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Abstract—This paper presents methodology for user identification on 
smartphone and mini-tablet using finger based gestures. In this paper, a set of 
four features, namely Signature Precision (SP), Finger Pressure (FP), Move-
ment Time (MT), and Speed were extracted from each gesture of eight using 
dynamic time warping and Euclidean distance. The features are then used indi-
vidually and combined for the purpose of user identification based on the Eu-
clidean distance and the k-nearest neighbour classifier. We concluded that the 
best identification accuracy results from the combinations of FP and MT fea-
tures where 78.46% and 78.33% were achieved on small smartphone and Mini-
tablet respectively using a dataset of 50 users. 

Keywords—User identification, user identification on smartphone, security on 
smartphone, Dynamic time warping, gesture based finger on smartphone. 

1 Introduction  

The popularity of smartphones devices make them a frequent storage medium for 
the users sensitive information such as personal photos, email, credit card numbers, 
and banking passwords. As smartphone devices are easily lost or stolen, the problem 
of securing the user access to this data considers one of paramount importance [1]. 

Unlock screens using text based password, graphical based password, or grid based 
schemes are most current access systems prompt users to authenticate themselves. 
This authentication method relies on the password’s/username’s secrecy. If this secre-
cy is not breached, the assertion is that these tokens uniquely identify a valid user. 
The problems of user authentication associated with maintaining password secrecy 
are well understood. Passwords that consist of common words, or terms associated 
with a particular user are generally considered weak because of the relative ease with 
which a malicious users can guess them [2]. 

The need for strong authentication is influenced by the input methodology of 
touchscreen devices and the different expectations of user for interaction models [1]. 
As shown in a study [3] over 3.3 million leaked passwords, number of their list was 
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still “123456”. Moreover, the additional cost makes biometric authentication tech-
niques to be still unpopular on mobile devices [1]. 

The main motivation of finger based gestures on smartphone and tablet for user 
identification is preventing a malicious users from breaching the unlock screen of 
smartphone devices. As mentioned early, users prefer using text based password, 
graphical based password, and grid based schemes because of it is easy to remember. 
The need to enhance the authentication users on smartphones is required in order to 
make the illegal user access on smartphones impossible; because of this required we 
examined finger based features on smartphone and tablet for user identification. Our 
study relay on the users attributes and behaviours on touchscreen, so breaching un-
lock screen will not be easy even if the password also was stolen. In our study, the 
features were analysed individually features, combined of two features, and combined 
of three features to increase the accuracy. 

In the results, we concluded that the best identification accuracy results were from 
the combinations of FP and MT features where 78.46% and 78.33% were achieved on 
small smartphone and Mini-tablet respectively using a dataset of 50 users. However, 
not all features help increasing identification power. 

The contributions of this work can be highlighted as follows. First, we use widely 
available consumer devices in our experiments. Secondly, our experimental procedure 
was designed differently to previous studies; the required gesture remained displayed 
on the screen as a guide whilst the participant executes the gesture. Thirdly, the way 
on how we analysed data is different from previous studies, as Dynamic Time Warp-
ing algorithm was used to calculate distances between the optimal path of a gesture 
and the executed one considering all points along the trajectory of the gesture to pro-
duce a signature precision. As well as the three aspect of analysis for individually, 
combined of two features, combined of three features were considered in this study. 

The rest of this paper is organized as follows. Section 2 discussed the related work 
on which we prepared our study. Section 3 explained the analysis of our experimental 
results. The data collection processes are described in Section 4. The experimental 
results are explained in Section 5. As well as the final conclusions are presented in 
section 6. 

2 Related Work 

The need for finger based gestures on smartphones for user identification is in-
creasing day by day because text or graphical based passwords and grid based 
schemes are easy to recall and stolen from a malicious users. Finger based gestures on 
smartphones for user identification has greater potential to provide a more dynamic 
movement for users on screen for using some a specific features (e.g. SP, FP) than 
other used in text based passwords. Many researchers are working on the concept of 
user identification using finger based gesture; some of them also introduced new ideas 
to provide more secure approach related to text or signature passwords. One of the 
studies that examined finger based gesture for user identification was conducted by 
[1]. The researchers Tao Feng and Nguyen in [1] use touch data collected from 40 
users based on sensor gloves in order to collect information of finger movement for 
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six types of gestures: down to up swipe, up to down swipe, left to right swipe, right to 
left swipe, zooming, and zoom-out. The two features used in the study are: the length 
of touch input sequences and the authentication threshold (i.e., number of accepted 
touch inputs during one sequence). Their results showed that 4.66% a false accept rate 
and 0.13% a false reject rate. 

Early researches, the examining focused on the possibility of applying keystroke 
dynamics and typing patterns for user identification. Keystrokes were used as samples 
by intercepting output from a keyboard [1]. But Mäntyjärvi, et al. in [4] examined 
identifying people by their gait using accelerometers worn. Also, the researchers in 
[5] and [6] examined user identification using gait recognition. The researchers Ko-
reman, et al. in [7] proposed a multi-modal biometric for user identification.  

Some of the researchers’ efforts were put on a graphical authentication approaches 
that use the doodles for user authentication. The researchers Jermyn, et al. in [8] pro-
posed and evaluated graphical password schemes that exploit features of graphical 
input displays to achieve better security than text based passwords. Furthermore, 
doodles method was proposed by [9] rather than signatures. Several methods were 
investigated to confirm the identity of the doodle; distribution grid, speed, point vari-
ance across the distribution grid, and a combination of all the above. The analysis 
showed that the combined three features of the system yields extremely accurate re-
sults. There have been a number of studies on combining multiple biometric inputs to 
produce user identification results. The researchers Indovina, et al. in [10]examined a 
biometric integration of fingerprint and face biometrics on a population of 1000 users. 
The biometric integration can occur on the feature level, or the score level. In feature 
level integration, all of the initial features are grouped together into a one feature 
vector. Their work showed that multimodal fingerprint and face biometric systems 
achieved significant accuracy gains over any biometric alone. 

Grid technique based schemes are also examined in the body of the literature 
which uses recall method. This technique allows a user draws the password on a 2D 
grid, and then the information of an occupied grid (e.g. coordinates) will be recorded. 
The user will be authenticated when drawing touches the grid in the same order. In 
order to enter the password correctly and distinguishable, the drawing must be suffi-
ciently away from the grid lines and intersections [1] and [8]. 

A signature using a mouse approach for an authentication user was conducted [11]. 
The advantage of using a mouse to draw a signature is that the signatures are hard to 
fake. It can therefore be hard to drawn, as not everybody is familiar with using mouse 
as a writing device [12]. A graphical authentication scheme was also conducted in 
[13], in that a set of pictures are presented on the interface, where some of these pic-
tures are taken from the user’s portfolio, and some pictures are selected randomly. 
During registration, the user should select some number of pictures from a set of 
random pictures. For successful authentication, the pictures must be correctly selected 
amongst the distracters by the users. 

There were number of studies conducted for user’ identification using a stylus de-
vice. The researchers Orozco, et al. in [14] examined users’ haptic characteristics for 
4 users. The results showed that the probability of verification reached up to 78.8% 
with 25% false acceptance rate. The researchers (Alsulaiman, et al. in [15] examined 
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user identification for 16 users based on handwritten signatures and haptic infor-
mation such as velocity and angular rotation gathered during the creation of the user’s 
handwritten signature and the consistency in the user’s behaviour. The users were 
identified at an average success rate of 81%. 

Some the latest studies were conducted for authentication users to unlock interfac-
es on smartphones using gestures. The researchers Xu, et al. in [16] examined an 
authentication biometrics for 32 users on slide, pinch, handwriting, and finger based 
keystroke that involves a series of taps on the soft; on-screen keyboard. A classifica-
tion algorithm of Support Vector Machine (SVM) was used in the analysis. The re-
searchers considered the data of the position, pressure, and size of a touch, as well as 
a timestamp in order to calculate the accuracy and error rate as two straightforward 
metrics. They concluded in their study that touch operation can be a form of good 
biometrics. And they found that there is still room for the accuracy to reach up to 
100%, and it is a promising solution to consider a join of a set of touch operations for 
making an authentication decision rather than using one at a time. This indicates a 
need for further research to make touch-based authentication a practical solution. 
Another study proposed gestures and algorithms (using Support Vector Distribution 
Estimation (SVDE)) as classifier to model multiple behaviours of a user in perform-
ing each gesture. The study used seven types of features: velocity magnitude, device 
acceleration, stroke time, inter-stroke time, stroke displacement magnitude, stroke 
displacement direction, and velocity direction. The feature values were extracted 
based on sub-strokes and strokes for some features. The total data collected is 15009 
gesture samples from 50 users. Experimental results showed that their scheme 
achieves an average equal error rate of 0.5% with 3 gestures using only 25 training 
samples [17]. In what follows, we will discuss the processes on how the data was 
analysed considering the algorithms used in this study. 

3 User Identification Processes 

Following to the analysis conducted based on Dynamic Time Warping (DTW) in 
study ( [18]: section 6.2), the same users (i.e. 50 users), and feature (i.e. SP, FP, MT, 
and Speed) were involved in this paper. As each user has six samples of performing 
eight different gestures on smartphones; where 26 users were involved in small 
smartphone, and 24 users were involved in mini-tablet.  

After extracting data using DTW and ED in the study [18], then we arranged them 
into two parts: testing dataset and training dataset (Reference). On small smartphone 
the testing dataset consists of (130) samples, and the training dataset consists of (26) 
samples. On mini-tablet the testing dataset consists of (120) samples, and the training 
dataset consists of (24) samples.  

Fig. 1 below shows set of numbered processes used in user identification study on 
each smartphone device, as follows: 1. Feature Extraction. After collecting data were 
entered into set of analysis processes to produce SP using DTW, Speed using ED, 
MT, and FP. This part one in the Fig. 1 was prepared in the study ( [18]: Section 6.2). 
2. Part two of Fig. 1 reviews user identification processes in three subsections. 2.1. 
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Training. One trial of six was used in the training dataset for each user across eight 
gestures; as each feature has eight different gestures, and this will be 32 if the four 
features were combined (SP, FP, MT, and Speed) and so on, as shown in Fig. 2 that 
shows feature factor of all trials we collected on smartphones for study’s features in 
the training and testing datasets. The matrix D [8 x N] in the Fig. 1 represents training 
dataset for 1 feature, where 1 feature (8 gestures) and N users. 2.2. Testing. The re-
maining five trails of six for each user are in the matrix M [8 x Z] and considered to 
be testing section, where 1 feature (8 gestures) and Z is (number of users * 5 trials of 
each user). 2.3. User identification. Based on using the ED between the matrices M [8 
x Z] and D [8 x N], and KNN used to compare the trail in M [8 x Z] to which exem-
plar in D [8 x N] is the user belong to. We will discuss the eight gestures that were 
collected from the 50 users in the next section. 

 
Fig. 1. Users identification process. 

 
Fig. 2. Feature factor for all trials (i.e. G: gesture and F: feature). 

 
Fig. 3. Eight Gesture Applications. 

iJIM ‒ Vol. 11, No. 1, 2017 137



Paper—The Effectiveness of Dynamic Features of Finger Based Gestures on Smartphones’ Touchscreens 
for User Identification 

 
 

 
Fig. 4. Features individually 

 
Fig. 5. Two features combination results. 

 
Fig. 6. Three features combination and all features results. 
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4 Data Set And Experimental Protocol 

The dataset consists of 50 participants where each participant was asked to repeat 
eight different gestures for six times producing a total of 48 trials per participant. 
Therefore, the total number of trials collected is2400, which increases to 9600 when 
implemented the combination of four features. The Gesture Applications used in the 
research were illustrated earlier in Section 4.8 of the study [18]. 

This research includes eight gestures (i.e., circle to right, circle to left, triangle to 
right, triangle to left, arrow down, arrow left, arrow right, and arrow up) as shown in 
Fig. 3 Each user was asked to trace gestures for each of the two circles and two trian-
gles from the centre of the box (start point) through the middle of the path to the cen-
tre of the same box (start and the end points of the triangle and circle are represented 
by the same box). With regard to the remaining four gestures (i.e., arrow down, arrow 
left, arrow right, and arrow up), the start and the end points of the gestures were rep-
resented by two boxes. In all gestures, an arrow was used as a guide to indicate the 
direction of the gesture. Following the instruction of [19], the participants were asked 
to trace the complete gestures as quickly and accurately as possible. In what follows, 
the results of this study will be discussed considering the user identification accuracy 
and performance variations across different users. 

5 Results And Discussions 

In this study, accuracy of user identification on individually features, combined of 
two features, and combined of three features were considered, as follows: 

5.1 Accuracy of User Identification on Individually Features  

 Our results were analysed individually, and in combined features. In individually 
features, Fig. 4 below shows FP on both smartphones has high accuracy result 
60.77% and 73.33% on small smartphone and mini-tablet respectively compared to 
other individually features. This indicates that this feature (i.e. FP) could be used 
largely to provide stronger results accuracy. Then, the second high accuracy can be 
MT or speed. We will investigate which one of features (MT or speed) can provide 
high accuracy result in the next paragraph (combined of two features).  

The results also show that SP has the least discrimination power, which can be 
mainly due to the small samples were used in the training dataset, as this feature de-
pend on how accurately the user can perform the gesture. If partly, the gesture is not 
performed correctly, the SP will decrease the accuracy. 

5.2 Accuracy of User Identification on Two Features Combination 

In term of combined of two features i.e. feature-level fusion, Fig. 5 shows the re-
sults on both smartphones for two features combination: FP and MT have high accu-
racy result compared to other combined of two features, where on small smartphone 
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is 78.46% and on mini-tablet is 78.33%. This is for the high influence of features (e.g. 
FP) on results than any other influences (e.g. screen sizes). The second high accuracy 
result on two features combinations are FP and Speed. The results prove that the FP 
has increased the influence also on accuracy for the two features except FP and SP for 
the lower accuracy results, this is because The SP has influenced negatively on the 
accuracy as mentioned early in the individually features section regarding the SP 
influence. 

This indicates that the combined features have high accuracy results compared to 
the individually features, and this provides evidence that the combination can enhance 
the accuracy results, this is agree with the study [18] in the field of the combination 
influence on the accuracy results. 

5.3 Accuracy of User Identification on Three Features Combination 

In term of combined of three features and all, Fig. 6 shows the accuracy results for 
all features have high accuracy result compared to other combined of three features, 
where on small smartphone is 57.69% and on mini-tablet is 64.17%.  

Adding the feature Speed to (FP and MT) has not enhanced the identification accu-
racy results. In fact, it had negative impact due to the level of noise introduced as a 
result of adding the feature. However, we found the combined of two features have 
high accuracy result compared to the individually, the combined of three features and 
all features as well. Not all features help increasing the identification power. 

To the best of our knowledge we have not came across a study conducted for bio-
metric identification on smartphones using eight different gestures, the way on how 
we analysed the data using DTW and ED algorithms to calculate the accuracy and 
speed in order to prepare the features to the user identification processes, as well as 
the way on how we combined features to enhance the accuracy that were not consid-
ered in the previous studies. 

6 Conclusion And Future Work 

This paper presents methodology for user identification on smartphone and mini-
tablet using finger based gestures, which improves user identification. The individual-
ly, combined of two features, and combined of three features were considered in this 
paper to verify the user. After extracting the gestures trails from users, the trials then 
compared with trusted user values using ED and KNN. 

The results provide evidence that the combined features can enhance the accuracy 
results, where not all feature help increasing identification power and some of fea-
tures has high accuracy result influence such as FP. Using minimal number of sam-
ples in the training dataset led to decreasing the identification accuracy when SP was 
fused with other features. 

In the future work, we are planning to consider the combined features based on the 
percentage of power discrimination of users improve the user identification accuracy. 
Also, we are going to conduct the same study using image processing. 
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