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Abstract—This paper proposes a new obstacle avoidance method for finding 
an optimal path passing through wide free space based on the optimized MAX-
MIN Ant System (MMAS) algorithm in dynamic environments. The proposed 
improvement of the MMAS algorithm occurs in two stages. The first stage anal-
yses the environment with two modifications by proposing a new relation of 
pheromone trail updating to construct the consequence modified (deposited) 
pheromone trail update in each iteration based on adding a new parameter (clean) 
to calculate the possible wide empty locations. Another alteration at this level 
involves checking and identifying the four horizontal and vertical states. Suppose 
the two nodes on either side of the four diagonal nodes are barriers in the next 
neighbor locations. In that case, the Tight Tunnel state is then attained, and it is 
managed by sealing this location to prevent passing through it before the robot 
movement stage. Another alteration is made to the robot-moving stage by recom-
mending a new relation of tour building probabilities to determine the best option 
for moving the robot from the start node through a dynamic environment that 
incorporates dynamic obstacles moving through free space by locating and ex-
hibiting the ideal path via broad free space. The main outcome of the experiment 
simulation of the new method involves that the robot avoids going through nar-
row tunnels and chooses the best course through open areas to reach its destina-
tion without running into any impediments in various dynamic environments 
conditions. In addition, the comparison of average time occupied to find the paths 
by the new method reduces to 54.32% as compared with that required with the 
method of hybrid the basic D* algorithm with the Lbest PSO algorithm, and to 
11.95% in comparison to the time occupied recorded when applying the method 
of the improved MAX–MIN ACO algorithm. 

Keywords—Max-Min ACO algorithm, mobile robot path planning, obstacle 
avoidance method, and dynamic environment 

1 Introduction 

One of the main attentions of the mobile robot is path planning nowadays. So must 
propose a path planning optimization method to calculate the best collision-free path 
from source to destination by avoiding static and dynamic obstacles. Off-line (global) 
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route planning is the process of determining a path when all of the environment's de-
tails, including the location of static obstacles and the robots' motion direction, are pre-
viously known. However, when the surroundings are unknown, the robot will move 
based on sensors that gather and transmit data as it saunters through the area. Online 
(local) route planning is the term used in this situation. Initially, online path planning 
operates in an offline form; however, after learning about fresh modifications to barrier 
circumstances, it switches to an online one [1, 2]. To improve path planning, the proper 
optimization method must be used [3-5]. Therefore, researchers have proposed many 
path planning methods concerning this problem, including the grid method [6], D* al-
gorithm [7], and some intelligent methods, like particle swarm optimization (PSO) [8], 
Ant Colony Optimization (ACO) [9], artificial bee colony (ABC) [10], and Glowworm 
Swarm Optimization (GOS) [11]. To find safe ways with minimal energy consumption, 
Mansoor Davoodi et al. [12] proposed two multi-objective planning models. These 
models addressed the problem of two five- and three-objective optimization path plans 
with five goals and three goals. Each of them is useful because it allows you to deter-
mine the maximum error in your robot's sensors and actuators. In addition, they intro-
duced a multi-target genetic algorithm for problem-solving and efficient exploration 
and development, and we suggested a group of engineering way refinery operators, 
which are very helpful in their demanding jobs. Finally, on a variety of workspaces, 
they evaluated the algorithms and models and contrasted them with the Pareto Evolu-
tionary Algorithm 2 and multi-objective particle swarm optimization. According to [9, 
13], a new robotic path planning in dynamic environments was present in a variety of 
complicated environment maps, it locates the closest and most effective path. Further-
more, the combination of optimization algorithms like hybrid MMAS with D* may 
obtain the best performance results. The improvement of MMSA algorithm to find the 
convergence solution by the equilibrium of the important characteristics represented in 
choosing the values α and β with the start (nest) and goal (food) locations and the num-
ber of static obstacles that have different shapes and sizes and are distributed randomly 
over the environment in order to determine a local robotic (ant) path. Jiang Zhao et al. 
[14] established a theoretical foundation for the enhanced ant colony algorithm by a 
precise mathematical derivation for the omnidirectional mobile vehicle's path planning. 
By enhancing the original pheromone's non-uniform distribution and the selection ap-
proach with direction, they significantly aid in the route search. In order to minimize 
repetitive searches and lessen the effect of ant numbers on algorithm performance, they 
implemented pheromone coverage and an updating technique. Furthermore, the con-
vergence speed and searchability may be successfully balanced by splitting and chang-
ing the pheromone evaporation coefficient. Ali Hadi Hasan and Akmam Majid Mosa 
[15] Presented a technique to determine the best course for competitive and centralized 
multi-robots operating in the same dynamic environment. These robots are capable of 
starting at several places and going to the same destination. In order to create a trail of 
the modified (deposited) pheromone that is updated with each iteration, this approach 
combined the MAX-MIN ACO algorithm's pheromone trail updating with D* algo-
rithm methods. The robots found and displayed the optimum route for each robot in the 
dynamic environment, which incorporates dynamic obstacles traveling cross open 
space. This was done using tour construction probabilities. The simulation of the ex-
perimental results showed that the robots compete with one another to reach their goals 
without running into obstacles or other robots, and they do it by finding the best path 
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with the fewest iterations and the lowest overall arc cost. In [16], addressing the issue 
of robot route planning in a static environment, a developed algorithm named (Tis) 
based on free parts and a turning point approach was presented. Their method targets 
two distinct objectives: the first is path integrity and length, and the second is to provide 
a reliable control code called Slip Mode Regulate to control the stability of a mobile, 
autonomous robot to trace the intended path. Researchers assert that the created tech-
nique is a good alternative to finding the right path and demonstrating the effectiveness 
of the suggested control code for reliable tracking of the mobile robot based on simu-
lation results that have come to light. Employing the traits of the A algorithm and MAX-
MIN Ant system. Xiaolin Dai et al. [17] suggested an improved ant colony algorithm. 
Furthermore, to increase search efficiency and path smoothness, the estimated function 
of the enhanced A algorithm is employed as a heuristic function. By presenting a new 
weighted adjacency matrix to identify the walking direction and rethinking the walking 
rules. Hong-Jun Wang et al. [18] proposed an improved ant colony algorithm for path 
planning. However, they claim that the present ant colony algorithms still have flaws, 
such as an inability to handle workspaces with narrow aisles and a significant amount 
of calculation. Zhen Yang et al. [19] suggested a bidirectional alternating jump point 
search to handle the path planning problem for dispersed multiple robots in dynamic 
situations. A* BAJPSA* algorithm works in two phases using an adaptive dynamic 
window approach. In the initial step, they used the BAJPSA* algorithm to plan each 
robot's globally optimum path, and simulation results showed how successful 
BAJPSA* is at planning global paths. Then, they executed the local path planning in 
the second step. The adaptive navigation method and route deviation assessment func-
tion are presented to improve the path-tracking skills of the standard DWA. They then 
split into groups, examined a number of unknown static and dynamic obstacle environ-
ments with motion conflict scenarios, and proposed dynamic obstacle avoidance rules 
for a single robot. After reviewing various motion conflict scenarios, combine the pri-
oritized avoidance processes to accomplish cooperative multi-robot avoidance by ex-
panding the single-robot to distributed multi-robot with decision rights. The simulation 
results demonstrate how effectively this algorithm plans multi-robot paths in unknown 
dynamic situations. The problem in this paper can be defined in terms of constructing 
a new obstacle avoidance method by finding an optimal path passing through wide free 
space (i.e. not to pass near and in contact with static obstacles) on dynamic environ-
ments based on developing tour construction probabilities equation in MAX-MIN Ant 
System (MMAS) algorithm by adding the new parameter. A method will also be cre-
ated in the analysis environment stage to avoid the robot from going through narrow 
tunnel paths by closing  entries of these paths in order to choose the best course through 
the open areas and reach its destination. 

The main contributions made by this research project are listed below: 

1. Creating a new class parameter called clean that is calculated by adding a clean 
weight constant to each neighbor location that has static obstacle status as one of the 
propagation information obtained in the robot environment analysis stage. 

2. Creating a new method for checking the cases of tight tunnels for static obstacles in 
which the size of the entrance is the same as the size of the robot during the stage of 
analyzing the environment and closing it by converting the state of the tunnel en-
trance to a dynamic obstacle before the robot’s launching to find the optimal path. 
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3. Developing the equation of computing the tour construction probabilities by adding 
the new parameter clean 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡) to the pheromone trail 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) for exploring and 
finding a solution by the probabilistic decision for all the next states (nodes) of 
neighbor. 

This paper is organized as follows: Section 2 addresses MAX–MIN Ant System, 
Section 3 includes designing a new obstacle avoidance method, while Section 4 shows 
the simulation results, and Section 5 concludes the paper. 

2 MAX–MIN Ant system  

ACO may perform better if the best solutions discovered during search and search 
space analysis are used more effectively. However, doing an interesting search might 
cause the search to stall prematurely. Therefore, by combining enhanced exploitation 
of the top solutions discovered during the search with an efficient mechanism, acquiring 
the highest performance of ACO algorithms is possible to avoid early search stagnation. 
As a result of these criteria, MAX-MIN Ant System differs from AS in the following 
ways: 

1. During each iteration, just one ant adds a pheromone to exploit the best solution; this 
can be done either by the iteration-best ant or by the algorithm's running ant (global-
best ant) [20-22]. 

2. Restricting the range of pheromone trails on each solution to a range [min; max] 
prevents stagnation. 

3. The intentional setup of the pheromone to max at the start of the algorithm allows 
for a deeper degree of solution discovery [20]. 

2.1 Pheromone trail limits 

It may not be possible to avoid search stagnation by selecting between the iteration-
best and the global-best ant for the pheromone trail update. When the pheromone trail 
in one arc is higher than in the others, it could happen during optimum path design. An 
ant that prefers this solution will set it repeatedly in this scenario, considering the prob-
abilistic decision made by Eq. (1) and further exploring the search space stops. 

 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 (𝑡𝑡) =  
[ 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡)]𝛼𝛼 [η𝑖𝑖𝑖𝑖]𝛽𝛽

∑ [ 𝜏𝜏𝑖𝑖𝑖𝑖𝑙𝑙∈𝑁𝑁𝑖𝑖
𝑘𝑘 (𝑡𝑡)]𝛼𝛼[η𝑖𝑖𝑖𝑖]𝛽𝛽

     𝑖𝑖𝑖𝑖 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖𝑘𝑘 (1) 

Changing the probability options for the next solution is one technique to prevent 
stagnation. Heuristic data and pheromone trails can be used to do this. The latter is 
dependent on the issue at hand and is static during the algorithm's execution. To avoid 
the excessive buildup of pheromone throughout the algorithm's execution, the MMAS 
establishes limitations on the minimum and maximum amounts of pheromone (such 
that for all pheromone trails 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡), 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) ≤  𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚). This will prevent the high 
discrepancy in pheromone trails.  The limits imposed by the MMAS will be checked 
after each iteration. If we have 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) >  𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 , we set 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) =  𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 ; analogously, 
𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡)< 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚, we set 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡)= 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚. Also, note that enforcing 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 > 0, and if η𝑖𝑖𝑖𝑖 < ∞ 
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for all solution components, any solution component may probably be chosen. The 
MMAS convergence happens for every decision point when all solution components 
have pheromone trails min, with the exception of one solution having 𝜏𝜏max. In this sce-
nario, the algorithm's best solution will be created by selecting max pheromone, and it 
will be created with a probability p best that is higher than 0. In order to build the 
optimal solution at each point, an ant should thus select the solution component using 
𝜏𝜏max. Naturally, the values of max and min directly impact the likelihood of choosing 
a solution component at any given decision point [20]. 

2.2 Updated the pheromone trail  

In MMAS, the pheromone trails are refreshed after each iteration using just one ant. 
The following rule provides the updated pheromone trail update: 

 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) =  𝜌𝜌 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) + ∆𝜏𝜏𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (2) 

Where ∆𝜏𝜏𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1/𝑓𝑓(𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) and 𝑓𝑓(𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) denotes the solution cost of either the it-
eration-best (sib) or the global-best solution (sgb). Although sib has been employed in 
some comparative studies, the use of a single ant in a pheromone trail has also been 
discussed in ACS. MMAS focuses on the use of iteration-best solutions. The method 
of utilizing the search in MMAS will be determined by selecting just one solution (ei-
ther sib or Sgb) to be employed in the pheromone update. If Sgb is the sole color used, it 
will be heavily strengthened. The search will be narrowed to this answer, decreasing 
the possibility of employing alternative, perhaps superior, solutions. This raises the pro-
spect of abusing subpar solutions. When sib is used for trail updates, the scenario is 
different since the optimum options vary from iteration to iteration. As a result, a greater 
number of solution components might get occasional reinforcement. The most effective 
method, however, will be the combination of local search with MMAS to identify larger 
optimal pathways, which is illustrated by using sib as the default solution for updating 
the pheromones and sgb for every set number of repetitions. The most successful strat-
egy appears to be using a mixed dynamical technique that increases the frequency of 
using sgb for the pheromone update during the search [20]. 

2.3 Initialized the pheromone trail  

Initializing the pheromone trail involves assigning t(0) to an arbitrarily high number, 
which causes all trails to conform to 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚(1). During the algorithm's initial iteration, 
this form of initialization increases the exploration of potential solutions. Due to trail 
evaporation, there will be a ratio-based difference in pheromone trails after the first 
repeat, a 2-factor difference after the second, etc. (specified by parameter). The ratio of 
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚, to the quantity of pheromone deposited on a solution element is (1)(avg p dec) 
/(1p dec). This ratio is much greater than the relative difference among the pheromone 
trail when it is initialized 𝜏𝜏max, depending on the empirical parameters that are selected. 
The selection probabilities of Eq. (1) will gradually increase when the pheromone trail 
is initiated at 𝜏𝜏max. Therefore, investigating potential solutions is preferred. The exper-
imental findings support the hypothesis that a bigger search space exploration enhances 
MMAS's performance as a result of setting (1) = 𝜏𝜏max [20]. 
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3 Designing a new obstacle avoidance method 

This section presents a design of new obstacle avoidance method and finding an 
optimal wide path. The design structure consists of the three main parts the first one is 
Determine and constructed the Robot Environment which out of MMAS algorithm and 
remain two in MMAS algorithm Analysis Robot Environment and Moving a Robot in 
dynamic environment as shown in Figure 1. 

 
Fig. 1. The block diagram structure of the proposed new obstacle avoidance method to find an 

optimal wide path 

3.1 Determine and construct robot environment 

In the First section, choose a 2D workspace environment with fixed obstacles repre-
sented by regularity grids from a library store. The beginning component is divided into 
two stages. Before creating the class node for the arrays, decide the robot's starting 
location and one objective. 
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3.2 Robot environment analysis 

The second section includes many combined phases for the robot environment anal-
ysis. The D* algorithm method, which estimates the route costs of the states in the 
space, is hybridized with the pheromone trail update based on iteration-best to retain 
the propagated information about the intensity of the pheromone trails values τij(t) val-
ues. Pheromone deposition repeatedly occurs, which allows for proliferation. The path 
width is computed by adding the clean weight constant to each neighboring node that 
is not in the way after each iteration, which expands to modify the pheromone trails 
values τij(t) to its neighbors and change the path width. To continue the propagation 
process and change the pheromone trail values τij(t), these neighbors add ants one at a 
time until the start states for each robot are discovered. The robot (ant) goes across free 
space nodes with broad locations and a minimal number of obstacles in the third sec-
tion, avoiding the dynamic obstacles until it reaches the objective state based  

on tour construction probability.Pseudocode of algorithm Pheromone Trail Updating 
illustrated in algorithm 1 contains several steps, some in bold, that were added to satisfy 
the proposed improvement to compute the pheromone trail update Eq. (2). 

Algorithm 1: Pheromone Trail Updating  
Input: Start and Goal nodes, queue list OpenList, array 

of class node State and array of class color NodeColor. 
Output: array of class node State, array of class color 

NodeColor. 
1: Begin 
2: Goal_i = goal_pos_x 
3: Goal_j = goal_pos_y 
4: ρ = 0.98            // select the initial value of ρ 
5: CleanWeigh = 0.5 // select Clean Weight constant 
6: goal_pher=0.0 
7: Insert(OpenList, goal); // add ant to queue propaga-

tion 
8:  repeat 
9:   Begin 
10:   node X = DequeueOpenList (); //moving ant to 

propagation 
11:   X_tag = "Close" 
12:// expanded by finding the eight neighbor locations 

Y of current position X 
13:   FindNeighbor (Y,X)  
14:   for each Neighbor Y of X do 
15:    begin 
16:     If (Y.status == “OBSTACLE”) then X.clean = 

X.clean + CleanWeigh 
17:     PheromoneTrails (X ,Y, OpenList) 
18:     GateRaiseState (X) 
19:     CheckTightTunnelState(X) 
20:     SortQueue (OpenList) 
21:     end 
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22:  until (X_status = "Start") 
23: end 

By choosing an initial evaporation rate value of 0.98, the step in line 4 is completed. 
The new step in line 5 is to determine the clean weight constant equal to 0.5, which we 
found through tests is the best suitable value that can work with different environments. 
Then, in step line 7, the goal state (food location) is put in the queue as a current state 
(location) used (Insert procedure) to add ants propagation. Finally, by locating the eight 
neighboring states (locations), the existing state (step line 13) is increased (Find Neigh-
bor procedure). The step in line 16 computed and saved a value of a new class parameter 
called clean by adding a clean weigh constant to each neighbor location Y has obstacle 
status to explore wide free spaces (empty-obstacles) of the current node. The step in 
line 17 procedure, Pheromone Trails computed the intensity of the pheromone trails 
value τij (t) and the heuristic information η𝑖𝑖𝑖𝑖 for each state on neighbors. When the 
status is an obstacle, the neighbors are verified; no pheromone trail values are supplied 
(unlike D*, which is given a high value of 100000). When the status is cleared, check 
the position if the object is moving on the diagonal line of the current status (position), 
multiply the value of τij (t) by 1.4, and multiply by 1 if the object is moving horizontally 
or vertically. After that, the evaporation rate doubles for each instance. Then, the evap-
oration rate is doubled with each instance. Additionally, the distance between any 
neighbor sites and the objective position is used to determine the value of the heuristic 
information η𝑖𝑖𝑖𝑖 (food). Line 18 contains a function called GateRaiseState used to ex-
amine and change gate raise states. If two diagonal vertex neighbor sites of the ant's 
present position are in an obstruction condition, the ant cannot travel to those places 
since its size has not passed through them. As a result, the present state is a gate-raising 
state, and to shut it down, its status type must be changed to obstacle. The new step in 
line 19, shown in algorithm 2 pseudocode performs the Checking of Tight Tunnel state, 
which consists of several steps that check and manipulate the four horizontal and ver-
tical states in which the next-neighbor location is the Tight Tunnel state. The steps from 
line 2 to line 7 Test to select the positions of the four horizontal and vertical nodes of 
the current node in neighbor locations Y in two arrays Mi and Mj. Steps 8 and 9 Test 
to select the positions of four neighbor diagonal nodes from Y to the position of current 
node X to save the status of the four diagonal nodes of the current node in array A in a 
sequence dependent on the specified conditions as shown in line 11 and line 12 also 
saving the status of the four diagonal nodes in array B. After specifying and saving all 
the positions of the four horizontal and vertical nodes in both arrays Mi and Mj and 
specifying all the positions of all four adjacent diagonal nodes and saving their status 
in both arrays A and B. 

Algorithm 2: Check Tight Tunnel State  
Input: array of class node State, array of class color 

Node Color. 
Output: array of class node State, array of class color 

Node Color. 
1: begin 
2:  for each neighbor Y of X do 
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3:   if ( Y horizontal nodes of X ) or ( Y vertical 
nodes of X ) then 
4:    begin 
5:      Mi [] = Y_iold; 
6:      Mj [] = Y_jold; 
7:    end 
8:  for each neighbor Y of X do 
9:    if ( Y diagonal nodes of X ) then 
10:    begin 
11:      A [] = Y_status; 
12:      B [] = Y_status; 
13:     end 
14:  for  each horizontal or vertical nodes Y of X do 
15:   if (Y_row=Mi[] and Y_col=Mj[]) and (A[]="Obsta-

cle" and B[]=" Obstacle") then 
16:    begin 
17:      setpixel (Y, Orange); 
18:      Y_k = 10000; // it is represent a very large 

value 
19:      Y_status = " Obstacle "; 
20:    end 
21: end 

After specifying and saving all the coordinates of the positions of the four horizontal 
and vertical nodes in each of the single arrays Mi and Mj, and determining all the posi-
tions of all the four adjacent diagonal nodes and saving their states in both single arrays 
A and B. In steps 14 and 15, each of the four horizontal and vertical nodes is tested to 
determine if the statuses of the two nodes on both sides from the four diagonal nodes 
are obstacles. Once this condition is met, steps 17, 18, and 19 are modified by turning 
the color orange, increasing the cost value such that the pheromone value is too low, 
changing the node status to the obstacle, and closing this site. 

3.3 Moving robot 

The robot (ant) goes to the next place in this part by selecting the optimal option 
based on the likelihood of the tour's construction at each iteration. Until it achieves the 
desired condition, it chooses to go via a broad free cell (location) and avoid dynamic 
obstacles. The process of pseudocode, as in algorithm 3 Move Robot Tour Construc-
tion illustrates a process for discovering tour construction. 

Algorithm 3: Move Robot Tour Construction 
Input: array of class node State, an array of class color 

Node Color. 
Output: Display Path color, Time occupies, No. of Iter-

ations and No. of cost. 
1: begin 
2:  X_curri = start_pos_x 
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3:  X_currj = start_pos_y 
4:  α =3;  β =1;   
5:  PathCost=0; 
6:  FindNeighbor (Y,X)  
7:  CrateDynObs(X1,temporal_k) 
8:   repeat 
9:    begin 
10:   UpdateDynObs(X1,temporal_k) 
11:     for each neighbor Y of X do 
12:        if (Y_status  != "Obstacle"  or  Y_status  != 

"Dobstacle" ) then 
13:          P[i] = ((state[Y].pherm+ state[Y]. clean)^α  

* (state[Y].hur)^β)/ ∑((state[Y].pherm+ state[Y]. clean)^α  
* (state[Y].hur) ^β) 
14:            for each item of (P[]) do 
15:                if (P[] < min_best_pphr) then 
16:             begin 
17:         min_ min_best_pphr = P[] 
18:         mini_ pphr = neighbori[] 
19:         minj_ pphr = neighborj[]  
20:          end 
21:  X_corri = mini_ pphr;  
22:  X_corrj = minj_ pphr; 
23:  iter_no = iter_no + 1; 
24: EndTime = TimeNow(); 
25: PathCost =PthCost +X. k; 
26:  X_SetPixel (Green); 
27:     end 
28: TimeOcc = EndTime – StateTime, 
29:   until (current_position = goal_position or iter_no 

≥ max_itr) 
30: end  

The start state (nest) is chosen as the first current node (location) in lines 2 and 3 for 
moving the ants. Then, give the proper weight values in line 4 with the pheromone and 
heuristic values taken into consideration. Also give initial vale of cost in line 5. The 
process is in line 6 to travel from the current node (position) X and use Find Neighbor 
to locate the eight nearby nodes (locations). Then, using a process, a random position 
was chosen at line 7 in a free-space environment to create a dynamic obstacle. Crat-
eDynObs. The robot (an ant) is shown moving from lines 8 to 27 according to a prob-
abilistic judgment to the next position in the neighborhood that provides the optimal 
answer. Each time convergence occurs (iteration-best ant), the process is repeated until 
the robot achieves the desired location (food). The Update Dynobs procedure on line 
10 displays dynamic obstacles moving to random positions in the adjacent free-space 
environment. After that, the steps from lines 11 to 12 are used for testing all free space 
locations (nodes) of neighbors. Then in line 13, computing the tour construction prob-
abilities Eq. (1) is a development by adding a new parameter clean 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡) which 
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computed in the previous analysis stage to the pheromone trail 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) and on locally 
available heuristic information η𝑖𝑖𝑖𝑖 for all locations (nodes) of neighbor as shown in Eq. 
(3). 

 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 (𝑡𝑡) =
[ 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡)+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)]𝛼𝛼 [η𝑖𝑖𝑖𝑖]𝛽𝛽

∑ [ 𝜏𝜏𝑖𝑖𝑖𝑖𝑙𝑙∈𝑁𝑁𝑖𝑖
𝑘𝑘 (𝑡𝑡)+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)]𝛼𝛼[η𝑖𝑖𝑖𝑖]𝛽𝛽

  𝑖𝑖𝑖𝑖 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖𝑘𝑘 (3) 

In comparison to other ants in nearby sites, the steps from line 14 to line 20 demon-
strate the choice of the optimal option for the ant. The best ant moves to a new location 
to become a current node, and the convergence process is repeated until the best ant 
reaches the goal position (food). The last stages from lines 21 to 28 depict the outcome 
of the optimal path as the path appears on the chosen dynamic environment as a green 
color, the number of iterations (locations) of the path, the total cost of the path, and the 
amount of time required discovering a path. 

4 Simulation results 

To demonstrate the viability of using the new technique, various simulations in dif-
ferent situations are shown in this section. This variety differs in terms of the size of 
the dynamic environments, the number and types of static obstacles, the number of tight 
tunnel states closed off during analysis before finding an optimal path, the number of 
gates raised during analysis before finding an optimal path, the number of positions of 
the dynamic obstacles selected at random in the invalid (free) space of the environment, 
and the number of the dynamic obstacles moving continuously in random variant neigh-
boring situations. The Pentium CORE i7 processor, Windows 10, and Microsoft Visual 
Studio 2019 were used to implement these simulation findings. 

4.1 Implemented of a new obstacle avoidance method 

The results of the new obstacle avoidance method for finding an optimal wide path 
based on the improved MMAS algorithm are compared with the results of the paper 
[7], which are both shown as a green color in Figure 2 and are tested and implemented. 
The results are found and studied with the same small environment of size (10*10) 
positions. Select the start state at position (0,9) and the target state at position (7,0), 
providing the value weigh of pheromone α equal to 2 and the value weigh of heuristic 
β equal to 1, in a random placement of the dynamic obstacle of blue color. The first test 
is the proposed new method for avoiding the obstacles presented in Figure.2-a, which 
leads to different results in the locations of the optimal path far from the static obstacles 
and the number of iterations is 14, the total path cost is 106.2 and the occupied time is 
1.55 seconds. The second testing case illustrated in Figure 2-b is implemented to find 
the optimal path of the paper [9]. The findings were 13 iterations, 99 total costs along 
the path, and 1.40 seconds of time spent. One of the most crucial parameters in the 
MMAS algorithm for determining the best solution is the weight value of the phero-
mone α. To obtain the best outcomes, several values in various environment types are 
being tested. The first experiment's findings are illustrated in Figure 3-a, where chang-
ing weight value of the pheromone α to 3 yields the best outcomes and creates a broad 
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empty path that is smoother and more ideal, with a total path cost of 105.8 and a time 
duration of 1.53 seconds. When the dynamic obstacle intersects with the robot (ant) in 
the same location, the second test is carried out. In this case, the robot (ant) moves away 
from the dynamic obstacle to the ant's optimal neighbor location with the minimum 
probability of contact. Figure.3-b shows that the local way depicted in green is different 
from the path in Figure 3-a without the intersecting dynamic barrier, and that the overall 
path cost changes to 106.2, with a time occupy equal to 1.51 sec. 

 
Fig. 2. Comparison of the results of the new obstacle avoidance method to find path planning 

with the paper [7] on the small environment 

 
Fig. 3. Find the best results of new obstacle avoidance method when avoiding dynamic obsta-

cle 

4.2 Experiment results 

In order to determine the outcomes of local route planning on six distinct compli-
cated dynamic environments of size 50*50 robot locations, experimental simulation is 
finally implemented on the new obstacle avoidance approach for finding an appropriate 
broad path based on an enhanced MMAS algorithm. These simulation experiment re-
sults were obtained by selecting different start and target positions, the same evapora-
tion rate ρ value of 0.98, different pheromone weigh values α ranging from 3 to 5, and 
the same weigh the value of heuristic β, which is equal to 1. Figure 4 displays some 
simulation experiments together with these six dynamic parameters. The experiment 
simulation result is illustrated in Figure 4-a. The bold color line at (Table 1) is imple-
mented in environment 1, whose characteristics include large numbers of fixed obsta-
cles of different forms and sizes located randomly. In the middle, there is a continuous 
horizontal series of obstacles, the number of gates raises state and a large number of 
Tight Tunnel state. The result of the proposed method is found in the optimal wide 
empty path with No. of gate raise state that equals to 3, No. of Tight Tunnel state that 
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equals 101, No. of iterations that equal 103, total path cost equals 6124.4 and time 
occupied is 5.92 seconds shown in green color based on giving the parameters selected 
the start location at (3,2) and goal location at (2,48), gives the value of evaporation rate 
ρ that equals 0.98, gives the weigh value of pheromone α equals to 5 and the weigh 
value of heuristic β that equals 1. 

 
Fig. 4. Elected some experiment simulation results of the new obstacle avoidance method on 

six 50x50 different complex dynamic environments 

A distinctive note when testing and implementing experiments simulation on this 
environment are that it gives the weigh value of the pheromone α more than 5 and gives 
weigh the value of heuristic β equals 1 to increase and maximize the value of the pher-
omone trail 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) add with the new parameter clean 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡) compared to the value 
of the  local heuristic information  η𝑖𝑖𝑖𝑖 for all locations (nodes) of neighbor required to 
compute the tour construction probabilities Eq. (3) to avoid the local solution loop. 
Figure 4-b shows the result of implemented experiment simulation on environment 2, 
whose characteristic specialty is that the static obstacles are established in circular 
shapes overlapping each other, and some circular block obstacles are open from differ-
ent positions. Therefore, it contains several gates that lie on some circular block obsta-
cle, and a number of tight tunnel state lies on variant positions. The result of the pro-
posed method, illustrated in bold color line (Table 1), is found in the optimal wide 
empty path with 3 gate raise state, 21 Tight Tunnel state, No. of iterations that equal 
73, total path cost equals 2988.2 and time occupied is 4.28 second shown in green color 
based on giving the parameters selected the start location at (24,24) and goal location 
at (35,38), gives the value of evaporation rate  ρ that equals 0.98, gives the weigh value 
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of pheromone α equals to 3 and the weigh value of heuristic β that equals 0. A distinc-
tive note when testing and implementing experiments simulation on this environment 
gives weigh the value of heuristic β equals 0 and disregard local heuristic infor-
mation η𝑖𝑖𝑖𝑖  . Computing the tour construction probabilities Eq. (3) depended only on the 
pheromone trail 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡)  add with the new parameter clean 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)  all locations 
(nodes) of neighbors require avoiding the local solution loop. The special characteristic 
of environment 3 is that static obstacles are organized in curve shapes, and some of 
these curve block obstacles are open from different directions. Therefore, the experi-
ment simulation is implemented on it, and the result of the proposed method is to find 
the optimal wide empty path without gate raise state, 11 Tight Tunnel state, No. of 
iterations that equals 80, total path cost equals 3452 and time occupied is 4.37 seconds, 
shown in green color illustrated in Figure 4-c and bold color line at (Table 1). Further-
more, these results are found based on giving the parameters selected the start location 
at (48, 24) and goal location at (1,24), gives the value of evaporation rateρ that equals 
0.98, gives the weigh value of pheromone α equals to 3 and the weigh value of heuristic 
β that equals 1. 

The experiment simulation is implemented in environment 4, where both static ob-
stacles and free space are organized in big blocks containing hole-free space opens 
down, and one gate lies at the above position. The result of the proposed method is 
found in the optimal wide empty path shown in green color illustrated in Figure 4-d, 
and the bold color line in Table 1 are 2 gate raise state, 22 Tight Tunnel state, No. of 
iterations that equal 59, total path cost equals 2073.2 and time occupied is 3.66 seconds 
based on giving the parameters selected the start location at (3,6) and goal location at 
(47,14), gives the value of evaporation rateρ that equals 0.98, gives the weigh value of 
pheromone α equals to 3 and the weigh value of heuristic β that equals 1. The special 
characteristic of environment 5 is that the static obstacles are organized in curve shapes, 
and some of these curve block obstacles are open from different directions. Therefore, 
the experiment simulation is implemented on it, and the result of the proposed method 
is to find the optimal wide empty path without gate raise state, 12 Tight Tunnel state, 
No. of iterations that equal 71, total path cost equals 3069.2 and time occupied is 4.10 
seconds, shown in green color illustrated in Figure 4-e and bold color line at (Table 1). 
These results are found based on giving the parameters selected the start location at (1, 
48) and goal location at (49, 1), gives the value of evaporation rate ρ that equals 0.98, 
gives the weigh value of pheromone α equals to 3 and the weigh value of heuristic β 
that equals  1. The experiment simulation is implemented on last environment 6, whose 
characteristics specialty is that the static obstacles are organized in horizontal sequence 
obstacles, and some of these obstacles are open at different positions. The experiment 
simulation is implemented on it, and the result of the proposed method is to find the 
optimal wide empty path without gate raise state, 10 Tight Tunnel state, No. of itera-
tions that equals 64, total path cost equals 2442.8 and time occupied is 3.69 seconds, 
shown in green color illustrated in Figure 4-f and bold color line at (Table 1). These 
results are found based on giving the parameters selected the start location at (0, 0) and 
goal location at (49, 49), gives the value of evaporation rateρ that equals 0.98, gives the 
weigh value of pheromone α equals to 3 and the weigh value of heuristic β that equals 
1. 
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Table 1 illustrates the comparison between the overall results of the proposed 
method and the results of the method of paper [7] hybrid of basic D* with Lbest PSO 
algorithms and the method of paper [6] improved MAX–MIN ACO algorithm on the 
same six dynamic environments shown in Figure 4 and on the same requirements of 
the start and goal positions, the value of evaporation rate ρ, the value of pheromone 
weigh α and the value of heuristic weigh β. Also, the table clarifies the results numbers 
of gate raise state, number of Tight Tunnel state  of the proposed method, number of 
iterations, time occupied to find the path by second and the total path cost. 

To analyze and discuss the overall results obtained from the implementation of the 
proposed method and other comparison methods given in (Table 1).  The first results 
are to find the numbers of gate raise state observed that have the same numbers to each 
experiment simulation implemented by all comparison methods. The second results are 
the calculations of the tight tunnel case numbers found by the proposed method only, 
and the average numbers of Tight Tunnel states for each of the six dynamic environ-
ments are calculated respectively 83.6, 16.8, 11.8, 17.6, 8.4 and 7.4. We noticed that 
environment 1 have a high number of Tight Tunnel state, and the high number equal 
101 states, as shown in Figure 4-a, while environment 6 has fewer numbers Tight Tun-
nel state because of the special characteristic shape of each environment. In the third 
comparison of the results of the average number of iterations, the method hybridizing 
the radix D* with the Lbest PSO algorithm and the improved MAX-MIN-ACO algo-
rithm is to search broad and free paths, we find that the average total path cost results 
of the proposed method increase by 9.99% and 11.35%, respectively of obstacles. The 
last comparison of the results is the average time occupied to the found path by second 
found that the proposed method reduced the time by 54.32% and 11.95% with respect 
to the method of hybrid of basic D* with Lbest PSO algorithm and method of improved 
MAX–MIN ACO algorithm respectively. 

Table 1.  shows the comparison experiment simulation results of the proposed new method and 
the two methods on the same six dynamic environments shown in Figure 1 

Envt. 
No. 

Algorithm 
Name 

Start 
State 

Goal 
State 

No. of 
Gate 

No. of 
Tunnel 

No. of 
Iteration 

Total Arc 
Cost 

Time 
Occupy 

Environm
ent 1 

Hybrid Basic D* 
with Lbest PSO 
[8] 

37, 8 5, 38 3 - 60 2198.2 7.87 
45, 6 19, 41 3 - 50 1590.4 6.71 
0, 42 6, 2 3 - 88 4809.4 13.45 
3,2 2, 48 3 - 89 4935 13.40 

21, 14 21, 37 3 - 53 1736.6 7.43 

Improved 
MAX–MIN 
ACO [9] 

37, 8 5, 38 3 - 61 2139 4.43 
45, 6 19, 41 3 - 52 1634.8 3.92 
0, 42 6, 2 3 - 90 4891.6 5.64 
3,2 2, 48 3 - 91 4999.4 6.89 

21, 14 21, 37 3 - 54 1737 4.33 

proposed Method 

37, 8 5, 38 3 66 73 3031.8 4.17 
45, 6 19, 41 3 67 60 2103 2.64 
0, 42 6, 2 3 100 103 6400.4 5.12 
3,2 2, 48 3 101 103 6124.4 5.92 

21, 14 21, 37 3 84 68 2660.6 3.34 
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Envt. 
No. 

Algorithm 
Name 

Start 
State 

Goal 
State 

No. of 
Gate 

No. of 
Tunnel 

No. of 
Iteration 

Total Arc 
Cost 

Time 
Occupy 

Environm
ent 2 

Hybrid Basic D* 
with Lbest PSO 
[8] 

24, 24 35, 38 3 - 56 1903 8.51 
34, 38 25, 13 2 - 48 1358.2 6.18 
18, 21 32, 42 2 - 47 1305.6 6.59 
33, 18 25, 35 1 - 53 1679.8 8.25 
42, 3 0, 37 0 - 58 2020.8 6.78 

Improved 
MAX–MIN 
ACO [9] 

24, 24 35, 38 3 - 57 1902.6 4.70 
34, 38 25, 13 2 - 49 1357.4 2.28 
18, 21 32, 42 2 - 48 1310.4 3.99 
33, 18 25, 35 1 - 55 1767.2 4.10 
42, 3 0, 37 0 - 58 1962.2 4.26 

proposed method 

24, 24 35, 38 3 21 73 2988.2 4.28 
34, 38 25, 13 2 14 49 1367.4 2.12 
18, 21 32, 42 2 16 48 1315 3.25 
33, 18 25, 35 1 13 54 1685.8 3.99 
42, 3 0, 37 0 20 80 3761.2 4.71 

Environm
ent 3 

Hybrid Basic D* 
with Lbest PSO 
[8] 

28, 7 26, 26 2 - 42 1038.4 7.01 
14, 48 33, 16 1 - 53 1669.4 8.03 
43, 47 23, 15 1 - 46 1273.2 7.78 

8, 0 48, 46 0 - 61 2303.4 9.90 
48, 24 1,24 0 - 71 2877.2 10.37 

Improved 
MAX–MIN 
ACO [9] 

28, 7 26, 26 2 - 44 1106.8 3.65 
14, 48 33, 16 1 - 52 1505.6 3.40 
43, 47 23, 15 1 - 47 1254 3.96 

8, 0 48, 46 0 - 61 2264 4.26 
48, 24 1,24 0 - 71 2804.4 5.63 

proposed method 

28, 7 26, 26 2 15 43 1047.6 3.36 
14, 48 33, 16 1 10 53 1628.2 3.74 
43, 47 23, 15 1 6 47 1296.8 3.10 

8, 0 48, 46 0 17 62 2295 5.56 
48, 24 1,24 0 11 80 3452 4.37 

Environm
ent 4 

Hybrid Basic D* 
with Lbest PSO 
[8] 

3, 6 47, 14 2 - 63 2414.8 9.82 
25, 22 47, 14 1 - 47 1255.2 5.40 
41, 1 2, 3 1 - 54 1701.2 7.32 
5,49 18,0 0 - 70 3050.4 10.76 
27, 1 16, 48 0 - 66 2480.8 10.23 

Improved 
MAX–MIN 
ACO [9] 

3, 6 47, 14 2 - 61 2217 2.9 
25, 22 47, 14 1 - 37 803.8 2.4 
41, 1 2, 3 1 - 45 4282.6 3.54 
5,49 18,0 0 - 55 1796.8 3.31 
27, 1 16, 48 0 - 46 1155.8 3.20 

Proposed method 
3, 6 47, 14 2 22 59 2073.2 3.66 

25, 22 47, 14 1 4 37 797.8 2.00 
41, 1 2, 3 1 18 51 1597.6 3.38 
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Envt. 
No. 

Algorithm 
Name 

Start 
State 

Goal 
State 

No. of 
Gate 

No. of 
Tunnel 

No. of 
Iteration 

Total Arc 
Cost 

Time 
Occupy 

5,49 18,0 0 23 64 2523 5.48 
27, 1 16, 48 0 21 48 1453.4 3.54 

Environm
ent 5 

Hybrid Basic D* 
with Lbest PSO 
[8] 

22, 13 27, 17 1 - 63 2414.8 9.82 
33, 36 22, 12 1 - 47 1255.2 5.40 
11, 42 31, 8 1 - 54 1701.2 7.32 
1, 48 49, 1 0 - 70 3050.4 10.76 
26, 4 23, 48 0 - 66 2480.8 10.23 

Improved 
MAX–MIN 
ACO [9] 

22, 13 27, 17 1 - 68 2354 5.07 
33, 36 22, 12 1 - 48 1255.2 3.42 
11, 42 31, 8 1 - 55 1700.8 4.86 
1, 48 49, 1 0 - 71 3050.4 5.17 
26, 4 23, 48 0 - 67 2480.4 7.34 

Proposed method 

22, 13 27, 17 1 11 67 2507.6 4.34 
33, 36 22, 12 1 3 51 1405 2.84 
11, 42 31, 8 1 7 54 1650 3.52 
1, 48 49, 1 0 12 71 3069.2 4.10 
26, 4 23, 48 0 9 67 2495.6 4.37 

Environm
ent 6 

Hybrid Basic D* 
with Lbest PSO 
[8] 

48, 49 1, 49 0 - 46 1128 4.62 
0, 49 0, 3 0 - 45 1081 4.98 
0, 0 49, 49 0 - 63 2436.8 8.67 

0, 49 49, 0 0 - 63 2421.2 8.92 
39, 2 15, 37 0 - 53 1762.6 8.59 

Improved 
MAX–MIN 
ACO [9] 

48, 49 1, 49 0 - 47 1128 4.18 
0, 49 0, 3 0 - 46 1081 4.21 
0, 0 49, 49 0 - 64 2435.6 4.67 

0, 49 49, 0 0 - 64 2419.6 5.41 
39, 2 15, 37 0 - 54 1762.6 5.15 

Proposed method 

48, 49 1, 49 0 4 47 1182 4.40 
0, 49 0, 3 0 4 46 1081 2.76 
0, 0 49, 49 0 10 64 2442.8 3.69 

0, 49 49, 0 0 10 64 2431.2 3.38 
39, 2 15, 37 0 9 54 1796 3.57 

5 Conclusions 

This paper presents a new obstacle avoidance method for finding an efficient path 
passing through wide free space based on developing the MMAS algorithm in variant 
complex environment maps. Through the completion of the work, it was concluded that 
the improvement in the MMSA algorithm occurred in two parts of the algorithm con-
struction. In the first part, which is analyzing the environment of the robot, the new 
parameter clean weight constant value equal to 0.5 is determined, and through tests, we 
have found this is the best suitable value that can work with different environments. 
Then the value of a new class parameter called clean 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡) for the current node, 
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X is calculated, and Y adds a clean weighting constant to each neighboring position 
with obstacle status to avoid wide open spaces is stored by allowing (empty obstacles) 
to explore the current node. Also, in this part, we create a new narrow tunnel state 
checking algorithm for any of the four horizontal and vertical nodes, and check whether 
the state of the two nodes on either side of the four diagonal nodes is an obstacle to 
judge Then four states, horizontal and vertical, are manipulated to change the color of 
the closest location to orange, which is very expensive. This means that the pheromone 
value gets too low and the node's status is changed to Obstacle and this location is 
closed. While in the second part, which is the movement of the robot, we developed a 
new equation to compute the tour construction probabilities by adding the new param-
eter clean 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡) which computed in the previous analysis stage to the pheromone 
trail τij(t) as shown in Eq. (3). From the implementation and testing of simulation ex-
periments of the proposed new method on different dynamic environments, there are 
several issues that can be concluded, such as in environment 1, which includes large 
numbers of fixed obstacles of different shapes and sizes located randomly are must give 
the weigh value of pheromone α more than 5. Whereas in  environments like environ-
ment  2 that include static obstacles are established in circular shapes overlapping each 
other, and some circular block obstacles are open from different positions. In this situ-
ation, it must give weigh the value of the heuristic β equals 0 and disregard local heu-
ristic informationη𝑖𝑖𝑖𝑖. Also, it is seen that environment 1 have a high number of Tight 
Tunnel state and has a high number equal to 101 states while the environment 6 has 
less numbers Tight Tunnel state because of the special characteristic shape of each en-
vironment. Compared with the results of the method of the hybrid of basic D* algorithm 
with Lbest PSO algorithm and the method of improved MAX–MIN ACO algorithm, 
the new method can find an efficient path passing through wide free space in the short-
est average time occupied in second and reduced the time by 54.32% and 11.95% 
among the compared methods respectively. While the average number of the total path 
costs of the proposed method is increased by 9.99% and 11.35%, respectively and also 
the average number of iterations of the proposed method increased by 5.44% and 
7.10%, respectively. 
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