
Paper—Context Management for Supporting Context-aware Android Applications Development

Context Management for Supporting Context-aware
Android Applications Development

https://doi.org/10.3991/ijim.v11i4.6952

Hanan Elazhary
King Abdulaziz University, Jeddah, Saudi Arabia

Electronics Research Institute, Cairo, Egypt
helazhary@kau.edu.sa;hananelazhary@eri.sci.eg

Alaa Althubyani, Lina Ahmed, Bayan Alharbi, Norah Alzahrani, Reem Almutairi
King Abdulaziz University, Jeddah, Saudi Arabia

{aathubyani,lahmed0002,balharbi0001,nalzahrani0084,ralmutairi
0017}@stu.kau.edu.sa

Abstract—Building context-aware mobile applications is one of the most
ambitious areas of research. Such applications can change their behavior ac-
cording to context or perform specific tasks in specific contexts. Regardless of
the application, all context-aware mobile applications share the need to retrieve
and process context information. This paper presents a Context Management
tool for the Android platform (ACM). ACM allows easy access to internal on-
board mobile sensors and hardware features extracting corresponding raw data.
Raw context is processed into higher-level more human-readable context that is
provided seamlessly to the mobile applications. Different methods are used for
this purpose including fuzzy classifiers. Since different mobiles have different
sensors and hardware features, ACM can adapt to the mobile device by deac-
tivating access to unavailable ones. Information regarding the available sensors
and hardware features and their specifications can also be queried. Additionally,
applications can request notifications regarding context change or specific con-
text values. In addition to providing developers with supporting classes and
methods, ACM is accompanied by an application that allows developers to ex-
amine its functionality and capabilities before using it. The application can be
also used to examine the readings of the different sensors in different situations
and thus calibrate them as needed. Additionally, it can be used to modify and
personalize default interpretations of raw context values to high-level ones.
ACM has been tested empirically and the results show extreme interest of con-
text-aware mobile application developers in its promising capabilities and that it
is conducive to facilitating, speeding up and triggering development of many
more of such applications.

Keywords—Android programming, context awareness, fuzzy classification,
mobile applications

186 http://www.i-jim.org

Paper—Context Management for Supporting Context-aware Android Applications Development

1 Introduction

Smartphones have now become an essential part of our daily life. Thus, numerous
applications have been and are being developed for smartphones. Accessing internal
on-board mobile sensors and other hardware features is an essential task in most ap-
plications. This is especially true in case of context-aware mobile applications whose
behavior depend on the context obtained via such sensors and hardware features [1].
The problem is that this hard and time-consuming task has to be repeated with almost
every context-aware mobile application. In case of the Android platform, for example
relatively long pieces of code have to be written for this purpose using Android SDK.
Accordingly, many developers limit the number of manipulated sensors and mobile
features merely due to the time constraints [2]. What makes the problem worse is that
many classes and methods are deprecated over the years [3] entailing learning to use
alternative ones. This paper presents an Android Context Management (ACM) tool
that provides a set of classes and methods that facilitate access to raw context values
to save developers such trouble so that they can concentrate on the main functionali-
ties of their applications. It is worth noting that we considered the Android operating
system in particular due to its popularity in comparison to other smartphone operating
systems and because Android itself is Java based and open source.

Since such applications, typically require higher-level context values, raw data ex-
tracted from internal mobile sensors and hardware features are processed to be pre-
sented in a more-readable form using several methods including fuzzy classifiers. For
example, time can be presented in terms of the current hour, day of the week, or sea-
son. On the other hand, a specific temperature can be interpreted probabilistically as
40% cold and 50% chilly. Since different mobiles have different sensors and hard-
ware features, ACM can adapt to the mobile device by deactivating access to unavail-
able ones. Accordingly, information regarding the available ones and their specifica-
tions can be queried. Additionally, applications can request notifications regarding
specific context values or specific context changes.

ACM is accompanied by a mobile application that allows developers to examine its
functionality and capabilities at various levels of granularity before using it. Mobile
users can also use the application to retrieve information about and from their mobile
sensors and hardware features. The application can be also used to personalize default
interpretations of raw context values to high-level ones as needed and to calibrate
sensors. The contributions of this research study can be summarized as follows:

• Developing the ACM tool that processes raw context values extracted from internal
mobile sensors and hardware features into higher-level ones using various methods
including fuzzy classifiers.

• Providing developers with classes and methods that allow fast and easy access to
such context values in addition to information about available sensors and features.

• Developing an application that allows developers to examine the functionalities of
ACM before using it, examine sensors behavior, calibrate them as needed and per-
sonalize the default interpretations of raw context values to high-level ones.

iJIM ‒ Vol. 11, No. 4, 2017 187

Paper—Context Management for Supporting Context-aware Android Applications Development

The rest of the paper is organized as follows: Section 2 presents related research in
the literature to emphasize the above contributions. Sections 3 and 4 provide back-
ground about Android mobile sensors and hardware features respectively. The details
of ACM are provided in Section 5. Section 6 presents the results of the empirical
evaluation of ACM. Finally, the conclusion and future work are provided in Section
7.

2 Related work

Numerous frameworks have been suggested in the literature for managing context
for context-aware mobile applications. For example, the Open Data Kit framework [4,
5] has been developed for the Android platform to allow applications to easily access
external mobile sensors connected via Bluetooth or USB. Similarly, the BraceForce
middleware [6] has been proposed for helping novice programmers in accessing ex-
ternal mobile sensors data with minimal coding. It also supports model-driven data
acquisition in order to reduce expensive communication with external sensors. Never-
theless, those systems are mainly concerned with facilitating access to external mobile
sensors and do not take into consideration mobile hardware features.

Relatively few research studies have been concerned with managing context ex-
tracted from internal on-board mobile sensors and hardware features. For example,
SemaDroid [7] is a management framework intended for monitoring usage of sensors
by installed applications and providing security against illegal access to sensitive
sensor data. Many other systems have been mainly concerned with processing raw
context into higher-level more-human readable context. For example, Yusheng et al.
[8] proposed the ComSensor method to compose data of several sensors for context
with more semantics. Korpipää and Mäntyjärvi [9] developed an ontology of the con-
stituents of context derived from mobile sensors such that context instances can be
easily derived facilitating the development of context-aware mobile applications. The
ContextTorrent [10] is an Android-based framework that processes raw context into
semantically searchable context by modeling context as an ontology. Fuzzy context
information has been derived in case of uncertainty [11]. Naive Bayesian networks
have also been used for context classification [12]. Kramer et al. [13] proposed an
engine for context acquisition, composition and broadcasting to be shared by Android
context-aware mobile applications. CAMF [14] is an Android-based framework that
suggests processing raw context into high-level context using machine learning tech-
niques, but it is merely a proposal. It is clear that those systems have limited capabili-
ties and that each one is concerned with one aspect of context management.

A more advanced management framework has been proposed by Korpipää et al.
[15]. In this framework, raw data extracted from internal mobile sensors can be pro-
cessed into higher-level context using fuzzy classifiers, an ontology and a naive Bayes
classifier. It also allows subscription for context notifications. Unfortunately, the
framework has been developed for the obsolete Symbian platform. Additionally, it did
not take into consideration accessing sensor information and accuracy or deactivating
access to absent sensors. Besides, hardware features were not addressed. Most of

188 http://www.i-jim.org

Paper—Context Management for Supporting Context-aware Android Applications Development

those disadvantages are probably because it was developed about fourteen years ago
when mobiles and their operating systems were relatively less developed than today.

3 Android mobile sensors

Android mobile sensors [3] are intended to capture the context of the mobile and
its environment and are broadly classified into three categories: motion sensors, posi-
tion sensors and environmental sensors (in addition to special-purpose sensors such as
heart rate sensors). Sensors may be either hardware-based or software-based. Soft-
ware-based sensors are virtual sensors that derive their data from hardware sensors.
This section provides background about those sensors in addition to a discussion
about their accuracy. The section also discusses Android SDK support to access those
sensors data.

It is worth noting that the sensors utilize a frame of reference, which is defined in
relation to the screen of the mobile when it is positioned in its default orientation. In
this coordinate system, the x-axis is horizontal and is directed to the right (of the mo-
bile), the y-axis is vertical and is directed upwards and the z-axis is horizontal and is
directed outwards from the screen face. In the world’s frame of reference, on the other
hand, the X-axis is directed towards the east, the Y-axis is directed towards the north
and the Z-axis is perpendicular to the ground directed towards the sky.

3.1 Motion sensors

The motion sensors are responsible for detecting the motion of the mobile with re-
spect to time and space. Those sensors include:

• The accelerometer or the linear acceleration sensor, which measure the accelera-
tion force (including gravity) applied on the mobile along each of the three axes in
m/sec2.

• The gravity sensor, which measures the force of gravity applied on the mobile along
each of the three axes in m/sec2. It is one of the most useful sensors for motion de-
tection.

• The gyroscope, which measures the rate of rotation of the mobile around each of the
three axes in rad/sec.

• The rotation vector sensor, which measures the rotation vector component of the
mobile along each of the three axes. This unitless sensor is one of the most useful
sensors for motion detection (in addition to the gravity sensor).

• The step counter returns the number of steps taken by the mobile user since the last
mobile reboot and activation of the sensor.

3.2 Position sensors

The position sensors are intended to determine the physical position of the mobile.
Those sensors include:

iJIM ‒ Vol. 11, No. 4, 2017 189

Paper—Context Management for Supporting Context-aware Android Applications Development

• The magnetic field or geomagnetic field sensor, which measures the ambient geo-
magnetic field strength along each of the three axes in microtesla (!T). It can be
used together with the accelerometer to determine the position of the mobile in the
world’s frame of reference such as the mobile position relative to the North Pole or
the orientation of the mobile in the application’s frame of reference.

• The proximity sensor, which measures how close an object is relative to the front
screen (face) of the mobile in cm.

3.3 Environmental sensors

The environmental sensors are intended to detect environmental conditions sur-
rounding the mobile. Those sensors include:

• The ambient temperature sensor measures the ambient temperature in oC.
• The light sensor measures the ambient illumination level in lux (lx).
• The pressure sensor measures the ambient pressure in millibars (mbar) or hec-

topascals (hPa).
• The relative humidity sensor measures the relative surrounding humidity in per-

centage.

3.4 Sensors accuracy

Sensors accuracy refers to how much the value returned by the sensor is close to
the real value and how much it is reliable. One of the following integer numbers rep-
resents the accuracy of a sensor:

• A value of -1 indicates a no contact value that cannot be trusted because the sensor
was not in contact with what it has been measuring.

• A value of 0 indicates an unreliable value that cannot be trusted because, for exam-
ple, the sensor is not calibrated.

• A value of 1 indicates low-accuracy.
• A value of 2 indicates medium-accuracy.
• A value of 3 indicates high-accuracy.

3.5 Android SDK support

Android sensor framework within Android SDK allows easy access to the mobile
sensors to obtain different types of information:

• The SensorManager class that allows getting a list of all available sensors or sen-
sors of a given type. It provides various methods for listening to sensors.

• The Sensor class that allows obtaining full information about the capabilities of a
given sensor such as its name, its type and version, its vendor, its resolution and
power in addition to its maximum range and minimum delay.

190 http://www.i-jim.org

Paper—Context Management for Supporting Context-aware Android Applications Development

• The SensorEvent class that allows obtaining information about a sensor event such
as a new value in addition to its timestamp and accuracy.

• The SensorEventListener interface that provides the onAccuracyChanged and the
onSensorChanged methods that are called when the accuracy and reading (even
with a similar value) of a sensor change respectively.

It is worth noting that extracting high-level context values from raw level context
values using Android SDK requires writing relatively long pieces of code.

4 Android mobile hardware features

Android mobile hardware features are the data that can be extracted from the mo-
bile hardware components (other than the sensors) using corresponding Android SDK
classes and methods [3, 16]. They include:

Fig. 1. Block diagram of ACM

• Bluetooth: applications can use this mid-range wireless technology for communica-
tion within a range of 10 meters at a data transfer rate of about 2.1 Mbps.

• Camera: applications can control the camera parameters and capture images with
embedded Global Positioning System (GPS) coordinates.

• Device battery: applications can monitor the battery level and charging state
(whether it is charging, discharging or full for example).

iJIM ‒ Vol. 11, No. 4, 2017 191

Paper—Context Management for Supporting Context-aware Android Applications Development

• Device time: applications can obtain current time in milliseconds since January 1,
1970 and convert it to a meaningful value.

• Location: applications can determine the mobile location using the GPS, for exam-
ple.

• Near Field Communication (NFC): applications can use this technology to sense
electronically enabled objects within a certain range in proximity to the mobile and
read data from these objects.

• Wi-Fi: applications can use Wi-Fi connectivity for communication.

It is worth noting that Android SDK provides classes and interfaces to listen to and
access hardware features. Nevertheless, as with mobile sensors, this requires writing
relatively long pieces of code.

5 ACM tool

Figure 1 shows a block diagram of ACM. As shown in the figure, ACM has a mul-
ti-layered architecture. At the lowest layer, raw context values are extracted from the
mobile sensors and hardware features using Android SDK classes and methods.
Those raw values may be pre-processed as required in order to be converted into
higher-level more human readable values. Such high-level context values may be
post-processed into other forms. Context values generated from any of the four layers
of ACM can be accessed by the context manager to be provided to context-aware
mobile applications upon request. This is explained in more details in the following
subsections.

Table 1. Objective default interpretations of different types of sensors data

Sensor Reading Interpretation
Gravity sensor z ! 9.8/2 mobile screen up
(x, y & z in m/sec2) z " -9.8/2 mobile screen down
Proximity sensor (p cm) p = 0

p # 0
near (object in proximity)
far (no object in proximity)

Pressure sensor (p mbar) p > 1013
p = 1013
p < 1013

High pressure
Normal pressure
Low pressure

Heart rate sensor (b
beats/min)

b < 60
60 " b " 100
b > 100

low (for adult)
normal (for adult)
high (for adult)

5.1 Extracting high-level context values

ACM processes raw context values in order to generate high-level more human-
readable and more usable context values. Interpretations of raw context values into
high-level context values may be objective or subjective. Examples of objective inter-
pretations of different types of sensors data are provided in Table 1. The table pro-
vides an example of motion sensors, which is the gravity sensor. As shown in the

192 http://www.i-jim.org

Paper—Context Management for Supporting Context-aware Android Applications Development

table, we can use the gravity sensor to figure out whether the mobile is face up or
down. If the mobile were face up, for example the reported gravity along the z-axis is
expected to be equal to the standard gravity ($ 9.8 m/sec2). Nevertheless, due to noise
a threshold of half this value is typically used [16]. This allows detecting whether the
mobile is face up without having to be perfectly parallel to the ground. Using ACM,
the programmer can question whether the mobile is face up or down without having
to go through all this trouble and can query alignment directly.

Table 2. Subjective default interpretations of environmental sensors data

Sensor Reading Interpretation
Ambient
temperature (t oC)

t " 0
0 < t < 5
5 " t < 10
10 " t < 15
15 " t < 20
20 " t < 25
25 " t < 30
30 " t < 35
35 " t < 40
t ! 40

Freezing
Cold
Chilly
Cool
Mild
Warm
Very warm
Hot
Very hot
Extremely hot

Light sensor (l lux) – based
on Android SDK

l < 0.001
0.001 " l < 0.25
0.25 " l < 100
100 " l < 400
400 " l < 10,000
10,000 " l < 20,000
20,000 " l < 110,000
110,000 " l < 120,000
l ! 120,000

Extremely dark
No moon (dark)
Full moon
Cloudy
Sunrise
Overcast
Indirect sunlight (shade)
Sunlight
Maximum sunlight

Light sensor (l lux)
- based on Microsoft
interpretations

0 < l " 10
10 < l " 50
50 < l " 200
200 < l " 400
400 < l " 1,000
1,000 < l " 5,000
5,000 < l " 10,000
10,000 < l " 30,000
30,000 < l " 100,000
l > 100,000

Extremely dark
Very dark
Dark inside
Dim inside
Normal inside
Bright inside
Dim outside
Cloudy outside
Under sunlight
Maximum sunlight

Relative humidity sensor (h
%)

h < 30
30 " h < 40
40 " h < 50
50 " h < 60
60 " h < 70
h ! 70

Uncomfortable dry
Dry
Comfortable
wet
Uncomfortable wet
Extremely uncomfortable wet

The table also provides an example of position sensors, which is the proximity sen-

sor. Some proximity sensors provide a zero value when an object is close to the mo-
bile and so this has to be interpreted as shown in the table. On the other hand, some
other binary sensors provide near and far discrete values. Those differences are han-

iJIM ‒ Vol. 11, No. 4, 2017 193

Paper—Context Management for Supporting Context-aware Android Applications Development

dled in ACM and programmers can easily question proximity of objects to the mobile
without having to deal explicitly with such differences.

An example of environmental sensors is the pressure sensor. Since average sea-
level pressure is about 1013 mbar, values higher than this level are interpreted as high
pressure and those lower than this level are interpreted as low pressure as shown in
the table. The pressure sensor reading is used to compute relative altitudes between
floors in a building for example. To account for drifts in pressure, typically altitude is
obtained relative to pressure obtained from a local reporting station.

The heart rate sensor is an example of a special purpose sensor. A value of the
heart rate sensor between 60 and 100 beats/min inclusive indicate normal heart rate
for a typical resting adult as shown in the figure. Of course, there are exceptions to
this rule. This problem can be handled using ACM as explained in the following sec-
tions.

Examples of subjective interpretations of some environmental sensors data are
provided in Table 2. The temperature between 0oC (freezing) and 40oC (very hot) are
subjectively divided into eight ranges. Of course, those ranges can be altered and the
temperatures below 0oC and above 40oC can be similarly divided into ranges. This is
also handled in ACM as explained below.

Light sensors provide light intensity in lux. Interpretations of some discrete light
values are specified in Android SDK by a set of constants such as
LIGHT_NO_MOON, which specifies 0.001 lux as light intensity when there is no
moon and LIGHT_SUNLIGHT, which specifies 110,000 lux as light intensity in
sunlight [3]. Based on those interpretations, we can divide light intensities into ranges
as shown in the table. Alternative interpretations based on Microsoft interpretations
[17] for creating light-aware user interfaces are also provided in the table.

Values of relative humidity are also divided into ranges between 30 % and 70 % as
shown in the table. The 30% to 60% range has been frequently reported as being most
comfortable [18]. According to the engineering toolbox [19], human comfort typically
lies between 25% to 60%. Humidity above 70% causes corrosion and mold and is
extremely uncomfortable and wet.

5.2 High-level context values post-processing

High-level context values may be post-processed into other forms. For example,
raw temperature context is normally processed using crisp membership functions such
as those shown in Figure 2 to identify the ranges shown in Table 2. Such membership
functions can be replaced by fuzzy membership functions such as those shown in
Figure 3. In other words, crisp quantization may be replaced by fuzzy quantization so
that interpretation of raw context into high-level context is probabilistic. For example,
a temperature value of 5oC can be interpreted as 50% cold and 50% chilly. ACM
allows programmers to replace the default crisp quantization by fuzzy quantization.
Nevertheless, programmers should be aware of the essence of fuzzy membership
functions in the first place in order to be able to benefit from this functionality.

194 http://www.i-jim.org

Paper—Context Management for Supporting Context-aware Android Applications Development

Fig. 2. Crisp quantization (default membership functions)

Fig. 3. Fuzzy quantization (alternate membership functions)

5.3 Applications support

For applications to benefit from ACM, they may directly access or request notifica-
tions regarding specific context values or when some of those values change. ACM
provides classes and methods for application programmers for this purpose. It is
worth noting that although raw and some high-level context values can be accessed
directly using Android SDK, it is not unusual that constants and methods in Android
SDK are deprecated and replaced by others. Additionally, as previously noted, ex-
tracting high-level context values from raw level context values using Android SDK
requires writing relatively long pieces of code. So accessing context values through
ACM would save developers such trouble. In other words, ACM provides raw and
several forms of high-level context values conveniently to context-aware mobile ap-
plication developers so that they can concentrate on the logic of their applications and
save the time wasted in context processing with every new application.

Examples of some of the methods provided by ACM are shown in Table 3. Those
are examples of a comprehensive set of methods provided by ACM. The first set of
methods are responsible for directly accessing sensors information and data. Each

iJIM ‒ Vol. 11, No. 4, 2017 195

Paper—Context Management for Supporting Context-aware Android Applications Development

Android mobile sensor has an Id, type and name. The accessSensor, getSensorId and
getSensorName methods can provide type (and Id), Id and name of a given sensor
respectively. In addition to providing this basic information, ACM also supports de-
velopers by providing a definition of each sensor using the getSensorDefinition meth-
od. The resolution, maximum range and unit of each sensor can also be obtained us-
ing the getSensorResolution, getSensorMaximumRange and getSensorUnit methods
respectively. Information about the GP2A proximity sensor are shown in Figure 4.

Table 3. Example ACM sensors and hardware features methods

Method Functionality
accessSensor
getSensorId
getSensorName
sensorSensorDefinition
getSensorResolution
getSensorMaximumRange
getSensorUnit
getSensorRawData
getSensorReadableForm
getSensorAccuracy
getSensorTimeStamp

isSensorExist(Id)

isSensorExist(name)

Get sensor Id and type
Get sensor Id as an integer
Get sensor name as a string
Get sensor definition as a string
Get sensor resolution (and unit)
Get sensor maximum range (and unit)
Get sensor unit
Get sensor raw data
Get sensor readable form
Get sensor accuracy during last event as an integer
Get sensor timestamp when last event occurred as a long number
Return true if sensor (accessed by its Id) exists and false otherwise
Return true if sensor (accessed by its name) exists and false other-
wise

getPlugType
getHealth
getStatus

Get battery plug type
Get battery charging health
Get battery status

getCity
getCountryCode
getZip
getCountry

Get the city name of the current location
Get the country code of the current location
Get Zip code of the current location
Get country name of the current location

getSeason
getYear
getMonth
getDay
getHour

Get the current season
Get the current year
Get the current month
Get the current day
Get the current hour

The most important methods, though are the getSensorRawData, getSensorReada-

bleForm, getSensorAccuracy and getSensorTimeStamp. Those methods help develop-
ers extract context of a given sensor in a raw form or in a high-level readable form in
addition to the timestamp at which this context was extracted and the accuracy of the
extracted context. The isSensorExist is used to check the existence of a given sensor
using its Id or name.

It is worth noting that hardware features are also supported by a number of similar
methods. For example, the accessFeature method can provide type (and Id) of a given
feature. This method is equivalent to the accessSensor method of the mobile sensors.

Sensor and hardware feature-specific methods are also provided to obtain addition-
al information or specific high-level context values. For example, the getPlugType,
getHealth and getStatus methods are used to obtain the plug type (such as USB or

196 http://www.i-jim.org

Paper—Context Management for Supporting Context-aware Android Applications Development

wireless), health (such as good or overheat) and status of the device battery (such
charging, discharging or full) respectively. Another example, instead of using the
getFromLocation method from Android SDK to convert a geographic location into
detailed address information, ACM allows convenient access to the components of
the current address, which are the city, country code, Zip code and country name
seamlessly using the getCity, getCountryCode, GetZip and getCountry methods re-
spectively. Similarly instead of using the GregorianCalendar class from Android
SDK for detailed information about current time, ACM provides, for example the
getSeason, getYear, getMonth, getDay, getHour methods to obtain the current season,
year, month, day and hour respectively.

Fig. 4. ACM application snapshots

5.4 ACM mobile application

ACM also provides a mobile application that can be used by developers to visually
test the functionality and capabilities of ACM before adopting it. Figure 4 shows
example snapshots of ACM application. The snapshot on the left hand side depicts a
list of all available sensors on a Samsung Galaxy Note 1 mobile while that on the right
hand side depicts the details of a selected proximity sensor. The term Readable Form
appears next to sensors with high-level values.

The application can be also used to experiment with sensors. For example, the ori-
entation of the mobile can be changed while visually examining the readings of the
different motion sensors to quickly and conveniently examine how their readings
change with the change of the orientation.

iJIM ‒ Vol. 11, No. 4, 2017 197

Paper—Context Management for Supporting Context-aware Android Applications Development

The application is also useful in calibrating sensors. For example, the linear accel-
eration sensor typically has an offset. The developer can place the device on a table
for example and request calibration. The application would then record the offset
along each of the three axes to be subtracted from the corresponding readings of the
linear acceleration sensor to get the correct values.

Moreover, since default interpretations of raw context values (into high-level con-
text values) have exceptions, applications should be capable of effecting modifica-
tions as needed. For example, the normal heart rate of a resting trained athlete is usu-
ally close to 40 beats/min [20]. Accordingly, the default values shown in Table 1
(ranging from 60 to 100 beats/min inclusive) should be overwritten when the applica-
tion is used by such an athlete. The application allows adjusting such default values.
In the above example, the default normal values of the heart rate sensor can be adjust-
ed from the 60-to-100 range to the 35-to-45 range.

Table 4. Results of the satisfaction questionnaire

Evaluation indicator Average

Efficient and easy to use 5

Does not have a long learning curve 4.7

Conducive to increasing the number of developed context-aware mobile
applications 4.1

Promising to speed up development 5

Would like to use it in developing applications in the future 5

6 Evaluation

In this section, we present the results of the empirical evaluation of ACM. ACM
has been tested by fifteen Android developers, who were given the chance to use it for
a month in their applications. Afterwards, we prepared a questionnaire targeting eval-
uating their reflection about ACM based on their experience. They were asked to
respond to the questionnaire based on a Likert scale in which 1 represents extreme
dissatisfaction and 5, on the other hand represents extreme satisfaction. The results
are provided in Table 4. As shown in the table, the developers believe that ACM is
efficient and easy to use, does not have a long learning curve and thus they would
readily use it in developing context-aware mobile applications in the future. Addition-
ally, they believe that such a tool would trigger and speed up development of more
such applications. The reliability and consistency of the questionnaire results were
estimated using Cronbach’s alpha. We obtained a value of % equal to 0.87 indicating
a very high degree of reliability and acceptance of the questionnaire results.

198 http://www.i-jim.org

Paper—Context Management for Supporting Context-aware Android Applications Development

7 Conclusion

This paper presented ACM, an Android context management tool. ACM provides
support to context-aware mobile application developers and to mobile users. Applica-
tion developers are provided with a set of classes and methods allowing easy access to
raw and high-level context values and information about sensors and hardware fea-
tures. High-level context values are extracted using several methods including fuzzy
classifiers. Applications can request notifications regarding specific context values or
specific context changes. ACM is accompanied by a mobile application allowing
developers to test its functionalities and allowing mobile users to get information
about and access sensors and mobile hardware features extracting their raw data in
addition to corresponding higher-level context values. Since different mobiles have
different features and sensors, the tool can adapt to the mobile device by deactivating
access to unavailable sensors and hardware features. ACM also allows personalizing
interpretations of raw context values to high-level ones and facilitates sensors calibra-
tion via the mobile application.

ACM has been tested empirically and the results show extreme satisfaction of An-
droid application developers with its capabilities. As future work, we will consider
additional methods for extracting more and other forms of high-level context values.
For example, we can compose high-level context from multiple sources and develop
ontologies [21] and naïve Bayes classifiers. We also intend to extend ACM to accept
context values from external sources and sensors.

8 References

[1] Elazhary, H. (2015). A cloud-based framework for context-aware intelligent mobile user
interfaces in healthcare applications. Journal of Medical Imaging and Health Informatics,
5(8):1680-1687. https://doi.org/10.1166/jmihi.2015.1620

[2] Alnanih, R., Ormandjieva, O. & Radhakrishnan, T. (2013). Context-based and rule-based
adaptation of mobile user interfaces in mHealth. 3rd International Conference on Current
and Future Trends of Information and Communication Technologies in Healthcare, Niaga-
ra Falls, Ontario, Canada, pp. 390-397. https://doi.org/10.1016/j.procs.2013.09.051

[3] Android O Developer Preview, https://developer.android.com/index.html [Online; ac-
cessed: 2017-03-01].

[4] Brunette, W., Sodt, R., Chaudhri, R., Goel, M., Falcone, M., VanOrden, J. & Borriello, G.
(2012). Open Data Kit sensors: A sensor integration framework for Android at the applica-
tion-level. 10th International Conference on Mobile Systems, Applications and Services,
Low Wood Bay, Lake District, UK, pp. 351-364. https://doi.org/10.1145/230763
6.2307669

[5] Chaudhri, R., Brunette, W., Goel, M., Sodt, R., VanOrden, J., Falcone, M. & Borriello, G.
(2012). Open Data Kit sensors: Mobile data collection with wired and wireless sensors. 2nd
ACM Symposium on Computing for Development, Atlanta, GA, USA.
https://doi.org/10.1145/2160601.2160614

[6] Zheng, X., Perry, D. & Julien, C. (2014). BraceForce: A middleware to enable sensing in-
tegration in mobile applications for novice programmers. 1st International Conference on

iJIM ‒ Vol. 11, No. 4, 2017 199

Paper—Context Management for Supporting Context-aware Android Applications Development

Mobile Software Engineering and Systems, Hyderabad, India, pp. 8-17.
https://doi.org/10.1145/2593902.2593907

[7] Xu, Z. & Zhu, S. (2015). SemaDroid: A privacy-aware sensor management framework for
smartphones. 5th ACM Conference on Data and Application Security and Privacy, San An-
tonio, Texas, USA, pp. 61-72. https://doi.org/10.1145/2699026.2699114

[8] Yusheng, X., Zhixin, M., Xiaoyun, C. & Lian, L. (2008). A composite sensor-based con-
text modeling method for context-aware pervasive computing. International MultiConfer-
ence of Engineers and Computer Scientists, Hong Kong, pp. 1163-1168.

[9] Korpipää, P. & Mäntyjärvi, J. (2003). An ontology for mobile device sensor-based context
awareness. 4th International and Interdisciplinary Conference on Modeling and Using Con-
text, Stanford, California, USA, pp. 451-458. https://doi.org/10.1007/3-540-44958-2_37

[10] Hu, D., Dong, F. & Wang, C. (2009). A semantic context management framework on mo-
bile device. International Conference on Embedded Software and Systems, Hangzhou,
Zhejiang, China, pp. 331-338.

[11] Mäntyjärvi, J. & Seppänen, T. (2002). Adapting applications in mobile terminals using
fuzzy context information. 4th International Symposium on Human Computer Interaction
with Mobile Devices, Pisa, Italy, pp. 95-107. https://doi.org/10.1007/3-540-45756-9_9

[12] Korpipää, P., Koskinen, M., Peltola, J., Mäkelä, S. & Seppänen, T. (2003). Bayesian ap-
proach to sensor-based context awareness. Personal & Ubiquitous Computing, 7:113-124.
https://doi.org/10.1007/s00779-003-0237-8

[13] Kramer, D., Kocurova, A., Oussena, S., Clark, T. & Komisarczuk, P. (2011). An extensi-
ble, self contained, layered approach to context acquisition. 3rd International Workshop on
Middleware for Pervasive Mobile and Embedded Computing, Lisbon, Portugal.
https://doi.org/10.1145/2090316.2090322

[14] Wang, A. & Ahmad, Q. (2010). CAMF - Context-aware machine learning framework for
Android. Software Engineering and Applications Conference, Marina del Rey, California,
USA, pp. 388-395. https://doi.org/10.2316/p.2010.725-003

[15] Korpipää, P., Mäntyjärvi, J., Kela, J., Keränen, H. & Malm, E. (2003). Managing context
information in mobile devices. Pervasive Computing, 2(3):42-51.
https://doi.org/10.1109/MPRV.2003.1228526

[16] Milette, G. & Stroud, A. (2012). Professional Android Sensor Programming. John Wiley
& Sons, Inc., Indianapolis, Indiana.

[17] Understanding and interpreting lux values, https://msdn.microsoft.com/en-
us/library/windows/desktop/dd319008(v=vs.85).aspx [Online; accessed: 2017-03-01].

[18] Indoor humidity levels, http://www.sensitivechoice.com/indoor-humidity/ [Online; ac-
cessed: 2017-03-01].

[19] Recommended relative humidity levels, http://www.engineeringtoolbox.com/relative-
humidity-d_895.html [Online; accessed: 2017-03-01].

[20] What's a normal resting heart rate? http://www.mayoclinic.org/healthy-
lifestyle/fitness/expert-answers/heart-rate/faq-20057979 [Online; accessed: 2017-03-01].

[21] Elazhary, H. (2016). CAL: A controlled Arabic language for authoring ontologies. Arabian
Journal for Science and Engineering, 41(8):2911–2926. https://doi.org/10.1007/s13369-
015-2016-z

200 http://www.i-jim.org

Paper—Context Management for Supporting Context-aware Android Applications Development

9 Authors

Hanan Elazhary earned her B.Sc. and M.Sc. degrees from the Department of
Electronics and Communications Engineering, Cairo University. She earned her Ph.D.
degree in Computer Science and Engineering from the University of Connecticut,
USA. Currently, she is an associate professor in the Computer Science Department,
Faculty of Computing & Information Technology, King Abdulaziz University, Jed-
dah, Saudi Arabia and the Computers and Systems Department, Electronics Research
Institute, Cairo, Egypt. Her research interests include distributed systems, software
engineering and intelligent tutoring systems.

Alaa Althubyani, Lina Ahmed, Bayan Alharbi, Norah Alzahrani and Reem
Almutairi were undergraduate students in the Computer Science Department, Faculty
of Computing & Information Technology, King Abdulaziz University, Jeddah, Saudi
Arabia at the time that this work was conducted.

Article submitted 27 March 2017. Published as resubmitted by the authors 13 May 2017.

iJIM ‒ Vol. 11, No. 4, 2017 201

	iJIM – Vol. 11, No. 4, 2017
	Context Management for Supporting Context-aware Android Applications Development

