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Abstract—Remote laboratories on mobile phones have been around for a 
few years now. This has greatly improved accessibility of these remote labs to 
students who cannot afford computers but have mobile phones. When money is 
a factor however (as is often the case with those who can’t afford a computer), 
the cost of use of these remote laboratories should be minimized. This work ad-
dressed this issue of minimizing the cost of use of the remote lab by making use 
of data compression for data sent between the user and remote lab. 

Keywords—Data compression; Lempel-Ziv-Welch; remote laboratory; Web-
Sockets 

1 Introduction 

The mobile phone is now the de facto computational device of choice. They are 
quite powerful, connected devices which are almost always with us. This is so much 
so that about every important online service has a mobile version or at least a version 
compatible with mobile phones and tablets (for this paper we would adopt the phrase 
mobile device to represent mobile phones and tablets). This has caused online labora-
tory developers to develop online laboratory solutions which are mobile device-
friendly [1, 2, 3, 4, 5, 6, 7, 8]. 

One of the main benefits of online laboratories is the possibility of using fewer re-
sources to serve more people i.e. the money constraint [9, 10]. This fact (the fact that 
online laboratories are particularly useful for cash-strapped situations) has led to some 
research into reducing the cost of use of online laboratories [11]. Also, many online 
laboratory developers have tackled this cost of use minimization by using technolo-
gies which minimize the amount of data to be sent over the network such as Lab-
VIEW Remote Panels [12, 13, 14]. Educational institutions in developing countries 
often fall in the class of “challenged educational institutions” where funding is not as 
available. Students in these institutions are often tied to low bandwidth networks or 
face steep costs for fast internet access. Hence data usage is a consideration of stu-
dents in most challenged educational institutions – some of the main users of remote 
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laboratories. The implication of this point is that in developing an online laboratory, 
every “trick in the book” should be employed to attempt to minimize the cost of use 
of online laboratories [11]. One “trick” which has not been used or at least which has 
not been reported so far is the compression of data being sent between the mobile 
devices and the online laboratory back-end (Service Broker or Laboratory Server). 

By way of definitions, in this paper, the term “online laboratory” is used to refer to 
a laboratory whose experiments are performed over a network. The term “remote 
laboratory” is used to refer to an online laboratory which has physical equipment at 
the back-end. The term “virtual laboratory” is used to refer to a laboratory which uses 
models (mathematical models, graphical models, verbal models, etc.) of physical 
equipment instead of actual equipment and may or may not be performed over a net-
work. A virtual lab can be installed on a user’s phone or computer for example [8] or 
may be accessed over the internet (e.g. Phet Interactive Simulations [15]). 

This paper is structured as follows: Section 2 discusses a few lossless compression 
algorithms. There are several lossless compression algorithms and this section will 
not attempt to talk about them all. It will however highlight a couple of the common 
ones and then present a comparison to suggest their usability in remote laboratory 
applications. Section 3 presents work we have done in implementing lossless data 
compression in an online laboratory. Section 4 discusses the results we obtained and 
Section 5 concludes this paper and makes some recommendations. 

2 Data Compression 

Data compression is divided into two: lossless compression and lossy compression. 
Lossy compression is what is used for pictures and videos where the raw data con-
tains redundant information and not all the information is perceptible. Lossless com-
pression on the other hand is necessary for data which we cannot discard any part of. 
With lossy compression, it is impossible to reconstruct the exact original data from 
the compressed data with zero error but a requirement for lossless compression is that 
the exact original data must be recoverable from the compressed data [16]. Lossless 
compression is what is discussed below. 

2.1 ASCII 

ASCII is a fixed length code which is used for encoding characters. Every key-
board converts the characters which are typed into an ASCII bitstream which is then 
sent to the CPU for use. ASCII makes use of eight bits to encode each character. (The 
ASCII standard is actually a 7-bit code but this is mostly always extended to 8 bits to 
cater for mathematic symbols or non-English European languages) [17, 18]. In other 
words, to send five characters ASCII would make use of forty bits. In this digital 
world which we live in, ASCII is regarded as raw data. Hence if the data is in ASCII 
code we just say that it is uncompressed data. Table 1 shows the ASCII codes for a 
few characters 
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Table 1.  ASCII Code for a Few Characters 

Character ASCII Code 
Space 00100000 

+ 00101011 
1 00110001 
2 00110010 
@ 01000000 
A 01000001 
B 01000010 
A 01100001 
B 01100010 

2.2 Huffman’s Algorithm 

Huffman’s algorithm [19] produces what is called a variable length code. A draw-
back of ASCII is the fact that it uses the same number of bits to encode each character 
– i.e. it is a fixed-length code. Huffman coding is based on the logic that we should 
use fewer bits as code words for characters we transmit often. This way we will 
transmit short codes (codes for frequently occurring characters) often and long codes 
(codes for infrequently occurring characters) less frequently. 

Huffman’s algorithm works in a three-step process. First it determines the different 
characters that exist in the data to be compressed. Next it determines how many times 
each of these characters appears in the data. This is often called the probability of 
occurrence of each character. Finally, it creates the code table by assigning fewer 
numbers of bits to the characters with the highest probability of occurrence. For ex-
ample, Table 2 shows a result of Huffman’s algorithm when run on the word ‘AB-
RACADABRA’. From Table 2 we see that only 23 bits are used to encode ‘ABRA-
CADABRA’. If a fixed length code were to be used, it would have required at least 3 
bits per character, and hence at least 33 bits would have been used to encode it. 7-bit 
ASCII would use 77 bits. 

Table 2.  Huffman Code Table for ‘ABRACADABRA’ 

Character Frequency Huffman Code 
A 5 0 
B 2 111 
C 1 1100 
D 1 1101 
R 2 10 

 
It is important to note however that the advantage of Huffman coding over ASCII 

coding is not really the fact that Huffman uses a variable length code. Rather it is the 
fact that Huffman uses a statistical method i.e. the algorithm depends on the frequen-
cy of occurrence of each character. 
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More recently an adaptive Huffman method has emerged [20, 21]. Here the algo-
rithm does not look at the entire data to be converted and create its code table before it 
begins encoding the data. Rather it updates its code table on the fly in a similar way to 
Lempel-Ziv’s method (discussed below). The probabilities of occurrence of the char-
acters is updated as it does the encoding and hence its code table is updated accord-
ingly. 

2.3 Lempel-Ziv’s Algorithm 

Abraham Lempel and Jacob Ziv, in 1977 [22] and 1978 [23, 24] created the algo-
rithm which is popularly known as the Lempel-Ziv (LZ) algorithm. It is also a statisti-
cal method. One major difference between LZ and Huffman is the fact that the LZ 
algorithm does not need a code table to be prepared for the data before it is com-
pressed which also means that it does not need to transmit its code table along with 
the data being transmitted. 

Unlike Huffman coding, which uses the fewest number of bits for the most com-
mon characters, LZ works by adding character phrases to its code table as these 
phrases come up and then using the code for these phrases as the phrases show up 
later. For example, to transmit the string ‘TO BE OR NOT TO BE’, once the phrases 
‘TO’ and ‘BE’ have been placed in code table, their code words are used when these 
phrases show up later in the string. Different implementations of LZ algorithm have 
yielded a whole slew of algorithms which are typically named beginning with LZ. For 
example, LZMA is the Lempel-Ziv-Markov algorithm, LZSS is the Lempel-Ziv-
Storer-Szymanski method, and LZRW is the Lempel-Ziv-Ross-Williams method [25]. 

2.4 Lempel-Ziv-Welch’s Algorithm 

Terry Welch came up with a compression algorithm based on the LZ algorithm 
[26, 27]. This algorithm is called the Lempel-Ziv-Welch algorithm (LZW). In LZW, 
the compressor (and decompressor) begins with the ASCII table as its initial code 
table. When it sees the first character to be transmitted, it transmits its ASCII code. 
LZW then looks ahead to the next character to be transmitted and creates a phrase 
comprising the current character and the next character and adds this phrase to the 
code table. Whenever this phrase appears again in the data to be transmitted, LZW 
would simply transmit the code for this phrase rather than the individual codes for 
each character. Hence LZW uses a fixed-length code to represent data which has 
variable phrase lengths. 

For example, to transmit ‘TOBEORNOTTOBE’, LZW would first transmit the 
ASCII code for ‘T’ and then add ‘TO’ to its code table. It then transmits ‘O’ and then 
adds ‘OB’ to its code table. Next it transmits ‘B’ and then adds ‘BE’ to its code table. 
This will go on and ‘EO’, ‘OR’, ‘RN’, ‘NO’, ‘OT’ and ‘TT’ are added to the table. At 
this time, it has transmitted ‘TOBEORNOT’. At this point, it sees a phrase which it 
already has in its table. Hence instead of transmitting ASCII for ‘T’ next, instead it 
transmits its own code for ‘TO’ and then adds ‘TOB’ to its code table. Then its trans-
mits its own code for ‘BE’ and the transmission ends. Hence as LZW sees repeated 
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character phrases, it adds even longer phrases to its code table so that after transmit-
ting a sizeable chunk of data, it can have a 13-bit code which represents a 25-letter 
phrase. 

As can be inferred from the discourse above, LZW is good when phrases get re-
peated in the data. It also requires that a decision be made as to how many bits to use 
to represent individual phrases in its code table. The receiver would have to know 
how many phrases to bits to read before attempting to decode (decompress) it. 

2.5 Burrows-Wheeler’s Transform 

The Burrows-Wheeler transform (BWT) [28] goes about the business of data com-
pression via a different route from most other compression methods. The BWT meth-
od is based on the fact that a number of compression methods do very well with the 
compression of data which has several characters repeated. The BWT takes the data 
to be compressed and then first sorts it into a form such that a number of similar char-
acters in the text are first grouped together and then a good compression algorithm 
can be used for the compression. In the strictest sense, the BWT is not a compression 
method but a sorting method which sorts characters in such a way that the original 
order of the characters can be found from the sorted data and an index number. The 
output of a BWT isn’t simply a string in ascending or descending order and not all 
similar letters are necessarily grouped together. BWT is constrained by the fact that 
the original data must be recoverable from sorted data. 

For example, let’s say we were to use the BWT to sort the word “POTATO”. The 
BWT method first shifts the data one step and creates a new row and then shifts again 
until it has cycled through all the characters. Hence, for this example, we will have 
the six rows below: 

 
Next the algorithm sorts these rows in ascending order. Hence for our example we 

have: 

 
Now, the last column of the table is the set of characters we send to the compressor 

before it is transmitted. In addition to this, the index of the row which has the original 
data we started with is also transmitted. Hence for this example the two outputs of the 
BWT algorithm are ‘TTPOOA’ and index 4. These two pieces of data (i.e. the sorted 
characters and the index of the row with the original data) are all we need to recon-
struct the original data from the sorted data. One can now use a suitable compression 
method on the sorted data before transmission. The bzip2 compression algorithm 
makes use of BWT and Huffman coding for compression. 

!"#$#"% "#$#"!% #$#"!"% $#"!"#% #"!"#$% "!"#$#%

$#"!"#% "!"#$#% "#$#"!% !"#$#"% #$#"!"% #"!"#$%
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2.6 Arithmetic Compression 

Arithmetic coding [29, 30, 31] works by performing arithmetic operations on the 
data to be coded. The number line between 0 and 1 is typically divided up into seg-
ments where each segment represents each of the unique characters in the data set to 
be compressed. To make the coding more efficient, the number line is not divided 
evenly. Rather it is divided according to the frequency of occurrence of the characters 
[32]. More frequent characters are assigned larger segments of the number line. This 
way, fewer bits end up being used to encode more frequent characters. 

The procedure for arithmetic coding is: 

1. divide the number line between 0 and 1 into the requisite number of segments ac-
cording to the frequency of appearance of the characters. 

2. select the segment for the first character to be encoded.  
3. divide this selected segment in (2) above into the same number of segments as in 

(1) above using the proportions used in (1) above.  
4. select the segment for the next character to be transmitted. 
5. Repeat the process until we have used all characters for transmission. 
6. Transmit a value which lies in the segment of the last character for transmission. 

This value will have all the information in it about all characters which were in the 
original data. Simply transmitting this value makes it possible to reconstruct the 
original data. 

For example, if the string ‘JOHN’ is to be transmitted, assuming the characters 
have equal probability in our entire data stream and the entire stream does not have 
any other characters other than J, O, H and N, we can divide up the 0 to 1 interval as 
shown in Fig. 1. If the value 0.106 is now transmitted, we can reconstruct the string 
JOHN from this as we know that this solution only exists within the fourth quarter of 
the third quarter of the second quarter of the first quarter of 1. The algorithm is a little 
more complex than this but this will suffice to present the basic concept behind arith-
metic coding. 

 
Fig. 1. Arithmetic Coding to encode JOHN 
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2.7 Comparison of the Above 

There is no single best compression method for all forms of data. Each method has 
its comparative advantages. The standard most frequently used as a benchmark for 
data compression methods up until the 1990s was the Calgary Corpus [33, 34]. Table 
3 shows compression capabilities of the methods presented above when tested with 
the Calgary Corpus as reported in [35, 36]. BWT methods tend to do better than LZW 
which in turn is better than both LZ77 and Huffman in terms of compression ratios. 
The compression ratio of arithmetic coding is dependent on the implementation of the 
algorithm but it tends to provide very good compression ratios. In terms of speed of 
compression and decompression, LZW executes faster than BWT and LZ77. BWT 
tends to be slow because sorting is done before compression. The decompression of 
BWT takes even longer because it involves decompression and then sorting the de-
compressed data and swapping rows over and over. 

Table 3.  Compression performance of compression algorithms 

Year Compression Scheme Bits per Character 
1967 ASCII 7.00 
1950 Huffman 4.70 
1977 Lempel-Ziv 1977 (LZ77) 3.94 
1985 Lempel-Ziv-Welch (LZW) 2.93 
1990s to Date Arithmetic coding Depends on the programmatic 

implementation but very good 
compression is achieved. 

1995 Burrows-Wheeler Transform 2.29 
 
Data compression coding methods can be roughly divided into three: static models, 

dynamic models and adaptive models. Static models use the same code table for all 
data to be compressed. The code table is often created to be somewhat optimal based 
on the language they are written for e.g. Morse code was optimized for the English 
language based on the fact that vowels like ‘e’ and ‘i’ appear fairly frequently. Exam-
ples of the static model are Morse code and ASCII. Dynamic models get their name 
from the fact that their code tables are not “set in stone”. The code tables are often 
determined when compression is to be done. These methods look at the data and try to 
determine the best code table which would compress the particular data best. Exam-
ples of dynamic model codes are Huffman codes and arithmetic coding. The adaptive 
coding model however does not create its code table for the entire data set before it 
encodes it but rather creates a code table while encoding it. This way it is not neces-
sary to transmit the code table from the source to the receiver in addition to the data 
being encoded. The receiver can reconstruct the code table from the received data and 
use it to decode the received data. Table 4 presents a comparison of these three mod-
els. 
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Table 4.  Comparison of Lossless Compression Models 

 Static 
Model 

Dynamic Model Adaptive Model 

Code table Same code 
table for all 
data to be 
compressed 

Code table is gener-
ated based on the 
data to be com-
pressed so that it is 
optimized for that 
particular data 

Create code table on the 
fly while coding (or de-
coding) 

Compression 
and decom-
pression 
Speeds 

Very fast *Code table must be 
generated before 
compression is done 
i.e. slow 

*Faster than dynamic 
models 

Compression 
ratio 

Quite poor Close to entropy Better compression than 
both other models 

Code table 
availability 

Everyone 
has the 
code table 
already 

Code table must be 
transmitted to decod-
er 

Length of each code word 
must be transmitted & 
decoding must start at 
beginning 

Example E.g. ASCII, 
Morse 
Code, etc. 

E.g. Huffman code, 
BWT, arithmetic 
coding 

e.g. LZ, LZW, LZMA, 
etc. 

* Specific dynamic models may be faster than specific adaptive models but the table presents the general 
case 

3 Our Method 

For remote laboratories applications where data is to be streamed live between the 
user and the lab we propose that the LZW algorithm or an algorithm similar to it be 
used for data compression. The reason for this is the fact that the code table is created 
on the fly without prior knowledge of the probability of occurrence of individual data 
characters and no need to transmit the code table to the decompressor. Hence, LZW is 
well-suited for compressing a live stream of data whose statistics we have no prior 
knowledge of. A typical goal in a remote laboratory is to give the users the freedom to 
make mistakes and freedom to explore but protect the lab equipment by preventing 
harmful specifications. Typically, the user should be allowed to submit even ridicu-
lous specifications before the online platform tells him his specifications are faulty. 
Hence it would be impossible to tell the exact probabilities of specific data being sent 
by users to the lab and create an optimal code table from this. 

The main disadvantage of the LZW algorithm is the fact that the decompressor 
must start decompressing the received data from the very beginning or else its code 
table will not match that of the compressor. Hence it is essential to ensure that any 
app using LZW does some handshaking before it begins compression to ensure that 
the decompressor is receiving its data. 
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3.1 The System Under Test 

The experiment chosen for this work is the ball and beam system experiment, a 
Control Engineering position control experiment. The ball and beam system is a sys-
tem in which a beam is tilted back and forth in order to keep the ball located at a de-
sired position. When the ball is stationary at the desired position the beam is kept 
horizontal. When the ball however gets displaced from this position the beam is tilted 
accordingly to bring it back to the desired position. The ball and beam system is 
shown in Figure 2. 

 
Fig. 2. A ball and beam system 

A number of mathematical models for the ball and beam system have been com-
puted [37, 38, 39, 40, 41]. A number of works focus on the use of the voltage supplied 
to the DC motor as the control signal. When this is done, the dynamics of the beam 
are very essential. For this work however, the control signal was the beam’s angle. 
Hence the only dynamics to be concerned with, since the beam was rigid, were the 
ball’s angular position and velocity, and the ball’s translational displacement. The 
angular position, ! of the ball is directly related to the translational displacement of 
the ball, !. 

 ! ! !" (1) 

where p is the translational displacement of the ball, r is the radius of the ball and 
! is the angle by which the ball has rotated. Hence, from equation 1, the ball’s angu-
lar acceleration can be written in terms of its translational displacement. 

 ! ! !!! (2) 

Now, assuming that the ball rotates along the beam with zero slip and zero friction, 
the torque on the ball, ! can be expressed in terms of the force due to rotation acting 
on the ball, !!. 

 ! ! !!!! (3) 

The torque on the ball can also be expressed in terms of the moment of inertia of 
the ball ! and the angular acceleration of the ball. 
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 ! ! !! ! !
!
! (4) 

From equations 3 and 4, we get the force due to rotation acting on the ball as 

 !! !
!
!!
! (5) 

Now, balancing the forces on the ball, assuming no external forces acting on the 
ball, we have 

 !"#$%& ! !! ! !
!!
! (6) 

where m is the mass of the ball and g is the acceleration due to gravity. Linearizing 
this equation for small deviations of !, we have 

 !"# ! ! ! !
!!

! (7) 

Given that the moment of inertia of the ball (a sphere) is given as ! ! !
!
!!!, we 

obtain the transfer function of the ball and beam system from equation 7, with the 
ball’s translational displacement as the output and the beam’s angle as the input, as 

 ! !
! !

! !!
!
! !
!!

 (8) 

Thus, without a controller, the system is undamped. The controller used in this 
work is a PID controller. The configuration used in this work is shown in Figure 3. 
The transfer function of the closed loop system is 

 
Fig. 3. Control system configuration used 

 ! ! ! !! !!!!!!!!!!!
!!!!!! !!!!!!!!!!!

 (8) 

The controller was implemented on an Arduino Uno R3 board. The built ball and 
beam system is shown in Figure 4. 
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Fig. 4. Built ball and beam system 

The task of the student in the ball and beam experiment is to design a controller to 
make the controlled system meet some desired performance characteristics. For ex-
ample, the student is required to design a PID controller which will cause the ball the 
settle as the specified set point within 2 seconds of its disturbance and with no more 
than a 50 % overshoot. The student is to do the math and come up with proportional, 
derivative and integral gains for the PID controller which would ensure that the sys-
tem meets these performance characteristics. Having come up with these, the student 
supplies these gains to the physical system and observes / measures the system’s re-
sponse. 

3.2 The Remote Lab Client 

The remote laboratory client was created using Construct 2. Construct 2 is a game 
development system which develops applications using HTML5, JavaScript and 
jQuery [42]. Hence applications developed using Construct 2 can be easily exported 
to various mobile platforms. The laboratory server, at the back-end, was written in 
C#. WebSocket methods as well as data compression methods were built into the lab 
server. 

The remote lab client application developed had two purposes. The first purpose 
was to enable the student to enter his desired controller gains, and the second purpose 
was to display the response of the physical system to the student. The algorithm of the 
remote lab client developed is shown in Figure 5. The laboratory functions as a re-
mote laboratory when a connection between the lab client, and the lab server and 
experiment setup exists. The laboratory defaults into the virtual lab mode once this 
connection is lost. In the virtual lab mode, it uses the mathematical models of the ball 
and beam system and the controller to compute what the response of the system 
should be. In remote lab mode, however, the user’s specifications are sent to the phys-
ical ball and beam system setup which responds to these specifications and sends its 
response to the lab client. Data compression was done on all data sent between the 
client and the server over the internet. The LZW algorithm was used. 
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Fig. 5. Algorithm of laboratory client on the user’s device  

The data compression and decompression in the client were done by using the 
LZW algorithm. JavaScript plugins were written for Construct 2 to handle the com-
pression and decompression. Figures 6 and 7 show the compression and decompres-
sion algorithms used respectively. 
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Fig. 6. Data compression algorithm used 
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Fig. 7. Data decompression algorithm used 

4 Results and Discussion 

The data compression system was tested using a Node.js server [43] on the 
backend by making use of the WebSocket package [44] and the node-lzw package 
[45]. The tests showed that the data was correctly decompressed each time. Figure 8 
and Figure 9 present the results. Figure 8 show that compression ratios of 0.82 to 0.88 
were obtained for the ball and beam remote lab. Hence, the use of this remote lab 
client would save the student more than 10% of his mobile data use when using a 
similar remote lab client but which does not employ LZW. 
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Fig. 8. Data received by Node.js WebSocket server showing sizes before and after decompres-

sion by LZW 

 
Fig. 9. Response from SMS experimentation server to specifications sent. 

Figure 9Error! Reference source not found. shows that the LZW is not optimal 
for sending small non-repetitive data from the client to server if the code table is rei-
nitialized each time data is to be sent (Compression ratios of 0.82 to 0.86). For highly 
repetitive data however, it does very well, the larger the amount of data to be com-
pressed. Other compression schemes could be used for different laboratories with 
code tables better suited for each lab. However, the system developed here is generic 
and can be used with any lab without prior knowledge of the characters the student 
would be expected to send to the server at the back end. 

It is necessary to point out that the choice of whether to host an HTML5 lab client 
in a web page or whether to deploy it as apps which students can install on their 
phones does also significantly impact the student’s data costs while using the lab. 
Hosting the lab client on the lab server is advantageous as it is very easy to update or 
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modify the client. Once any user loads the client from your server, the most recent 
version is what he sees. On the other hand, each time the user launches the lab in his 
browser, the entire client (or just some part of it if cookies and intelligent coding is 
done) is downloaded to the user’s browser. Hence his cost of use of the lab client is 
significant higher. If, on the other hand, the user has the client installed on his phone 
his only data cost of use of the client would be the data interchanged between the app 
and the server e.g. handshaking and then his lab specifications. The initial data cost of 
downloading the app from the lab server or online store can also be possibly mitigated 
for Android, Windows Phone and Blackberry 10 users if a copy is made available on 
their campus. For example, the lab client’s apk (for Android), bar (for Blackberry 10) 
or xap (for Windows 10) can be downloaded by the lecturer and his students can copy 
this from him via Bluetooth for example. iOS users would have to download the app 
from the Apple appstore. 

5 Conclusion 

This work has demonstrated that “Cost of Use” of remote laboratories can be re-
duced by the use of data compression when sending data between the students and the 
laboratory. Data use savings of up to 18% were obtained for the remote laboratory 
developed in this work. There is probably a discussion to be had as to which compres-
sion algorithm ought to be adopted as the default data compression algorithm for 
remote laboratories. 

The discourse in this work has been only about remote laboratories. It should be 
said that it can also be employed in virtual laboratories whenever data is to be sent 
between the user and the servers at the back end. 

6 Proposed Further Work 

Dropped packets during a live transmission can be a problem when using the LZW 
algorithm. It would therefore be reasonable to have the decompressor periodically 
send back a decompressed piece of data to the sender to ensure that the compressor 
and decompressor are still synchronised and using the same data tables. This could be 
done in addition to the presently used system of reinitializing the code table periodi-
cally to ensure that the code table remains a manageable size and doesn’t get too 
large. We also hope to implement a number of data compression schemes in the near 
future in order to create a guideline of suggested compression schemes for various 
kinds of remote and virtual labs. 
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