
Paper—A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

A Modified Cloud-Based Cryptographic Agent
for Cloud Data Integrity

https://doi.org/10.3991/ijim.v11i2.6553

Basma Hathout
The British University in Egypt, El Shorouk City, Cairo, Egypt

basma.hathout@bue.edu.eg

Samy Ghoniemy

The British University in Egypt, El Shorouk City, Cairo, Egypt

Osman Ibrahim
The British University in Egypt, El Shorouk City, Cairo, Egypt

Abstract—In spite of all the advantages delivered by cloud computing, sev-
eral challenges are hindering the migration of customer software and data into
the cloud. On top of the list is the security and privacy concerns arising from
the storage and processing of sensitive data on remote machines that are not
owned, or even managed by the customers themselves. In this paper, initially a
homomorphic encryption-based Cryptographic Agent is proposed. The pro-
posed Cryptographic Agent is based on Paillier scheme, and is supported by us-
er-configurable software protection and data privacy categorization agents, as
well as set of accountable auditing services required to achieve legal compli-
ance and certification. This scheme was tested using different text documents
with different sizes. Testing results showed that as the size of the document in-
creases, the size of the generated key increases dramatically causing a major
problem in regards to the processing time and the file size especially for large
documents. This leaded us to the second part of this research which is: a modi-
fied security architecture that adds two major autonomic security detective
agents to the multi-agent architecture of cloud data storage. In this paper, we
focus on the first agent namely (Automated Master Agent, AMA) that is added
to the Multi Agent System Architecture (MASA) layer (cloud client-side) by
which any changes happen in the document are mapped in a QR code encoded
key print (KP). Experimental results after integrating these agents showed a
100% alternation detection accuracy and a superiority in extracting the KP of
large and very large size documents which exceeds the currently available
products and leverage the tamper-proof capabilities of cryptographic coproces-
sors to establish a secure execution domain in the computing cloud that is phys-
ically and logically protected from unauthorized access.

Keywords—cloud data storage and processing security, document key print,
homomorphic encryption, QR Codes.

6 http://www.i-jim.org

Paper—A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

1 Introduction

Due to the fast development of cloud computing technologies, there’s been a re-
markable increase in the cloud services which made the job for securing user’s data
more challenging and one of the hottest research areas [1]. In 2014, the international
data cooperation (IDC) conducted a survey showing that 87.5% from IT executives to
chief executive officers (CEOs) believe that the challenge that faces every cloud ser-
vice lies in its security [2]. One of those challenges that raised due to the storing of
data in different and distributed locations is the integrity of the data stored in the
cloud [3], which requires robust integrity checker algorithms to ensure that the docu-
ment didn't tampered prior its retrieval [4]. In addition to the distributed nature, the
multitenancy of the cloud environment violates the user’s privacy and confidentiality
rights since multiple parties can access the stored data [5].

When user(s) outsource data to the service provider’s data center, the primary risk
that faces this data is its confidentiality and integrity. At this stage of the data life
cycle; which is data in transit, it is very important to encrypt the data to ensure confi-
dentiality as well as using security protocols to ensure the privacy [6]. When data
arrives to the data center; data at rest in the life cycle, the users lose any physical
possession over them. They only use Virtual Machines (VMs) interfaces to have par-
tial control over the data [7], and the cloud service providers are responsible for man-
aging the underlying systems and have constant access to the VM. This threatens the
security in terms of its integrity and confidentiality [8]. Such threat is not at question
by only unauthorized users trying to access and modify these files, but also by service
providers themselves who do so for their own purposes or as a lack of security. For
instance, they can discard the users’ files that are not accessed very frequently by the
users in order to better utilize their stored data on the data centers [9]. Moreover, the
multi-tenancy nature of the cloud; which allow service providers to reconfigure re-
sources such as VMs to multiple customers, any misconfiguring to these VMs, does
not only affect the corresponding customers, but all the other customers running on
this host, as it gives the attacker an entry point to the host machine which result in
affecting the underlying platform [8]. In addition to that, since the shared resources
are separated virtually and not physically [10], this results in leaking of information
by having residual data and/or operations and so violates the confidentiality of the
data [11]. Another point is that, since these resources need to be allocated quickly to
meet a specific demand, the service providers does not share how these resources are
wiped before being reassigned [8].

In addition to the multitenancy and distributed nature, the service providers lack of
transparency in providing the customers with the security incidents and measures pose
a threat to its security. For example, they do not provide the customers with feedback
when a security incident is detected so as to maintain a reputation [12] or what are the
security measures they take in order to divert them or how the customer’s data are
protected during the investigation process [8].

Encryption is the obvious approach for protecting the data at rest. But what about
the cloud applications that uses these data to operate on them? Using traditional en-
cryption algorithms wouldn’t be feasible any more, as it would require the service

iJIM ‒ Vol. 11, No. 2, 2017 7

Paper—A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

providers to decrypt the data first which wouldn’t only subject it to confidentiality
risk, but integrity as well [6]. According to a survey done by The European Network
and Information Security Agency in [13], among the security risks that debilitate the
adoption of cloud computing is the absence of customer’s data auditing. As data au-
diting entitles the service providers to take the appropriate measures to ensure user’s
data security and gives the users the ability to verify that these measures are up and
running, i.e. it gives the users the transparency of how their data is being handled
[13].

2 Related Work

Since the emerging of cloud computing paradigm, and its data security and privacy
has been studied extensively since its one of its main concerns [14], and since tradi-
tional technologies for checking data integrity are no longer applicable for environ-
ments with remote data [15], a lot of schemes has been proposed to enhance cloud
security in terms of its data integrity. Ref. [16] published a Provable Data Possession
(PDP) scheme; that allow users to verify the service possession of the data without
having to retrieve it. The major drawback of this scheme is that it only deals with
static files [17]. However, this scheme was subsequently enhanced to support dynam-
ic files as published in [18], it did not fully support dynamic data operations such as
block modification, deletion and appending, as well as it had a limited number of
queries [17] [18] [19]. Although, the original and modified PDP schemes were further
extended by allowing insertion, modification and deletion of any blocks as in [20],
and to reduce the computational and communication complexity as in [17], they un-
fortunately have not yet found widespread acceptance in practice due to their compu-
tational and communications burdens. Furthermore, in [4] [2] another remarkable
scheme was published as an attempt to verify remote data integrity prior its retrieval
for large files. However, the authors of this scheme claims that extension into POR-
based assurances around data availability guarantees privacy and integrity of stored
documents, they notified that computation and communication are serious problems
preventing the practicality of POR system. Moreover, like PDP, it bounded the users
with limited number of queries. It also does not support dynamic files. Further im-
provements for the POR scheme described in [4] have been introduced in [21] by
providing full proofs of security against arbitrary adversaries. In the improved solu-
tion, the authors designed one scheme for public verifiability and another for private
verifiability [22]. However, the improved scheme is well designed, it lost its ad-
vantage as it stored part of the file and the authenticators on the service provider serv-
er which made the document protection not fully guaranteed against alterations. An-
other research for verifying remote data integrity by computing hash value for the
whole file was introduced in [23]. Regardless the benefits of using hash value for the
whole file, this scheme is not practical for large files since it requires exhaustive com-
putational time to compute and transfer the hash values [24].

In contrast to the above mentioned schemes, [3] proposed a threat model that
solves the data privacy issue in cloud computing and addressed the preservation of

8 http://www.i-jim.org

Paper—A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

data integrity by including digital signature techniques. With attention to what have
been introduced [3], [25] proposed a simple mechanism that tried to achieve both the
storage security and the user authenticity. This work is not more than a conceptual
framework without evidence of practicality. Moreover, [1] implemented a system for
cloud data security. Notwithstanding this work is based on well know and trusted
algorithms (blowfish and RSA), it couldn’t be considered a practical solution for the
problem of data integrity because it didn’t present neither a solid deployment nor
experimental results.

From what was previously discussed, we can conclude that all the schemes that
was proposed trying to solve the data integrity issue for remote data focused on static
files only; by ignoring the fact that users do not just access the file(s), but they can
also update them through different file operations such as insert, delete and modify.
Moreover, the few schemes that managed to handle dynamic files faced two prob-
lems. First, acceptance problem because of the computational and communication
overhead. Second, they limited the number of queries a client can apply on files.
Furthermore, the work previously done on data integrity in cloud computing didn’t
managed to ensure the aspect in question by simply tackling file content.

3 Conventional Data Integrity using Homomorphic Encryption
Algorithm

Since the customer lose the possession of the data’s storage and management to the
service provider, privacy and integrity of the data becomes a security issue that re-
quires proper handling. One of the highly recommended algorithms that was proposed
to handle these security issues is homomorphic encryption. It was proposed to allow
securing the privacy of data in transmission, storage and processing [26]. Homomor-
phic encryption is a special type of encryption that “enhance the security measures of
untrusted storage systems that stores and manipulate sensitive data” [27]. It gives the
ability to perform operations on encrypted data without having to decrypt them first
which in an architecture like cloud would be very effective, i.e. the user transmits the
encrypted data to the service provider for storage which guarantee the privacy and
confidentiality of the data during transmission and while resting in the cloud storage.
Moreover, since it applies the user operations while it is encrypted, it keeps the confi-
dentiality and privacy of the data intact during processing [27]. Any Homomorphic
schemes consists of four algorithms. Key generation, encryption, decryption and ho-
momorphic property [28]. Homomorphic property can be divided into two types,
additive and multiplicative. This property defines the type of operation it can perform
on the encrypted data. A lot of schemes has been developed in an attempt to reach a
scheme that is efficient, with low expansion rate and minimum computational cost.
One of these schemes was Paillier scheme.

iJIM ‒ Vol. 11, No. 2, 2017 9

Paper—A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

3.1 Homomorphic Encryption using Paillier’s Scheme

This scheme was introduced in 1999 as a probabilistic asymmetric algorithm for
public key additively homomorphic system [26]. This scheme made it as one of the
most popular additively cryptosystem, due to its: simplicity, performance, low cost of
the encryption process; because of the fact that it allows the encryption of many bits
in one operation, efficiency of the decryption process with a constant and low expan-
sion factor that is equals to 2, which is considered to be small compared to other
schemes. Moreover, in spite that this scheme falls under the umbrella of additively
cryptosystem, it also supported multiplication operation by a constant [29] [30] [31].

Key Generation:
Public key: compute the following:

 pqn = (1)

Where p and q are two large coprime numbers (i.e. GCD = 1) and the GCD is the
greatest common divisor that is generated using the following equation: [32].

1))1)(1(,(=!!= qppqGCD (2)

Private Key: compute the following:

! ! !"# ! ! ! ! ! ! ! ! !!! !!!
!"# !!!!!!!

 (3)

Where ! known as Carmichael’s function that is the LCM of all the numbers that
are less than or equals to n and are also coprime to n and LCM (least common multi-
ple) of two numbers [33].

Encryption:

! ! !!!!! !"#!!! (4)

Where !"#"$%, ! ! !!!
! and &"#"$%'.

Decryption:

! ! ! !!!!"#!!! ! !!!"#!! (5)

Where!! ! !!!
! , ! ! !!!

!
 and " is a multiplicative inverse that only exists if g is

valid and is computed as following:

! ! ! !! !"#!!! ! ! !"#!! (6)

10 http://www.i-jim.org

Paper—A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

3.2 Implementation of the Homomorphic Encryption Algorithm

A homomorphic encryption-based Cryptographic Agent is proposed. The proposed
Cryptographic Agent, is based on Paillier scheme for high encryption and decryption
efficiency, low expansion factor and supports multiplication operation by a constant.
In this agent, the service provider sends to the trusted third party requesting the gener-
ation of the public and private key pair. The third party simultaneously send the pub-
lic key to the cloud service provider and the public and private keys to the client.
Immediately after the client receive the key pair, (s)he uses the public key to encrypt
the document in question. The encrypted secured document is then sent through a
communication link to the cloud service provider data center for storage. When a user
requests to operate on the document, the service provider first authenticate this user.
In case of authorization, it retrieves the document in question from the data center and
passes it to the security scheme together with the public key to apply the user’s re-
quested operation on it. The resulted encrypted document is then simultaneously sent
back to the service provider data center for storing an updated version of the docu-
ment and the user, who by turn uses the corresponding private key to decrypt and
retrieve the resulted document. On the other hand, in case of unauthorized user, the
service provider denies and terminate the user request. Fig. 1 illustrate the system
architecture.

As it has been illustrated, the architecture consists of three different entities: Cloud
Client who is responsible for encrypting the document in question, upload it to the
service provider data center, request to operate on the document and finally decrypt-
ing the retrieved document; the cloud service provider who provide data storage ser-
vice for storing the user’s data, authentication process for the user requests, pro-
cessing the user’s query for operating on the document(s) and managing, securing and
controlling the transfer process of the document(s) to the user; trusted third party
responsible for generating and distributing the key pair.

Fig. 1. Cryptographic Agent System Architecture.

iJIM ‒ Vol. 11, No. 2, 2017 11

Paper—A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

3.3 Results and discussion

This agent was tested using text documents. We used 10 samples with different file
sizes ranging from 5 KB to 132 KB; as shown in the following table.

Table 1. TEST SAMPLES

Sample Number File size in KB
Sample 1 4
Sample 2 19
Sample 3 33
Sample 4 48
Sample 5 62
Sample 6 76
Sample 7 90
Sample 8 104
Sample 9 119
Sample 10 132

In choosing our test samples, we assumed that a document has a maximum of 30
lines; representing a page, and based on this assumption, we increased the document’s
size by increasing the number of lines and get the equivalent size in KB. We started
our test samples with a document that is made up of 60 lines (2 pages) and increased
the number of lines by 15. We then use the following equation to get the number of
lines for a specific element.

!! ! !" ! !! ! !!!", (7)

We used this equation to get the number of lines for elements 1, 10, 20, 30, 40 and
so on until getting 10 elements representing the 10 samples.

The testing methodology was as follows. First, we tested the homomorphic encryp-
tion algorithm and analyzed it in terms of the change in the file size before and after
the encryption and the time it took to encrypt the document. We then tested the de-
cryption process by comparing its processing time with respect to the encryption.
Moreover, we tested the efficiency of the scheme by testing how efficient the decryp-
tion process was in retrieving the original plaintext.

The test results show that as the document’s size increase, the resulted encrypted
document’s size increased significantly, i.e. as shown in the graph in fig. 2, when the
document was only 2 pages long and 4 KB in size, the resulted encrypted document
expanded to 73 KB and as this size increased to 90 KB and above, the encrypted doc-
ument’s size started to deviate to being greater than 1 MB. Moreover, the results also
illustrate that when the expansion rate was calculated for each sample using equation
8, it showed that the encrypted document is almost 12.4 times larger than the original
document.

!"#$%&'(%!!"#$! !"#$%&'!(!!"#$
!"#$#%&'!!"#$

 (8)

12 http://www.i-jim.org

Paper—A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

Fig. 2. Original vs Encrypted Document Size.

This means that, as illustrated with the dotted curve, the encrypted document size
would increase exponentially as we keep increasing the original file size. For exam-
ple, if we have a file that is 1 MB in size, the encrypted size would be approximately
12.4 MB which in an environment that deals with very large sized documents like the
cloud would not be practical.

The graph in Fig 3 shows that when the document reaches a size as inadequate as
132 KB, it took approximately 3 minutes to be encrypted. In addition, it shows that
the time would continue in increasing exponentially as the size increases as illustrated
by the dotted curve. This conclude that the time is directly dependent on the docu-
ment’s size; as when the size increase, the time taken to encrypt it increased as well.

The computation overhead of the decryption process as seen on Fig. 4, is similar to
the encryption, in the sense that; as the document size increased, the time taken to
decrypt it increased as well. For example, when the original document size was as
small as 132 KB and its encrypted version was almost 1.6 MB, the process to decrypt
such document took almost 4.6 minutes. The graph also shows that as the size of the
sample continue to increase, the processing time will exponentially increase as well;
as shown by the dotted curve.

iJIM ‒ Vol. 11, No. 2, 2017 13

Paper—A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

Fig. 3. Encryption Processing Time.

Fig. 4. Decryption Processing Time.

Fig. 5 illustrate the time take by each of the samples during the encryption and de-
cryption processes. The graph shows that the decryption process took more time than
the encryption. Moreover, it shows that even through the time for both processes
exponentially increase with the increase of the document’s size; represented by the
dotted and dashed curves for encryption and decryption respectively, the decryption
curve is higher than the encryption, with a ratio approximately equals to 1.4. Which
means that the decryption process would always take time greater than the encryption
by a factor of 1.4.

14 http://www.i-jim.org

Paper—A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

Fig. 5. Encryption vs Decryption Processing Time.

3.4 Paillier Security analysis

For asymmetric schemes, their security depend on the firmness of the mathematical
problem upon which the schemes are built. On one hand, some would argue that these
problems are hard to solve and the only way to break them, if there’s a prior
knowledge about the keys, which makes these schemes secure. On the other hand,
assessing the security level of these schemes regarding only the assumption that their
mathematical problem is hard to solve isn’t correct. This is because it is believed that
are other ways to break a system. For instant, having any knowledge about the cipher-
text can threaten the security of the scheme. Moreover, most of the schemes where
proven to be secure under a model called random oracle model; which is an idealized
model that tests the schemes under unrealistic assumptions, and so doesn’t fully as-
sess the scheme’s practicality [28]. Paillier scheme has proven security against indis-
tinguishable chosen plain text attack (IND-CPA). This type of security notion states
that; the ciphertext does not reveal any information about the plaintext other than its
length. This prove was done under the decisional composite residuosity (DCR) as-
sumption; which states that: it is computationally challenging to decide whether an
integer z is an n-residue modulo n2 or not, given that n is a composite integer. Moreo-
ver, due to the homomorphic property, this scheme is not protected against adaptive
chosen ciphertext attack (IND-CCA2) which is considered to be the highest level of
security for an encryption algorithm [32] [34].

iJIM ‒ Vol. 11, No. 2, 2017 15

Paper—A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

4 Modified Data Integrity Framework

The results and analysis presented in sections 3.3 and 3.4 showed that however
homomorphic encryption facilitates the idea of being able to operate on documents
while encrypted, its large expansion rate, high computational time and storage over-
head; especially for large sized documents, make the use of homomorphic encryption
in cloud environment impractical way for document’s privacy and integrity. These
problems are alleviated in the modified data integrity framework as it is discussed in
the following section.

The proposed security architecture adds two major autonomic security detective
agents to the multi agent architecture of cloud data storage. The first agent is the
Automated Master Agent (AMA), while the second agent is the Automated Detection
Agent (ADA). The earlier is responsible for extracting the document’s signature,
converting this signature to its equivalent QR code representation and finally conceal-
ing this QR code in the document. This happen through the Document Signature Ex-
traction and Hiding (DSEH) process; shown in Fig. 6, that consists of three coopera-
tive sequential sub-agents. These agents are; (1) Key Print (KP) Agent that is used for
extracting the ASCII pattern for any given document which employed to extract the
key print based on the document’s content. (2) QR Code Encoding (QRCEnc) Agent,
which receives the key print from the previous agent, preprocess it by applying three
logic operations, namely binary conversion, binary addition and hexadecimal conver-
sion, then it generates the corresponding encoded QR code. (3) Hiding Agent (HA)
which is used for concealing the generated QR code in any graphical placeholder or in
the document’s header.

Fig. 6. Document Signature Extractions and Hiding (DSEH) Process.

In this model as shown in Fig. 7, cloud client uploads the document that could be a
text, word or a Portable Document Format (PDF) file. The uploaded document then
goes through the Document Signature Extraction and Hiding (DSEH) process where

16 http://www.i-jim.org

Paper—A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

the document signature is extracted, converted to QR code that is simultaneously sent
to the third party, as an independent verifier, and hidden in the document itself in
either a graphical placeholder or its header. The resulted secured document is then
outsourced over the communication system to be stored on the cloud service provid-
er’s data center. When a user sends a request to retrieve a document the server author-
izes this user. In case of authorized user, the cloud server act accordingly by sending
the requested document to the third party, otherwise it sends a notification to the cli-
ent and deny the access to that document. When the third party receives the document,
it verifies its integrity. If verified it sends the requested document to the user, other-
wise it notifies the client and sends a log file to the service provider.

Fig. 7. Overall Modified System Architecture.

4.1 Key Print Agent

This agent works on generating digital signature for an uploaded document. The
signature depends on the content of the document which makes it distinctive by never
having two documents with the same signature. This agent starts by defining two 16 x
6 matrices Initial Matrix (IM) and Final Matrix (FM). IM is the first of the two matri-
ces defined by the Key Print Agent. It generates the 96 graphical codes which include
letters (upper and lower case), numbers and special characters. The FM, which is the
output of this agent, and the second of the two matrices that would be the input for the
QR Code Encoding Agent. When this matrix is first created, its cells are initialized
with a default string “NA” and its final state would be the document key print gener-
ated from its content. After creating these matrices, a hash table is then created. This
table have a <key, value> combination which represent each of the 96 codes as keys
and their corresponding position in the IM is regarded as the value associated with the
key.

After a document is uploaded, it is read in a line by line manner, where the Char-
acter Positions per Line (CPL) is extracted followed by the line number. The same

iJIM ‒ Vol. 11, No. 2, 2017 17

Paper—A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

process is repeated until reaching the end of the document. By then, a table with all
the characters in the document with its corresponding positions and line numbers are
represented. This table together with the hash table mentioned earlier are used to fill
the FM in the following manner: the extracted positions would be placed in the FM
based on the cell that corresponds to this character’s index as provided in the IM. This
index is represented by the row and the column numbers in the IM. For example, as
shown in Fig. 8 (which further clarifies this process of updating the Final Matrix) in
the hash table the position of character ‘a’ in the IM is in row number 1 and column
number 4, so when placing the CPL of this character in the FM, it would be placed in
row number 1 and column number 4.

Fig. 8. Process of Filling FM

In the CPL representation, a line separator is used in order to distinguish between
the positions and the line number. The separator is assigned a constant value; charac-
ter (0) which is the decimal representation of “null”. Fig. 9 shows an example where
the first two numbers represent a Character’s Positions, followed by the separator and
then the line number.

Fig. 9. Character per Line (CPL.)

18 http://www.i-jim.org

Paper—A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

4.2 QR Code Encoding (QRCEnc) Agent

This agent takes the FM coming from the previous agent as an input and generates
the corresponding QR code. This agent goes through the FM and for each cell three
operations are applied prior to the generation of the QR code. The three operations are
shown with example in Fig. 10

Fig. 10. QR Code Agent Operations.

And are as follows:
Operation 1: for each cell in the FM, it converts the numbers representing the CPL

to its equivalent in binary format. When a cell has “NA” it is ignored as it signifies
that this graphical code was not found in the content of the document.

Operation 2: the resulting binary equivalents are added where each cell is now
represented by only one binary number, which is the result of the addition.

Operation 3: The final binary resultant is then converted to its equivalent hex for-
mat, and is then appended in a string with the output of the other cells.

Fig. 11 shows the output of operation 3 which is the final hex string representing
the document’s signature and its equivalent generated QR code.

Fig. 11. Hex string and its corresponding QR Code.

4.3 Results and discussions

The proposed modified model was tested using two sets of documents. The first set
was the previously mentioned samples in Table 1. While the second set was additional
11 samples of different file type and size; in terms of number of characters per docu-
ment and the number of lines, shown in Table 2.

iJIM ‒ Vol. 11, No. 2, 2017 19

Paper—A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

Table 2. Automated Master Agent (AMA) Specific Samples.

File Type Number of characters Number of line Sample Number

Text file

4800 15 Sample 1
15600 51 Sample 2

123600 678 Sample 3
1203600 7480 Sample 4

Word Document

4800 60 Sample 5
15600 195 Sample 6

123600 1545 Sample 7
1203600 15045 Sample 8

Pdf
4800 47 Sample 9

15600 156 Sample 10
123600 1211 Sample 11

Two aspects were targeted from this test. First was the verification of the QRCEnc

Agent and second was the validation of the same agent in terms of the processing
time, compared to the Cryptographic Agent.

The test results shows that, the system was successful in generating the QR code
for all the test samples of both sets. It showed that the model was able to generate key
print, even when the size of the document reached 1,203,600 characters and 15045
lines (Sample 8). Fig. 12 shows the output for samples 1, 5 and 10 of the second set.

Fig. 12. Samples of generated QR code.

Moreover, the results also showed that the time taken to extract the key print for
the samples in Table. 1 was inadequate compared to the results of the Cryptographic
Agent as shown in Fig. 13. For example, sample 10 in the Cryptographic Agent took
almost 3 minutes to be encrypted, while with the AMA, it only took 0.02 minutes for
a key print to be generated and converted to its corresponding QR code.

20 http://www.i-jim.org

Paper—A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

Fig. 13. Automated Master Agent (AMA) processing time.

5 Conclusion

The results of both models conclude that, for the Cryptographic Agent, due to the
use of large key size (which was 2048 bits), we ended up having an expansion rate
that is approximately equals to 12.4; which when dealing with very large size docu-
ments, like the ones used in a cloud environment, would end having very large en-
crypted documents that would require a lot of computational time, to either operate or
decrypt them (which was proven by the results). On the other hand, the AMA proved
superiority in extracting the KP of large and very large documents and the time it
required to do so was very small compared to the results of the Cryptographic Agent.

6 References

[1] Rani, D. and Ranjan, R. (2014). Enhance data security of private cloud using encryption
scheme with RBAC. International Journal of Advanced Research in Computer and Com-
munication Engineering, 3(6), pp.7330-7337.

[2] Itkar, S. and Raut, V. (2014). A Survey on Data Integrity of Cloud Storage in Cloud Com-
puting. International Journal of Advance Foundation and Research in Computer, 1(2),
pp.58-65.

[3] Attas, D. and Batrafi, O. (2011). Efficient Integrity Checking Technique for Securing Cli-
ent Data in Cloud Computing. International Journal of Electrical & Computer Sciences,
11(5), pp.14-45.

[4] Juels, A. and Kalishki, B. (2007). PORs: Proofs of Retrievability for Large Files. In: 14th
ACM Conference on Computer and Communications Security. ACM.

[5] Gellman, R. (2009). Privacy in the Clouds: Risks to Privacy and Confidentiality from
Cloud Computing. [online] World Privacy Forum. Available at: http://gato-
docs.its.txstate.edu/vpit-security/policies/WPF_Cloud_Privacy_Report.pdf.

[6] Mather, T., Kumaraswamy, S. and Latif, S. (2009). Cloud security and privacy. Beijing:
O'Reilly.

iJIM ‒ Vol. 11, No. 2, 2017 21

Paper—A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

[7] Wei, L., Zhu, H., Cao, Z., Dong, X., Jia, W., Chen, Y. and Vasilakos, A. (2014). Security
and privacy for storage and computation in cloud computing. Information Sciences, 258,
pp.371-386. https://doi.org/10.1016/j.ins.2013.04.028

[8] Pearson, S. and Yee, G. (2013). Privacy and security for cloud computing. London:
Springer. https://doi.org/10.1007/978-1-4471-4189-1

[9] Goyal, R. and Sidhu, N. (2014). Third Party Auditor: An Integrity Checking Technique for
Client Data Security in Cloud Computing. International Journal of Computer Science and
Information Technologies, 5(3), pp.4526-4530.

[10] Youssef, A. and Alageel, M. (2012). A Framework for Secure Cloud Computing. Interna-
tional Journal of Computer Science, 9(4), pp.487-500.

[11] Cloud Security Alliance, (2011). Security Guidance for Critical Areas of Focus in Cloud
Computing. V 3.0. Orlando, FL: Cloud Security Alliance.

[12] Wang, C., Chow, S., Wang, Q., Ren, K. and Lou, W. (2013). Privacy-Preserving Public
Auditing for Secure Cloud Storage. IEEE Transactions on Computers, 62(2), pp.362-375.
https://doi.org/10.1109/TC.2011.245

[13] Rasheed, H. (2014). Data and infrastructure security auditing in cloud computing environ-
ments. International Journal of Information Management, 34(3), pp.364-368.
https://doi.org/10.1016/j.ijinfomgt.2013.11.002

[14] Liu, C., Ranjan, R., Yang, C., Zhang, X., Wang, L. and Chen, J. (2015). MuR-DPA: Top-
Down Levelled Multi-Replica Merkle Hash Tree Based Secure Public Auditing for Dy-
namic Big Data Storage on Cloud. IEEE Transactions on Computers, 64(9), pp.2609-2622.
https://doi.org/10.1109/TC.2014.2375190

[15] Yu, Y., Au, M., Mu, Y., Tang, S., Ren, J., Susilo, W. and Dong, L. (2014). Enhanced pri-
vacy of a remote data integrity-checking protocol for secure cloud storage. International
Journal of Information Security, 14(4), pp.307-318. https://doi.org/10.1007/s10207-014-
0263-8

[16] Ateniese, G., Burns, R., Herring, J., Kissner, L. and Song, D. (2007). Provable Data Pos-
session at Untrusted Stores. In: ACM Conference on Computer and Communications Secu-
rity.

[17] Khalkar, R. and Patil, S. (2013). Data Integrity Proof Techniques in Cloud Storage. Inter-
national Journal of Computer Engineering & Technology, 4(2), pp.454-458.

[18] Ateniese, G., Pietro, R., Mancini, L. and Tsudik, G. (2008). Scalable and Efficient Prova-
ble Data Possession. In: 4th International Conference on Security and Privacy in Commu-
nication Netowrks.

[19] Wang, Q., Wang, C., Ren, K., Lou, W. and Li, J. (2011). Enabling Public Auditability and
Data Dynamics for Storage Security in Cloud Computing. IEEE Trans. Parallel Distrib.
Syst., 22(5), pp.847-859. https://doi.org/10.1109/TPDS.2010.183

[20] Erway, C., Papamanthou, C. and Tamassia, R. (2009). Dynamic Provable Data Possession.
In: 16th ACM Conference on Computer and Communication Security. ACM, pp.213-222.
https://doi.org/10.1145/1653662.1653688

[21] Shacham, H. and Waters, B. (2008). Compact Proofs of Retrievability. In: 14th Interna-
tional Conference Theory and Application of Cryptology and Information Security: Ad-
vances in Cryptology. Berlin Heidelberg: Springer, pp.90-107. https://doi.org/10.1007/978-
3-540-89255-7_7

[22] Boneh, D., Lynn, B. and Shacham, H. (2004). Short Signatures from the Weil Pairing.
Journal of Cryptology, 17(4). https://doi.org/10.1007/s00145-004-0314-9

[23] Deswarte, Y., Quisquater, J. and Saïdane, A. (2004). Remote Integrity Checking. In: Integ-
rity and Internal Control in Information Systems VI, 1st ed. Berlin, Germany: Springer US,
pp.1-11. https://doi.org/10.1007/1-4020-7901-x_1

22 http://www.i-jim.org

Paper—A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

[24] Al-Saiyd, N. and Sail, S. (2013). Data Integrity in Cloud Computing Security. Journal of
Theoretical and Applied Information Technology, 58(3), pp.571-581.

[25] Wadhwa, A. and Gupta, V. (2014). Framework for User Authenticity and Access Control
Security over a Cloud. International Journal on Computer Science and Engineering, 6(4),
pp.138-141.

[26] Sharma, I. (2013). Fully Homomorphic Encryption Scheme with Symmetric Keys. Post-
graduate. University College of Engineering.

[27] Chakraborty, N. (2013). Cloud Security Using Homomorphihc Encryption. In: National
Conference on Advances in Computing, Networking and Security. Excel India Publishers,
pp.112-115.

[28] Sen, J. (2013). Homomorphic Encryption: Theory & Application. In: Theory and Practice
of Cryptography and Network Security Protocols and Technologies, 1st ed. InTech, pp.1-
31. https://doi.org/10.5772/56687

[29] Fontaine, C. and Galand, F. (2007). A Survey of Homomorphic Encryption for Nonspe-
cialists. EURASIP Journal on Information Security, 2007, pp.1-10.
https://doi.org/10.1155/2007/13801

[30] Maimut, D., Patrascu, A. and Simion, E. (2012). Homomorphic Encryption Schemes and
Applications for a Secure Digital World. Journal of Mobile, Embedded and Distributed
Systems, 4(4), pp.224-232.

[31] Damgard, I. and Jurik, M. (2000). A Generalisation, a Simplification and some Applica-
tions of Paillier’s Probabilistic Public-Key System. Aarhus, Denmark: Basic Research in
Computer Science, Department of Computer Science, University of Aarhus.

[32] Yi, X., Paulet, R. and Bertino, E. (2014). Homomorphic encryption and applications.
Cham [etc.]: Springer. https://doi.org/10.1007/978-3-319-12229-8

[33] Choinyambuu, S. (2009). Homomorphic Tallying with Paillier Cryptosystem. Rapperswil-
Jona: University of Applied Sciences Rapperswil (HSR), pp.1-10.

[34] Galindo, D., Martin, S., Morillo, P. and Villar, J. (2002). An efficient semantically secure
elliptic curve cryptosystem based on KMOV. [online] Cryptology ePrint Archieve. Availa-
ble at: https://eprint.iacr.org/2002/037.pdf.

7 Authors

Basma Hathout, Samy Ghoniemy, and Osman Ibrahim are with The British
University in Egypt, El Shorouk City, Cairo, Egypt (basma.hathout@bue.edu.eg).

This article is a revised version of a paper presented at the BUE International Conference on Sustainable
Vital Technologies in Engineering and Informatics, held Nov 07, 2016 - Nov 09, 2016 , in Cairo, Egypt.
Article submitted 19 December 2016. Published as resubmitted by the authors 03 February 2017.

iJIM ‒ Vol. 11, No. 2, 2017 23

	iJIM – Vol. 11, No. 2, 2017
	A Modified Cloud-Based Cryptographic Agent for Cloud Data Integrity

