involvement of business stakeholders in the software development process.

iJIM ‒ Vol. 13, No. 2, 2019 51

Paper—Using Executable Specification and Regression Testing for Broadcast Mechanism…

The objective of the BDD is to bridge the gap between customers and developers with
the help of Gherkin language [5].

Behavior-driven development is the evolution and advancement of Test Driven De-
velopment (TDD) and Acceptance Test Driven Development (ATDD). Among these
approaches, there has been a growing interest for BDD due to its ability to engage busi-
ness analyst requirement and to easily convert those requirements into business people
readable specifications that should work as automated acceptance tests [10, 11].

Therefore, in this paper, an automated regression testing approach for smartphone
apps is introduced. We explore the concept and the practice of BDD in the Catrobat
programming language. The case studies testing for broadcast mechanism are presented
to demonstrate the feasibility of this approach in early phases of the development pro-
cess, provide a constant quality assurance of requirements, and help customers and de-
velopment teams to identify possible problems before the publishing process for the
mobile app. The results show that the methods are able to effectively expose deficien-
cies in the app under test, and ensure that the quality of the broadcast mechanism is
increased.

2 Mobile Regression Test Automation and Tools

This section presents an overview of the tools which are used by the proposed auto-
mated regression testing approach. We describe the different concepts of mobile re-
gression test automation tools and give a brief introduction on where and how to auto-
mate mobile regression tests for the target app and development environment.

2.1 Behavior-driven development

Behavior-driven development was originally developed by Dan Northii. It is a soft-
ware development process that evolved from TDD, which is invented by Kent Beck in
the early days of the agile approach and usually used in the Extreme Programming
approach [8, 10].

Behavior-driven development focuses on defining the fine-grained specification of
the targeting system’s behavior, in a way that they can be automated. In particular, it
describes and observes the behavior of the system as executable specifications and fo-
cuses on how the system behaves and interacts with end users. The primary goal of
BDD methodology is to promote communication amongst the stakeholders of the pro-
ject so that all members of the team can understand correctly each feature before the
development process begins. This serves to identify key scenarios for each story and
also eliminate ambiguities from business requirements [12, 13].

Primarily, scenarios in BDD are used as acceptance criteria, which are written with
the help of Gherkin language. The scenarios describe how a particular feature should
act in different situations with different input parameters. BDD scenarios are clearly
written and easily understandable for stakeholders because it provides natural lan-
guages that help stakeholders to specify their tests [10]

52 http://www.i-jim.org

Paper—Using Executable Specification and Regression Testing for Broadcast Mechanism…

In the course of BDD, the executable specifications are automated tests, which show
and verify that how the app can provide and deliver a specific business requirement.
Whenever a change is made in the app, these specifications (tests) run as a part of the
build process. However, they are serving as acceptance tests, determining which new
features are complete, and as regression tests, ensuring that new changes have not dam-
aged any existing features of the app. Therefore, the mobile tester can automate an
executable specification by writing test code corresponding to each step. The BDD tool,
i.e., Cucumber will match the text in each step of the executable scenario to the appro-
priate and suitable test code.

In addition, BDD specialists implement specifications with a top-down or stepwise
approach using the acceptance criteria as goals. It describes the behavior of each com-
ponent with unit tests which are written in the form of scenarios. With the help of the
BDD process which is fully focused on the executable specification, the mobile testers
can reduce the cost and effort as well as they can speed up the release process and easily
make the changes [12].

2.2 Regression testing

Regression testing is re-testing of previously developed and tested software after a
code’s changes to ensure that the software is still working in the same way as before
the changes. Changes may include software improvements, patches, configuration ad-
justments, etc.

Regression testing was recommended to test the app’s efficiency and improving the
transparency in the large-scale software development process. Indeed, regression test-
ing depends on users who have a good experience on the app. However, it is possible
for the mobile testers to improve and add additional test cases to the system just to be
on the safe side and therefore the testing process gets unnecessary costly [14].

The requirements are scattered in multiple artifacts with different features that de-
scribe them in different levels of concept, which is a big challenge. So all the test cases
have to run not only in the final version of the app but also in the entire set of the app
to assure that they represent the same information in a non-ambiguous way. Moreover,
along with the software development process, testing methods should be implemented
and at the same time, customers can introduce new demands and ideas or modify the
existing ones along with every iteration. Such testing type is an essential testing to
demonstrate that the system of the product and its features remains working and behave
correctly in accordance with the new requirements [7].

Fig. 1 shows the automated regression testing for different app’s states that can help
in making the practice much more competent for the future of the app under test. In
every version, the mobile tester can perform regression testing by re-executing the same
tests after each update. Regression testing is a good practice to run tests before the
release of every new version of the app. In some situations, there is no way to predict
which fragments of the app a change will affect. In such cases, only full regression
testing can guarantee that the system will perform well. With the help of this approach,
we have to run all the tests cases after every amendment or change introduced to the

iJIM ‒ Vol. 13, No. 2, 2019 53

Paper—Using Executable Specification and Regression Testing for Broadcast Mechanism…

project. A number of challenges are associated with regression testing; some of them
are listed below.

• The large size of the test suite after every successive regression’s run is a big chal-
lenge, which needs to be optimized using different tools and techniques. Choosing a
right automation tool based upon the nature of software application and the availa-
bility of resources is one of the common challenges [15].

• Maintaining a balance between the ever-growing test suite size and limited con-
straints is the biggest challenge in regression testing. A regression test suite can run
after a group of bug fixes, every new build, or every modification [15].

• The mobile platforms and fragmentation in use. Regression testing is performed on
existing software to ensure previous tests still pass after modifications have been
made. Ideally, all parts of the software would be re-tested, but time and budget re-
quire prioritizing the features to re-test. Thus, with the aforementioned landscape of
mobile platforms and fragmentation, regression testing can be particularly a chal-
lenge [16]. However, fragmentation is a critical issue in the mobile world and par-
ticularly in the Android world.

• For cross-platform, testing a loose coupling to the underlying platform is required to
abstract the different platform’s implementation away. This may be achieved by us-
ing a language that is not tied to a platform or programming language. A challenge
in cross-platform testing is how to identify User Interface (UI) elements across apps
on different platforms. [16].

Fig. 1. Regression testing for different app’s versions

2.3 Cucumber testing tool

Cucumber is an open source testing framework that supports acceptance tests written
in a BDD style. The Cucumber was initially written in Ruby and then developed to
support the Java framework. Both the tools support native JUnit. Cucumber executes
specifications, which are written in natural languages called features. In particular, the
features are written by the business analyst, developers, and testers [17, 18].

Fig. 2 shows the Cucumber process, each feature has many scenarios and each sce-
nario has a list of steps (Given, When, Then) for Cucumber to work through and run

54 http://www.i-jim.org

Paper—Using Executable Specification and Regression Testing for Broadcast Mechanism…

independently. Furthermore, it shows how the feature, Scenario, and steps look like in
English Gherkin syntax. So in this example, we can see the Given, When and Then
keywords for verifying tests in Catrobat product. Hence, Cucumber can understand
these feature files, which must follow some basic syntax rules (i.e., Gherkin). Along
with the features, when Cucumber executes features, it will look for a matching set of
step definitions, which map the natural language of each step into a specific code writ-
ten in Java.

Step definition is just being one or two lines of Java code, which is specific to the
domain of the product. Step definitions are the representation of the specifications in
code and directions for cucumber on what to do. However, if this code is executed
without error, Cucumber would proceed to the next step in the scenario and if it gets to
the end without any error, it marks the scenario as passed. If one or any of the steps fail
in the scenario, the Cucumber marks this scenario as failed and move on to the next
scenario and prints out the results. Some of the benefits the Cucumber tool introduces
are: [17].

• It is useful to involve business stakeholders who cannot easily understand the code.
• Cucumber testing concentrates on the end-user experience.
• Writing the testing style provides easier code reusability in the tests.
• The setup and execution processes are quick and easy.
• Cucumber tool provides an efficient framework for testing.
• The mobile tester can write his specifications in more than forty different spoken

languages.

Fig. 2. The Cucumber process

iJIM ‒ Vol. 13, No. 2, 2019 55

Paper—Using Executable Specification and Regression Testing for Broadcast Mechanism…

Cucumber-JVM: Cucumber-JVM is a pure Java implementation of Cucumber,
which allows the mobile tester to write a step definition in Java and other JVM lan-
guages. It provides a Gherkin implementation of JVM-based languages [12]. Recently,
it is added to Android support in the Catrobat Project. This makes it comfortable for
users to run it directly on their target devices like regular tests.

Gherkin: Gherkin is a programming language that Cucumber understands and uses
to define test cases. It is a ubiquitous plain text language with little extra structure. It is
human-readable and easy to learn by non-programmers. Stories usually have a little, a
narrative, and a number of scenarios. The Gherkin defines only a few mandatory key-
words and the rest of the feature is free-form text [18]. The below mentioned are the
Gherkin keywords (See Fig. 3) [7].

• Feature: A story written in Gherkin base readable structure. A file should contain
one single feature, which contains one or more scenarios.

• Background: This section of the feature file allows specifying steps, which are com-
mon to every scenario instead of having to repeat similar steps.

• Scenario: A feature file contains several scenarios and every scenario is a single
actual test case and consists of one or more steps i.e., Given (event or context), When
(user action), Then (result/outcome), And, But (when you have many
Given/When/Then, then you can use (And and But) to enhance the scenarios’ read-
ing process).

Step definition (SD): Step definition is the piece of code and glue that binds our
Cucumber tests. The Cucumber is used to convert the feature file to step definitions.
The responsibility of step definition is to translate Gherkin scenario steps into Java code
and always in between the business and programmer domain. The scenarios steps are
only documentation that needs step definitions to bring them to life. Special Cucumber
annotation is used i.e., @Given, @When, and @Then to create a step definition in Java.
A regular expression is used to match the steps in between the double quotes [17]. Cu-
cumber uses these regular expressions to match the scenarios with the names of gener-
ating test methods.

Implementation: To make the testing environment ready, a few dependencies need
to be included in the project. In order for Junit to be aware of Cucumber and reads
feature files when running the Cucumber class, it must be declared as the Runner. We
can see the features element of CucumberOption how it locates the feature file which
is created before element glue and provides a path to step definitions (see code snippet).

@CucumberOptions (features = "features")
 public final class Cucumber {
 }

3 Visual Programming Language for Smartphones: Catrobat

Catrobat is a free and open source software project started in Austria at the Graz
University of Technology [19]. Catrobat is a visual programming language developed

56 http://www.i-jim.org

Paper—Using Executable Specification and Regression Testing for Broadcast Mechanism…

for smartphones and it is inspired by the Scratch project of the Lifelong Kindergarten
Group at the MIT Media Lab. Due to the dynamic nature of the Catrobat; children can
easily learn how to program without having a previous knowledge of programming
syntax [20, 21]. Catrobat defines command bricks (see Fig. 3), which can be snapped
together and run in parallel in order to build a program. Unlike Scratch, Catrobat pro-
grams can be created and executed solely by using smartphones [20].

The broadcast mechanism is used to communicate between objects or to trigger ex-
ecution of scripts. By using such a mechanism, sequential or parallel execution of
scripts is feasible. Furthermore, Catrobat introduces the capability to include graphics,
animations, and sounds. The drag and drop feature offers a variety of bricks that can be
snapped together to create complete programs. The app is available free for Android on
Google’s Play Store i.e., “Pocket Code” [21, 22]. The Catrobat bricks are organized
into the categories and every category contains a group of bricks as illustrated below
[19]:

• Event: Without this category bricks, a program would not be able to start. For ex-
ample, a “When screen is touched” event can run a script when the screen is touched.
Events bricks are necessary for every program.

• Control: The elements of this category are used to control the program’s flow. For
example, a “Forever” brick can run the scripts infinitely.

• Motion: Elements of this category are responsible for the sprite movement, by using
such elements we can adjust the position and the direction of a sprite on the stage.
For example, a “Set X to” brick can be used to set the sprites X coordinate.

• Sound: The category’s elements are used to control sound such as play or stop a
sound file. For example, a “Start sound” brick can be used to play a sound and con-
tinues with the next brick immediately.

• Looks: The appearance of objects can be controlled by category’s elements. The
visual effect such as transparency and brightness can be adjusted using this category.
For example, a “Set transparency to” brick can be used to set the sprite’s transpar-
ency to a specific value.

• Pen: This category controls the pen aspect of the Catrobat program. It allows a sprite
to draw shapes, and plot colored pixels. For example, a “Pen down” brick can be
used to put down the sprite’s pen, so the sprite will draw as it moves.

• Data: The elements of this category allow you to create and manipulate data in your
project. Two types of data can be created: variables and lists. For example, a “Set
variable to” brick can be used to set the variable to a certain value.

• Lego EV3: Elements of this category are used to program Lego Mindstorms EV3
robot.

• Phiro: Elements of this category can be used to program and control Phiro (educa-
tional robot) via Bluetooth.

iJIM ‒ Vol. 13, No. 2, 2019 57

Paper—Using Executable Specification and Regression Testing for Broadcast Mechanism…

Fig. 3. Script’s view in Pocket Code

4 Automated Regression Testing for Catrobat: Design and
Implementation

In this section, the design and implementation of the proposed approach are pre-
sented in detail. In practice, the regression testing is usually performed by re-running
previously run tests and verifying whether new faults have emerged. The regression
testing objective for the new fresh version of Catrobat is to verify its correctness (espe-
cially for the broadcast mechanism) after a set of modifications and changes. Therefore,
such testing scenarios will be very helpful to establish a prominent role in the entire
development progress. The test cases of Catrobat application require the reproduction
of the actual conditions that are hard to reproduce without automated testing support.

58 http://www.i-jim.org

Paper—Using Executable Specification and Regression Testing for Broadcast Mechanism…

4.1 Objectives of the Proposed Regression testing methods

The objective of this work is to improve the regression testing performance at the
functionality test level in order to integrate the previously established regression testing
into the updated version. The proposed test cases help to increase the transparency of
the test selection process and to maintain the test efficiency. They guarantee that the
bugs are detected earlier by using automation tools [23, 4]. Moreover, they help in im-
proving the quality of the app as well as discovering the bugs that may be introduced
by chance just because of new modifications [23].

4.2 BDD for Regression Testing: Case Studies

The case studies testing for broadcast mechanism are presented to illustrate the pro-
posed approach’s feasibility in early phases of the development process and help stake-
holders and development teams to locate possible problems before the publishing pro-
cess for the mobile app.

Case Study 1: Catrobat is a visual programing language, which fully depends on
bricks functions and their behaviors. Catrobat faces some issues just because of its in-
correct bricks’ behaviors. So here, we discuss one issue of Catrobat programming lan-
guage. Listing 1 shows the Cucumber specification for the deterministic crash with
broadcast scripts. The following steps reproduce the issues in the Catrobat project:

• Create a new empty program.
• Add a script which is shown in Listing 1 to the background.
• When the program starts.
• The program immediately and deterministically crashes and the Catrobat has

stopped messages.

The expected behavior like the following: the program should execute without crash-
ing. When the Catrobat’s program is executed, we observe some incorrect behavior in
this case. Particularly, the program should run in an infinite loop, but the crash occurs
already at the second time and the message “1” is sent. Unluckily, the program imme-
diately crashes and the broadcast brick has stopped message.

iJIM ‒ Vol. 13, No. 2, 2019 59

Paper—Using Executable Specification and Regression Testing for Broadcast Mechanism…

Feature: Crash with Broadcast Scripts

Expected Behavior: The program should execute with-

out crashing.
Actual Behavior: The program immediately crashes at
the second time when the message "1" is sent.

Background:
 Given I have a program
 And this program has an object 'Object'

Scenario: Deterministic crash with Broadcast scripts

 Given 'Object' has a start script
 And set 'var' to 10.0
 And broadcastWait '1'
 Given 'Object' has a When '1' script
 And broadcastWait '2'
 Given 'Object' has a When '2' script
 And broadcast '1'
 And set 'var' to 20.0

 When I start the program
 And wait 1 second
 Then the variable 'var' should equal to 20.0

Listing 1. Deterministic crash with broadcast scripts

Case Study 2: Listing 2 shows the Cucumber feature for “broadcast and wait” brick.

The expected behavior is: the variable “var” should increase its value one by one with
five-second intervals. Whereas, the actual behavior is: the variable “var” first wait 5
seconds, then incorrectly increase its values one by one without any further waits.

Feature: Broadcast and wait

Expected Behavior: The variable should change/in-

crease its value with five-second intervals.
Actual Behavior: The variables change/increase its
value without any further waits.

Background:

60 http://www.i-jim.org

Paper—Using Executable Specification and Regression Testing for Broadcast Mechanism…

 Given I have a program
 And this program has an object 'Object'

Scenario: "Broadcast and Wait" brick does not wait

 Given 'Object' has a start script
 And when receive 'hello'
 And change 'var' by 1
 And wait 5 seconds
 And when program starts
 And forever
 And broadcast and Wait 'hello'
 And forever end

 When I start the program
 And wait 1 second
 Then the variable 'var' should be less than or
equal to 4.0

Listing 2. “Broadcast and wait” brick test feature

Case Study 3: Listing 3 shows and specifies the Cucumber feature for the broadcast

brick that incorrectly invoked two times. The following steps will generate the critical
issue.

• Create a new program in the landscape mode (the bug does not appear in the portrait
mode).

• Add this script to the background (create the variable as a variable for all objects i.e.,
global variable).

• When starting the program of the script activity, the mobile tester must not switch to
another screen, otherwise bug less frequently occurs, and thus it is more difficult to
observe the issue.

• We have to observe whether the screen shows 1.0 or 2.0 after one second of execu-
tion. If it is 1.0, which is the expected value, go back to the script view activity
(simply by pressing the “Restart” button). However, pressing the “Pause” button on
the stage is not sufficient to let mobile tester to observe the bug as it never occurs
after a simple “Restart”). Repeat this step until the bug appears i.e., 2.0 is shown on
the screen.

Note: In most cases the bug occurs already during the first execution.
Expected behavior: The correct value on the screen should be 1.0.
Actual behavior: When the bug occurs, the incorrect value shown on the screen is 2.0.

iJIM ‒ Vol. 13, No. 2, 2019 61

Paper—Using Executable Specification and Regression Testing for Broadcast Mechanism…

• Additional observation or reservation is that this is not just a calculation issue. This
bug can also be observed with any other bricks e.g., replacing the “Change var by
1.0” or by a “Move 10 steps” (with a look) that will be executed as “Move 20 steps.”
Apparently, the whole “When I receive” broadcast script is incorrectly executed two
times instead of just once.

• This bug also occurs if the “Broadcast” brick is replaced by a “Broadcast and wait”
brick.

• This bug occurs much less frequently when the “Wait 1 second” brick is deleted.
• This bug makes it impossible to create complex programs in landscape mode, as

there is no workaround (besides not using the landscape mode). Therefore, it should
be considered as a critical bug.

Feature: Broadcast incorrectly called

Expected Behavior: The correct value of the variable

should be equal to 1.0.
Actual Behavior: In the Landscape mode, when the bug
occurs, the incorrect value will be 2.0.

Background:
 Given I have a program with landscape

 And this program has an object 'Object'
 Scenario: Broadcast incorrectly called two times

 Given 'Object' has a start script
 And wait 1 seconds

 And broadcast 'hello'
 Given 'Object' has a When 'hello' script
 And change 'var' by 1.0

 When I start the program

 And wait 1 second
 Then the variable 'var' should equal to 1.0

Listing 3. The Broadcast mechanism is incorrectly called

two times

62 http://www.i-jim.org

Paper—Using Executable Specification and Regression Testing for Broadcast Mechanism…

5 Conclusion and Future Work

In this paper, we have introduced an advanced agile software methodology (BDD)
for a visual programming environment. The approach aims to test and diagnose the
bugs in Android mobile app (Pocket Code) which is tested with the help of BDD meth-
odology specifications. Our work focuses on mobile apps and their regression testing.
The results show that the proposed approach has the ability to effectively expose defi-
ciencies and bugs in the broadcast mechanism, and it guarantees that the app under test
meets the end users expectations. The cross-platform aspect of the Catrobat specifica-
tions could not yet be fully implemented. Our challenge is to implement consistent
common feature files across different devices as well as with different mobile operating
systems i.e., iOS.

6 References

[1] M. Sahrir, M. F. Yahaya, T. Ismail, M. A. Zubir, W. R. Wan Ahmad. (2018). Development
and Evaluation of i-Mutawwif: A Mobile Language Traveller Guide in Arabic for Mutawwif
(Umrah Tour Guide). International Journal of Interactive Mobile Technologies (iJIM), Vol.
12, No. 2. https://doi.org/10.3991/ijim.v12i2.7708

[2] Amir Dirin, Marko Nieminen. (2015). mLUX: Usability and User Experience Development
Framework for M-Learning. International Journal of Interactive Mobile Technologies
(iJIM), Vol. 9, No. 3. https://doi.org/10.3991/ijim.v9i3.4446

[3] T. Monahan, M. Bertolotto, G. McArdle. (2009).Usability Testing of a Collaborative and
Interactive University on a Mobile Device. International Journal of Interactive Mobile Tech-
nologies (iJIM), Vol. 3, No. 4.

[4] L. Nagowah, G. Sowamber. (2012). A Novel Approach of Automation Testing on Mobile
Devices, International Conference on Computer & Information Science (ICCIS), Kuala
Lumpeu, pp. 924-930. https://doi.org/10.1109/ICCISci.2012.6297158

[5] J. Calamé, P. Kulkarni, S. Euteneuer. (2014). Multi-Platform Mobile Test Automation for
the Financial Sector. Testing Experience. No. 27, pp.63-65.

[6] P. Nidagundi, L. Novickis. (2017). New Method for Mobile Application Testing Using Lean
Canvas To Improving The Test Strategy. 12th International Scientific and Technical Con-
ference on Computer Sciences and Information Technologies (CSIT). Lviv, pp. 171-174.
https://doi.org/10.1109/STC-CSIT.2017.8098761

[7] T. R. Silva, J. Hak, M. Winckler. (2016). Testing Prototypes and Final User Interfaces
through an Ontological Perspective for Behavior-Driven Development. Human-Centered
and Error-Resilient Systems Development. Published by Springer International Publishing
Switzerland. pp. 86-107.https://doi.org/10.1007/978-3-319-44902-9_7

[8] M. Gligoric, L. Eloussi, D. Marinov. (2015). Practical Regression Test Selection with Dy-
namic File Dependencies. In Proceedings of the 2015 International Symposium on Software
Testing and Analysis (ISSTA 2015), ACM, New York, NY, USA, pp. 211-222.
https://doi.org/10.1145/2771783.2771784

[9] R. Kazmi, D. N. A. Jawawi, R. Mohamad, I. Ghani. (2017). Effective Regression Test Case
Selection: A Systematic Literature Review. ACM Comput. Surv, Vol. 50, No. 2.
https://doi.org/10.1145/3057269

iJIM ‒ Vol. 13, No. 2, 2019 63

Paper—Using Executable Specification and Regression Testing for Broadcast Mechanism…

[10] C. Solis, X. Wang. (2011). A Study of the Characteristics of Behavior Driven Development.
37th EUROMICRO Conference on Software Engineering and Advanced Applications,
Oulu, 2011, pp. 383-387.

[11] M. Rahman, J. Gao. (2015). A Reusable Automated Acceptance Testing Architecture for
Micro services in Behavior-Driven Development. IEEE Symposium on Service-Oriented
System Engineering, San Francisco Bay, CA, pp. 321-325. https://doi.org/1
0.1109/SOSE.2015.55

[12] J. Ferguson Smart. (2014). BDD in Action. Behavior Driven Development for the Whole
Software Lifecycle. Manning Publications.

[13] M. Alhaj, G. Arbez, L. Peyton. (2017). Using Behavior-Driven Development with Hard-
ware-Software Co-Design for Autonomous Load Management. 8th International Confer-
ence on Information and Communication Systems (ICICS).IEEE, Irbid, pp. 46-51.
https://doi.org/10.1109/IACS.2017.7921944

[14] E. Engström, P. Runeson, A. Ljung. (2011). Improving Regression Testing Transparency
and Efficiency with History-Based Prioritization - An Industrial Case Study. Fourth IEEE
International Conference on Software Testing, Verification and Validation, Berlin, pp. 367-
376. https://doi.org/10.1109/ICST.2011.27

[15] S. Dalal, Sudhir, K. Solanki. (2018). Challenges of Regression Testing: A Pragmatic Per-
spective. International Journal of Advanced Research in Computer Science, Vol. 9, No. 1,
pp. 499-503. https://doi.org/10.26483/ijarcs.v9i1.5424

[16] T. Grønli, G. Ghinea. (2016). Meeting Quality Standards for Mobile Application Develop-
ment in Businesses: A Framework for Cross-Platform Testing. 49th Hawaii International
Conference on System Sciences, Koloa, HI, pp. 5711-5720. https://doi.org/1
0.1109/HICSS.2016.706

[17] S. Rose, M. Wynne, A. Hellesoy. (2015). The Cucumber for Java Book: Behavior-Driven
Development for Testers and Developers. Pragmatic Bookshelf.

[18] C. Tao, J. Gao. (2017). An Approach to Mobile Application Testing Based on Natural Lan-
guage Scripting. The 29th International Conference on Software Engineering and
Knowledge Engineering, Pittsburgh, PA 15238 USA. pp. 260-265.
https://doi.org/10.18293/SEKE2017-170

[19] W. Slany. (2010-2018). Catrobat education. [Online]. Available: https://edu.catrob.at/
[20] W. Slany. (2012). A Mobile Visual Programming System for Android Smartphones and

Tablets. IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
Innsbruck, pp. 265-266. https://doi.org/10.1109/VLHCC.2012.6344546

[21] W. Slany. (2012). Catroid: A Mobile Visual Programming System for Children. In proceed-
ings of the 11th International Conference on Interaction Design and Children. pp. 300-303.
https://doi.org/10.1145/2307096.2307151

[22] W. Slany. (2014). Pocket Code: a Scratch-Like Integrated Development Environment for
Your Phone. ACM SIGPLAN Conference on Systems, Programming, and Applications:
Software for Humanity, Portland, Oregon, USA, pp. 35-36. https://doi.org/10
.1145/2660252.2664662

[23] C. Bernaschina, R. Fedorov, D. Frajberg, P. Fraternali. (2017). A Framework for Regression
Testing Of Outdoor Mobile Applications. IEEE/ACM 4th International Conference on Mo-
bile Software Engineering and Systems (MOBILESoft), Buenos Aires, pp. 179-181.
https://doi.org/10.1109/MOBILESoft.2017.13

64 http://www.i-jim.org

Paper—Using Executable Specification and Regression Testing for Broadcast Mechanism…

7 Authors

Zulfiqar Ali was born in Pakistan. He received his Master Degree (MCS) from Ko-
hat University of Science and Technology (KUST). Currently, he is doing Ph.D. in
Computer Science under the supervision of Prof. Wolfgang Slany from Graz University
of Technology, Austria. His main area of research interest related to software engineer-
ing, mobile applications and testing using Behavior Driven Development methodology
and Cucumber framework.

Aiman Mamdouh Ayyal Awwad is currently a full-time lecturer in the Department
of Computer Science and IT at Tafila Technical University. He received his B.Sc in
Computer Science from Mutah University in 2007 and his M.Sc in Computer Science
from the University of Jordan in 2010. He obtained his Ph.D. in Computer Science from
Graz University of Technology/ Austria in 2017 with research interests related to
smartphone applications. From February 2010 to September 2014, he was a lecturer at
Computer Science and IT Department / Tafila Technical University. He has more than
7 publications in various international journals and conferences. His research interests
include mobile computing and applications, image processing, and cellular automata.

Professor Wolfgang Slany heads the Institute of Software Technology at Graz Uni-
versity of Technology and is the head and founder of the Catrobat non-profit free open
source project, in which more than 1,000 pro-bono collaborators from around 100 coun-
tries are developing apps that allow kids to create their own games, animations, and
other apps, directly on their phones. Wolfgang is passionate about poverty alleviation
through coding education for teens, in particular girls, refugees, and teens in developing
countries. Catrobat works in a sustainable way also for teens in less privileged regions
that do not have access to PCs and laptops, by relying on the phones most teens every-
where on Earth already personally own, and by bypassing traditional school pedagogy,
instead using a constructionist approach focusing on game app development and fun.
Professionally, Wolfgang conducts research, teaches, and is consulting on sustainable
large-scale agile software development and user experience topics for mobile platform
projects.

Article submitted 12 October 2018. Resubmitted 13 November 2018. Final acceptance 07 January 2019.
Final version published as submitted by the authors.

i https://www.statista.com/statistics/500605/worldwide-mobile-application-testing-focus-areas/
ii https://dannorth.net/introducing-bdd/

iJIM ‒ Vol. 13, No. 2, 2019 65

