
A FRAMEWORK FOR CACHING RELEVANT DATA ITEMS FOR CHECKING INTEGRITY CONSTRAINTS OF MOBILE DATABASE

A Framework for Caching Relevant Data Items
for Checking Integrity Constraints of Mobile

Database
doi:10.3991/ijim.v3s2.787

Zarina Dzolkhifli1, Hamidah Ibrahim2 and Lilly Suriani Affendey3, Praveen Madiraju4
1, 2, 3 Universiti Putra Malaysia, Serdang, Selangor, Malaysia

4 Marquette University, Milwaukee, WI, USA

Abstract—In a mobile environment, due to the various con-
straints inherited from limitations of wireless communica-
tion and mobile devices, checking for integrity constraints to
maintain the consistent state of mobile databases is an im-
portant issue that needs to be addressed. Hence, in this pa-
per we propose a framework for caching relevant data items
needed during the process of checking integrity constraints
of mobile databases. This is achieved by analyzing the rela-
tionships among the integrity tests (simplified form of integ-
rity constraints) to be evaluated for a given update opera-
tion. This improves the checking mechanism by preventing
delays during the process of checking constraints and per-
forming the update. Hence, our model speeds up the check-
ing process.

Index Terms—Mobile Database, Integrity Constraints, In-
tegrity Tests, Data Caching.

I. INTRODUCTION
Recently, there has been an increasing interest in mo-

bile computing due to the rapid advances in wireless
communication and portable computing technologies.
Massive research efforts from academia and industry have
been put forth to support a new class of mobile applica-
tions such as just-in-time stock trading, mobile health ser-
vices, mobile commerce, and mobile games as well as
migrating the normal conventional applications to mobile
applications. Users of these applications can access infor-
mation at any place at any time via mobile computers and
devices such as mobile phone, palmtops, laptops, and
PDA [10].

While technology has been rapidly advancing, various
constraints inherited from limitations of wireless commu-
nication and mobile devices remain primary challenges in
the design and implementation of mobile systems and
applications. These constraints include: limited client ca-
pability, limited bandwidth, weak connectivity, and user
mobility. In addition, disconnections occur frequently,
which may be intentional (e.g., to save battery power) or
unintentional (e.g., due to signal interference). These con-
straints make the wireless and mobile computing envi-
ronments uniquely different from a conventional wired
server/client environment [10].

A general architecture of a mobile database environ-
ment is shown in Figure 1 [3, 10]. The architecture con-
sists of base stations (BS) and mobile hosts (MH). The
base station is a stationary component in the model and is

responsible for a small geographic area called a cell. They
are connected to each other through fixed networks. The
mobile host is the mobile component of the model and
may move from one cell to another. These mobile hosts
communicate with the base stations through wireless net-
works.

Due to limited storage capabilities, a mobile host is not
capable of storing all data items in the network, thus it
must share some data item with a database in the fixed
network. Data caching technique is used to cache some or
most frequently accessed data from the base station into
mobile host. By caching the needed data items, it allows
mobile host to continue processing without worrying
about disconnection.

Figure 1. The architecture of a mobile database environment

Another important issue in databases is consistency,
which must be maintained whenever an update operation
(insert, delete, or modify) or transaction (sequence of up-
dates) occurs at the mobile host. A database state is said to
be consistent if the database satisfies a set of statements,
called integrity constraints, which specify those configura-
tions of the data that are considered semantically correct.
The process of ensuring that the integrity constraints are
satisfied by the database after it has been updated is
termed constraint checking, which generally involves the
execution of integrity tests (query that returns the value
true or false). In a mobile environment, checking the in-
tegrity constraints to ensure the correctness of the database
spans at least the mobile host and one other database
(node), and thus the update is no longer local but rather
distributed [14]. As mentioned in [14], the major problem
in the mobile environment are the unbounded and unpre-
dictable delays can affect not only the update but other
updates running at both the mobile and the base stations,

Fixed Network

BS
MH MH

Wireless Cell

BS

MH
MH

Wireless Cell

BS
MH

MH

Wireless Cell

MH

BS
MH

MH

Wireless Cell

MH

18 http://www.i-jim.org

http://dx.doi.org/10.3991/ijim.v3s2.787�

A FRAMEWORK FOR CACHING RELEVANT DATA ITEMS FOR CHECKING INTEGRITY CONSTRAINTS OF MOBILE DATABASE

which is clearly not acceptable for most applications. With
the same intuition as [14], we address the challenge of
extending the data consistency maintenance to cover dis-
connected and mobile operations.

In this paper, a framework is proposed where checking
the consistency of mobile databases is performed at the
mobile host. This framework is suitable for both inten-
tional (planned) and unintentional (unplanned) disconnec-
tion. This framework differs from the approach proposed
in [14] since it is intended to cater for the important and
frequently used integrity constraints, i.e. those that are
used in database application. Mazumdar’s approach [14]
is restricted to set-based constraints (equality and inequal-
ity constraints). In our work, in order not to delay the
process of checking constraints during disconnection, a
similar concept as proposed in distributed databases [8, 9]
is employed, namely localizing integrity checking by
adopting sufficient and complete tests. Since sufficient test
can only verify if a constraint is satisfied, we propose that
the data items required during the checking to be cached
at the mobile host during the relocation period. Our ap-
proach not only treats the issue of disconnection but also
reduces the amount of data items to be cached by analyz-
ing the relationships of the integrity tests to be evaluated.
Hence, we achieve speed up in the constraint checking
process.

The rest of the paper is organized as follows. In Section
II, the previous works related to this research are pre-
sented. In Section III, the basic definitions, notations and
examples, which are used in the rest of the paper, are set
out. Section IV describes the proposed framework, while
conclusions are presented in the final section

II. RELATED WORK
Much of the research concerning integrity constraint

checking has been conducted in the area of relational da-
tabase systems. A comprehensive survey on the issues of
constraint checking and maintaining in centralized, dis-
tributed and parallel databases is provided in [7]. A naïve
approach is to perform the update and then check whether
the integrity constraints are satisfied in the new database
state. This method, termed brute force checking, is very
expensive, impractical and can lead to prohibitive process-
ing costs because the evaluation of integrity constraints
requires large amounts of data, which are not involved in
the database update transition. Hence, improvements to
this approach have been reported in many research papers.
Many approaches have been proposed for constructing
efficient integrity tests, for a given integrity constraint and
its relevant update operation, but these approaches are
mostly designed for a centralized environment [13, 16,
17]. As centralized environment has only a single site, the
approaches concentrate on improving the checking
mechanism by minimizing the amount of data to be ac-
cessed during the checking process. Hence, these methods
are not suitable for mobile environment as the checking
process often spans multiple nodes and involves the trans-
fer of data across the network.

Several studies [1, 5, 8, 9, 11] have been conducted to
improve the checking mechanism by reducing the amount
of data transferred across the network in distributed data-
bases. Nonetheless, they are not suitable for mobile data-
bases. These approaches reformulate the global constraints
into local constraints (local tests) with an implicit assump-

tion that all sites are available, which is not true in mobile
environment, where a mobile unit may be disconnected
for long periods. Even though failure is considered in the
distributed environment, none of the approach cater fail-
ure at the node where the update is being executed, i.e.
disconnection at the target site. Nevertheless, the localiza-
tion concept proposed in distributed databases is used in
our approach.

Other approaches such as [6, 15] focus on the problems
of checking integrity constraints in parallel databases.
These approaches are not suitable for mobile databases as
the intention of their approach is to speed up the checking
process by performing the checking concurrently at sev-
eral nodes.

To the best of our knowledge, PRO-MOTION [14] is
the only work that addresses the issues of checking integ-
rity constraints in mobile databases. The difference be-
tween our work and the work in [14] has been highlighted
in the previous section.

On the other hand, to meet the characteristics of mobile
devices (hosts) especially disconnection and limited stor-
age capabilities, many previous works such as [2, 12, 18,
19, 20] have focused on strategies to cache data items into
mobile host. These strategies attempt not to delay the mo-
bile operations even during disconnection. However, these
works did not focus on strategy to cache relevant data
items for the purpose of checking integrity constraints at
the mobile host.

III. PRELIMINARIES
Database integrity constraints are expressed in prenex

conjunctive normal form with the range restricted prop-
erty. A conjunct (literal) is an atomic formula of the form
R(u1, u2, …, uk) where R is a k-ary relation name and each
ui is either a variable or a constant. A positive atomic for-
mula (positive literal) is denoted by R(u1, u2, …, uk) whilst
a negative atomic formula (negative literal) is prefixed by
¬. An (in)equality is a conjunct of the form u1 θ u2 (pre-
fixed with ¬ for inequality) where both u1 and u2 can be
constants or variables and θ ∈ {<, ≤, >, ≥, ≠, =}.

Integrity tests can be classified into several categories
depending on the characteristics of the tests. Three differ-
ent types of integrity test based on its properties were de-
fined by McCarroll [15], namely: sufficient tests, neces-
sary tests, and complete tests. An integrity test has the
sufficiency property if when the test is satisfied, the asso-
ciated constraint is satisfied and thus the update operation
is safe with respect to the constraint. An integrity test has
the necessity property if when the test is not satisfied, the
associated constraint is violated and thus the update opera-
tion is unsafe with respect to the constraint. An integrity
test has the completeness property if the test has both the
sufficiency and the necessity properties.

Throughout this paper, the following symbols and their
intended meaning, which are related to integrity con-
straints, are used:
• Iυ = {I1, I2, …, IM}, the set of integrity constraints of an

application in the whole mobile system.
• IBi = {IBi

1, IBi
2, …, IBi

N}, the set of integrity constraints
at the base station, i.

• IMh = {IMh
1, IMh

2, …, IMh
O}, the set of integrity con-

straints at the mobile host, h.

iJIM – Volume 3, Special Issue 2: Technical Basics, October 2009 19

A FRAMEWORK FOR CACHING RELEVANT DATA ITEMS FOR CHECKING INTEGRITY CONSTRAINTS OF MOBILE DATABASE

From the above, (∪P
i=1 IBi) ∪ (∪Q

h=1 IMh) = Iυ, where P and
Q are the number of base stations and mobile hosts, re-
spectively in the mobile system.

Similarly, the following are the symbols and their in-
tended meaning that are related to the data items in the
mobile system. Here, data item refers to relation or frag-
ment of relation that appears in the specification of an
update operation.

• Rυ = {R1, R2, …, RS}, the set of relations or fragments
of relations in the mobile system.

• RBi = {RBi
1, RBi

2, …, RBi
T}, the set of relations or frag-

ments of relations at the base station, i.
• RMh = {RMh

1, RMh
2, …, RMh

U}, the set of relations or
fragments of relations at the mobile host, h.

From the above, (∪P
i=1 RBi) ∪ (∪Q

h=1RMh) = Rυ, where P
and Q are the number of base stations and mobile hosts,
respectively in the mobile system. Also, we assume that
for each data item, RMh

v ∈RMh, the same data item appears
in one of the base station, i.e. RMh

v ∈ (∪P
i=1 RBi) [4].

Update operation in a mobile environment can occur at
two different levels:

• UBi(R), an update operation over the relation R, sub-
mitted by a user at the base station, i. This type of
update operation is similar to the update operation in
distributed databases and thus is not considered in
this work. Note that R can also be a fragment of rela-
tion.

• UMh(R), an update operation over the relation R, sub-
mitted by a user through his mobile host, h, where R
is located at the mobile host. Note that R can also be
a fragment of relation.

Throughout this paper the company database is used, as
given in Figure 2. Table 1 presents some of the integrity
tests generated based on the set of integrity constraints
given in Figure 2. The derivation of the integrity tests is
omitted here since this is not the focus of this paper. Inter-
ested readers may refer to [8, 9].

Schema:
emp(eno, dno, ejob, esal);
dept(dno, dname, mgrno, mgrsal);
proj(eno, dno, pno)
Integrity Constraints:
‘A specification of valid salary’
I1: (∀w∀x∀y∀z)(emp(w, x, y, z) → (z > 0))
‘Every employee has a unique eno’
I2: (∀w∀x1∀x2∀y1∀y2∀z1∀z2)(emp(w, x1, y1, z1) ∧ emp(w, x2, y2,
z2) → (x1 = x2) ∧ (y1 = y2) ∧ (z1= z2))
‘Every department has a unique dno’
I3: (∀w∀x1∀x2∀y1∀y2∀z1∀z2)(dept(w, x1, y1, z1) ∧ dept(w, x2, y2,
z2) → (x1 = x2) ∧ (y1 = y2) ∧ (z1 = z2))
‘The dno of every tuple in the emp relation exists in the dept relation’
I4: (∀t∀u∀v∀w∃x∃y∃z)(emp(t, u, v, w) → dept(u, x, y, z))
‘The eno of every tuple in the proj relation exists in the emp relation’
I5: (∀u∀v∀w∃x∃y∃z)(proj(u, v, w) → emp(u, x, y, z))
‘The dno of every tuple in the proj relation exists in the dept relation’
I6: (∀u∀v∀w∃x∃y∃z)(proj(u, v, w) → dept(v, x, y, z))
‘Every manager in dept ‘D1’ earns > £4000’
I7: (∀w∀x∀y∀z)(dept(w, x, y, z) ∧ (w = ‘D1’) → (z > 4000))
 ‘Every employee must earn ≤ to the manager in the same depart-
ment’
I8: (∀t∀u∀v∀w∀x∀y∀z)(emp(t, u, v, w) ∧ dept(u, x, y, z) → (w ≤ z))
‘Any department that is working on a project P1 is also working on
project P2’
I9: (∀x∀y∃z)(proj(x, y, P1) → proj(z, y, P2))

Figure 2. The Company static integrity constraints

TABLE I.
THE INTEGRITY TESTS DERIVED BASED ON THE INTEGRITY CONSTRAINTS

LISTED IN FIGURE 2

Iυ Update Template Integrity Test
I1 insert(emp(a, b, c, d)) 1. d > 01

I2 insert(emp(a, b, c, d)) 2. (∀x2∀y2∀z2)(¬emp(a, x2, y2, z2)
∨ [(b = x2) ∧ (c = y2) ∧ (d = z2)]) 1

I3 insert(dept(a, b, c, d))
3. (∀x2∀y2∀z2)(¬dept(a, x2, y2,
z2) ∨ [(b = x2) ∧ (c = y2) ∧ (d =

z2)])1

4. (∃x∃y∃z)(dept(b, x, y, z))1
insert(emp(a, b, c, d))

5. (∃t∃v∃w)(emp(t, b, v, w))2 I4

delete(dept(a, b, c, d)) 6. (∀t∀v∀w)(¬emp(t, a, v, w))1

7. (∃x∃y∃z)(emp(a, x, y, z))1
insert(proj(a, b, c))

8. (∃v∃w)(proj(a, v, w))2 I5

delete(emp(a, b, c, d)) 9. (∀v∀w)(¬proj(a, v, w))1

10. (∃x∃y∃z)(dept(b, x, y, z))1
insert(proj(a, b, c))

11. (∃u∃w)(proj(u, b, w))2 I6

delete(dept(a, b, c, d)) 12. (∀u∀w)(¬proj(u, a, w))1

I7 insert(dept(a, b, c, d)) 13. (a ≠ ‘D1’) ∨ (d > 4000)1

14. (∀x∀y∀z)(¬dept(b, x, y, z) ∨ (d
≤ z))1

I8 insert(emp(a, b, c, d))
15. (∃t∃v∃w)(emp(t, b, v, w) ∧ (w ≥

d))2

16. (∃z)(proj(z, b, P2))1
insert(proj(a, b, P1))

17. (∃z)(proj(z, b, P1))2

18. (∀x)(¬proj(x, b, P1))1
I9

delete(proj(a, b, P2))
19. (∃z)(proj(z, b, P2) ∧ (z ≠ a))2

Note: a, b, c and d are generic constants; 1: complete test; and 2: sufficient test.

IV. THE PROPOSED FRAMEWORK
The proposed framework is illustrated in Figure 3. The

framework consists of 4 main components. These compo-
nents are:

Figure 3. The proposed framework

(a) Update Analyzer (UA): This component accepts an
update operation submitted by a user, UMh(R), and analy-

Update,
U

Update
Analyzer

(UA)

Integrity
Test

Selector
(ITS)

Integrity
Test

Grouping
(ITG)

Integrity
Test Ana-

lyzer
(ITA)

Relevant
Data Items

to be
Cached

20 http://www.i-jim.org

A FRAMEWORK FOR CACHING RELEVANT DATA ITEMS FOR CHECKING INTEGRITY CONSTRAINTS OF MOBILE DATABASE

ses the operation to identify the type of update operation
(insert, delete, modify), the relation involved, and the set
of data values to be inserted/deleted/modified.

(b) Integrity Test Selector (ITS): When a user re-
quests an update, only those constraints that might be vio-
lated are selected for evaluation. Based on these con-
straints, the appropriate tests are selected. Thus, this com-
ponent selects the integrity tests to be triggered, by com-
paring the type of update operation and the relation of the
user’s update operation with the type of update operation
and relation of each of the update template stored in the
mobile host. For example, if IMh = {I1, I2, I4, I5, I8} and
UMh(R) = insert(emp(E20, D1, Analysts, 3400)), then tests
1, 2, 4, 5, 14, and 15 are selected.

(c) Integrity Test Grouping (ITG): This component
groups the integrity tests that have been selected by ITS.
There are several criteria that can be used for this purpose.
For example grouping can be based on the relation speci-
fied in the tests, i.e. those tests that will be evaluated over
the same relation are grouped together in the same group.
Grouping can also be based on the type of tests, i.e. those
tests that have the same properties (complete or sufficient)
are assigned to the same group. Other criterion that can be
used is region, i.e. tests that can be evaluated locally are
grouped in the same group. Note also that it is seldom the
case that we can select a test from each of the integrity
constraint that satisfies the characteristics of the group.
Thus, a group may have some tests whose characteristics
do not belong to the group but are forced to be the ele-
ments of the group, since they are the only tests available
for a given integrity constraint. After grouping, this com-
ponent is also responsible to select one of the group to be
evaluated. For the example given in (b) above, the follow-
ing are some possible groups:

Based on relation (Note, Gi is a label for a group):
 G1: {1, 2, 5, 15}
All tests span the emp relation except test 1.
 G2: {1, 2, 4, 14}
All tests span the dept relation except tests 1 and 2. Tests
1 and 2 are selected and grouped in G2 as they are the
only tests available for I1 and I2, respectively.

Based on properties of the tests:
 G3: {1, 2, 4, 14}
All tests are complete tests.

G4: {1, 2, 5, 15}
All tests are sufficient tests except tests 1 and 2. Tests 1
and 2 are selected and grouped in G4 as they are the only
tests available for I1 and I2, respectively.

Based on region: Assume that only part of the emp rela-
tion is located at the mobile host.
 G5: {1, 2, 5, 15}
Test 1 is a local test, while tests 2, 5, and 15 have high
chances to be evaluated locally.

G6: {1, 2, 4, 14}
Test 1 is a local test, test 2 has high chances to be evalu-
ated locally, while tests 4 and 14 are global tests.

Finally, one of these groups is selected to be evaluated.
Decision to select is based on the data items already lo-
cated at the mobile host. If the tests of the group have
more chances to be performed locally at the mobile host,
then that group is selected.
(d) Integrity Test Analyzer (ITA): This is the core compo-
nent of the whole framework that analyses the relation-
ships among the tests that have been grouped and selected
to be evaluated by ITG, with the aim to identify the rele-
vant data items to be cached. Here, relevant is defined as
the minimum number of data items that needs to be
cached given a set of integrity tests to be evaluated.
Analysis is performed by comparing the relations, con-
stant values, and equations among the tests. Three main
rules are applied as follows:

Rule 1: Test Ti is said to be redundant with test Tj if the
data item(s) required by both Ti and Tj is the same, i.e. Di
∩ Dj = Di where Di and Dj denote the set of data items
needed by Ti and Tj, respectively.
Rule 2: Test Ti is said to be subsumed by test Tj if the data
item(s) required by Ti is part of the data item(s) required
by Tj, i.e. Di ⊆ Dj.
Rule 3: Test Ti is said to be contradicted with test Tj if the
data item(s) required by Ti is not the data item(s) required
by Tj although the attribute(s) is the same, i.e. Di ∩ Dj =
{} and both Di and Dj are over the same attribute.

The steps performed at this stage are as follows:
1. BEGIN

 2. Substitute each test in the group Gi with the ac-
tual values as given in the update operation,
UMh(R).

 3. Evaluate domain test (if any). If the test is false,
then UMh(R) is aborted. GO TO step 7.

 4. For each of the remaining tests in the Gi, identify
the data items required by the test.

 5. Check for redundancy, subsumption, and contra-
diction by applying rules 1, 2, and 3.

 6. Generate the required relevant data items needed
to be cached from base station. For Rule 1, Di is
cached. While for Rule 2, Dj is cached and for
Rule 3, both Di and Dj are cached.

7. END

For example, assume that G1 has been selected.

Example 1:
Step 2:
1. 3400 > 0
2. (∀x2∀y2∀z2)(¬emp(E20, x2, y2, z2) ∨

[(D1 = x2) ∧ (Analysts = y2) ∧ (3400 = z2)])
5. (∃t∃v∃w)(emp(t, D1, v, w))
15. (∃t∃v∃w)(emp(t, D1, v, w) ∧ (w ≥ 3400))

Step 3:
1. 3400 > 0 is true.
2. (∀x2∀y2∀z2)(¬emp(E20, x2, y2, z2) ∨ [(D1 =

 x2) ∧ (Analysts = y2) ∧ (3400 = z2)])
5. (∃t∃v∃w)(emp(t, D1, v, w))
15. (∃t∃v∃w)(emp(t, D1, v, w) ∧ (w ≥ 3400))

iJIM – Volume 3, Special Issue 2: Technical Basics, October 2009 21

A FRAMEWORK FOR CACHING RELEVANT DATA ITEMS FOR CHECKING INTEGRITY CONSTRAINTS OF MOBILE DATABASE

Step 4:

Test Relation Attribute Value
eno E20
dno D1
ejob Analysts

2 emp

esal 3400
5 emp dno D1

dno D1 15 emp
esal ≥ 3400

Step 5:
The data item needed by test 5 is part of the data items
required by test 15 (Rule 2).

Step 6:
Thus, the data items to be cached (if and only if the data
items are not at the mobile host) are as follows:

Relation Attribute Value
emp eno E20

dno D1 emp
esal ≥ 3400

As for a second example, consider IMh = {I5, I6, I9} and

UMh(R) = insert(proj(E20, D1, P1)), then tests 7, 8, 10, 11,
16, and 17 are selected. Assume that the following group
has been selected by ITG, G7 = {7, 10, 16} (complete
tests).

Example 2:
Steps 2 and 3:
7. (∃x∃y∃z)(emp(E20, x, y, z))
10. (∃x∃y∃z)(dept(D1, x, y, z))
16. (∃z)(proj(z, D1, P2))

Step 4:

Test Relation Attribute Value
7. emp eno E20
10. dept dno D1

dno D1 16. proj
pno P2

Step 5:
The data item needed by test 10 is part of the data items
required by test 16 (Rule 2).

Step 6:

Relation Attribute Value
emp eno E20

dno D1 proj
pno P2

We have performed a simple analysis that compares (a)
caching the whole data item without analyzing the integ-
rity tests, (b) caching the data items by analyzing the in-
tegrity tests individually (i.e. omitting Step 5), and (c)
caching the data items by analyzing the relationships be-

tween the integrity tests. For this analysis, we assume the
following, the emp relation has 500 tuples (2000 data
items), dept has 10 tuples (40 data items), and proj has
100 tuples (300 data items). Note the number of data items
is calculated by multiplying the number of tuples with the
number of attributes of a relation. Figure 4 illustrates this
comparison. From this figure, we can conclude that the
number of data items to be cached can be significantly
reduced by analyzing the relationships among the integrity
tests. Another analysis has been conducted by increasing
the number of tuples (records) in each relation. The results
are as shown in Figure 5. From Figure 5 we noticed that
increasing the number of tuples in each relation has no
effect on the number of data items to be cached for both
strategies (b) and (c).

The proposed framework improves the constraint
checking mechanism mainly by employing an efficient
checking strategy, which is achieved through:

2000
2340

7 43 3
0

500

1000

1500

2000

2500

Cache strategies

N
um

be
r o

f d
at

a
ite

m
s

to
 b

e
 c

ac
he

d

(a) (b) (c)

(a) 2000 2340

(b) 7 4

(c) 3 3

Example 1 Example 2

Figure 4: Comparison between strategies (a), (b), and (c), with respect

to the number of data items to be cached

0

2000

4000

6000

8000

10000

12000

14000

Cases

N
um

be
r o

f d
at

a
ite

m
s

to
 b

e
ca

ch
ed

Example 1 (a) Example 1 (b) Example 1 (c)

Example 2 (a) Example 2 (b) Example 2 (c)

Example 1
(a)

2000 4000 6000 8000 10000

Example 1
(b)

7 7 7 7 7

Example 1
(c)

3 3 3 3 3

Example 2
(a)

2340 4680 7020 9360 11700

Example 2 4 4 4 4 4

1 2 3 4 5

Figure5: Comparison between strategies (a), (b), and (c), when the num-

ber of tuples in each relation is increased

22 http://www.i-jim.org

A FRAMEWORK FOR CACHING RELEVANT DATA ITEMS FOR CHECKING INTEGRITY CONSTRAINTS OF MOBILE DATABASE

(i) Caching relevant data items – this has achieved
two purposes, namely: (i) upgrading the properties of the
tests – by caching the relevant data items it increases the
possibility of performing the constraints checking locally
at the mobile host, as most of the data required are now
available at the mobile host and (ii) the process of check-
ing the integrity constraints at the mobile host can be per-
formed without delay even if the mobile host is discon-
nected.

(ii) Localizing integrity checking – allow the initial
constraints to be validated by accessing data at the mobile
host, i.e. at the site where the update is performed. This
technique eliminates the cost of accessing remote data, i.e.
it minimizes inter-site data communication cost. It also
prevents delays during the process of checking constraints
and performing the update, especially when the mobile
host is disconnected.
(iii) Test filtering – for each update request, only those
constraints that may be violated by it are selected for fur-
ther evaluation.

V. CONCLUSION
This paper has presented a framework, which is de-

signed for checking database integrity in a mobile envi-
ronment. This framework adopts the simplified forms of
integrity constraints, namely: sufficient and complete
tests, together with the idea of caching the relevant data
items during the relocation period for the purpose of
checking the integrity constraints. It has improved the
performance of the checking mechanism of mobile data-
bases as delay during the process of checking the integrity
constraints and performing the update is reduced.

REFERENCES
[1] Alwan, A.A., Ibrahim, H., and Udzir, N.I., “Local Integrity

Checking using Local Information in a Distributed Database”,
Proceedings of the 1st Aalborg University IEEE Student Paper
Contest 2007 (AISPC’07), Aalborg, 2007.

[2] Chan, B.Y., Si, A., and Leong, H.V., “A Framework for Cache
Management for Mobile Databases: Design and Evaluation”, Dis-
tributed and Parallel Databases, Vol. 10, 2001, pp. 23-57.
(doi:10.1023/A:1019297705159)

[3] Chan, D. and Roddick, J.F., “Context-sensitive Mobile Database
Summarization”, Proceedings of the Twenty-Sixth Australian
Computer Science Conference (ACSC 2003), Adelaide, 2003.

[4] EPFL, Grenoble, U., INRIA-Nancy, INT-Evry, Montpellier, U.,
Paris, U., and Versailles, U., “Mobile Databases: a Selection of
Open Issues and Research Directions”, SIGMOD Record, Vol. 33,
No. 2, 2004, pp. 78-83.

[5] Gupta, A., “Partial Information Based Integrity Constraint Check-
ing”, PhD Thesis, Stanford University, USA, 1994.

[6] Hanandeh, F.A.H., “Integrity Constraints Maintenance for Parallel
Databases”, PhD Thesis, UPM, Malaysia, 2006.

[7] Ibrahim, H., “Checking Integrity Constraints – How it Differs in
Centralized, Distributed and Parallel Databases”, Proceedings of
the 17th International Conference on Database and Expert Systems
Applications – the Second International Workshop on Logical As-
pects and Applications of Integrity Constraints (LAAIC’06), Kra-
kow, 2006, pp. 563-568.

[8] Ibrahim, H., “A Strategy for Semantic Integrity Checking in Dis-
tributed Databases”, Proceedings of the Ninth International Con-
ference on Parallel and Distributed Systems, IEEE Computer So-
ciety, Republic of China, 2002.

[9] Ibrahim, H., Gray, W.A., and Fiddian, N.J., “Optimizing Fragment
Constraints – A Performance Evaluation”, International Journal

of Intelligent Systems – Verification and Validation Issues in Da-
tabases, Knowledge-Based Systems, and Ontologies, Edited by:
Ronald, R., John Wiley & Sons Inc., Vol. 16, No. 3, 2001, pp.
285-306.

[10] Ken, C.K.L, Wang-Chien, L., and Sanjay, M., “Pervasive Data
Access in Wireless and Mobile Computing Environments”, Jour-
nal of Wireless Communications and Mobile Computing, 2006.

[11] Madiraju, P. and Sunderraman, R., “A Mobile Agent Approach for
Global Database Constraint Checking”, Proceedings of the ACM
Symposium on Applied Computing (SAC’04), Nicosia, 2004, pp.
679-683.

[12] Madria, S.K., Mohania, M., Bhowmick, S.S., and Bhargava, B.,
“Mobile Data and Transaction Management, Information Sci-
ences”, Elsevier, 2002, pp. 279-309.

[13] Martinenghi, D., “Advanced Techniques for Efficient Data Integ-
rity Checking”, PhD Thesis, Roskilde University, 2005.

[14] Mazumdar. S. and Chrysanthis, P.K., “Localization of Integrity
Constraints in Mobile Databases and Specification in PRO-
MOTION”, Proceedings of the Mobile Networks and Applica-
tions, 2004, pp. 481-490.

[15] McCarroll, N.F., “Semantic Integrity Enforcement in Parallel
Database Machines”, PhD Thesis, University of Sheffield, UK,
1995.

[16] McCune, W.W. and Henschen, L.J., “Maintaining State Con-
straints in Relational Databases: a Proof Theoretic Basis”, Journal
of the Association for Computing Machinery, Vol. 36, No. 1,
1989, pp. 46-68.

[17] Nicolas, J.M., “Logic for Improving Integrity Checking in Rela-
tional Data Bases”, Acta Informatica, Vol. 18, No. 3, 1982, pp.
227-253. (doi:10.1007/BF00263192)

[18] Pitoura, E. and Chrysanthis, P.K., “Caching and Replication in
Mobile Data Management”, IEEE Data Engineering, Bull, 2007,
pp. 13-20.

[19] Ren, Q., Dunham, H.M., and Kumar, V., “Semantic Caching and
Query Processing”, IEEE Transaction on Knowledge and Data
Engineering, Vol. 15, 2003, pp. 192-210.
(doi:10.1109/TKDE.2003.1161590)

[20] Song, H. and Cao, G., “Cache-miss-initiated Prefetch in Mobile
Environment”, Science Direct, Computer Communication, Vol.
28, 2005, pp. 741-753.

AUTHORS
Zarina Dzolkhifli, is a postgraduate student of Depart-
ment of Computer Science, Faculty of Computer Science
and Information Technology, Universiti Putra Malaysia,
43400 Serdang, Selangor, Malaysia. (e-mail: zarinadzol-
khifli@yahoo.com.sg).
Hamidah Ibrahim, is an associate professor of the De-
partment of Computer Science, Faculty of Computer Sci-
ence and Information Technology, Universiti Putra Ma-
laysia, 43400 Serdang, Selangor, Malaysia. (e-mail: hami-
dah@upm.edu.my).
Lilly Suriani Affendey, is a senior lecturer of the De-
partment of Computer Science, Faculty of Computer Sci-
ence and Information Technology, Universiti Putra Ma-
laysia, 43400 Serdang, Selangor, Malaysia. (e-mail: suri-
ani@fsktm.upm.edu.my).
Praveen Madiraju, is an assistant professor of the De-
partment of Mathematics, Statistics and Computer Sci-
ence, Marquette University, Milwaukee WI 53201-1881
USA. (e-mail: praveen@mscs.mu.edu).

This work was supported by the Malaysian Ministry of Science, Tech-
nology and Innovation (MOSTI) under grant number 01-01-04-SF0340.
Submitted 24 December 2008. Published as resubmitted by the authors
on 9 October 2009.

iJIM – Volume 3, Special Issue 2: Technical Basics, October 2009 23

http://dx.doi.org/10.1023/A:1019297705159�
http://dx.doi.org/10.1007/BF00263192�
http://dx.doi.org/10.1109/TKDE.2003.1161590�

