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Abstract—Mobile devices are playing an important role in our daily lives. 
Nowadays, mobile devices are not only phones to call and text, but they are also 
smart devices that enable users to do almost any task that could be done on a 
regular PC. At the heart of the design of smartphones, there lies the processor to 
which almost all the development in the smartphone arena is attributed. Recently, 
ARM processors are among the most prominent processors used in mobile de-
vices, smartphones, and embedded systems. This paper conducts an experimental 
comparative study of ARM 64-bit processors in terms of performance and their 
effect on power consumption, CPU temperature, and battery temperature. We use 
a number of well-known benchmarks to evaluate those characteristics of three 
smartphones, namely, Snapdragon 778G+, Exynos 1280 and HiSilicon Kirin 
980. Those smartphones are all equipped with ARM 64-bit processors. Our re-
sults reveal that none of the three-selected smartphones was the best in all char-
acteristics; each has superiority amongst others in certain characteristics and is 
dominated by others in other characteristics. 

Keywords—ARM 64-bit, mobile processors, smartphones, RISC, SoC. 

1 Introduction 

Mobile devices and IoT are ubiquitously playing an important role in our daily lives 
[1, 2, 3]. In the recent years, mobile devices are increasingly spreading between chil-
dren, adults, and elders [4, 5, 6]. The widespread of smartphones and their applications 
[7] paved the way to new technologies to rise in order to support the new trends in 
computation, infrastructure, and storage, such as distributed systems [8], fog computing 
[9], and cloud computing which became ubiquitous and inseparable from smartphones 
[10, 11].  

The Advanced RISC Machine (ARM) is a microprocessor technology, as well as a 
family of processors based on the Reduced Instruction Set Computers (RISC) architec-
ture. This kind of processors is used heavily in smart systems and electronic devices 
due to the prevailing features it comprises, such as, (1) high performance, (2) low cost, 
and (3) low power consumption [12, 13].  
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ARM was originally designed to be embedded in a System-on-Chip (SoC) device 
[14]. An SoC comprises on one chip the following components: (1) several processor 
cores, (2) specialized hardware accelerators, and (3) I/O interfaces [15, 16].  

The Instruction Set Architecture (ISA) of ARM is a RISC-style architecture [12, 17]. 
Compared to CISC, RISC has a smaller number of instructions and addressing modes 
[17].  

ARM inherently implements a load/store architecture [18], where all operations are 
executed on the registers of the Arithmetic and Logic Unit (ALU) rather than on 
memory; this implies that all operands must be loaded from memory to ALU registers, 
on demand, in order for the execution to take place and the results could be stored back, 
on demand, to memory locations.  

Nevertheless, RISC is disadvantageous in terms of instruction length when com-
pared to CISC. While the instruction length is fixed in RISC architectures, CISC pro-
cessors have variable-length instruction length [19]. In fact, code density is an im-
portant parameter in embedded systems as it has a remarkable influence on power con-
sumption and performance [20]. The reason behind that is that codes with higher den-
sities occupy less memory, which results in less power consumption [19]. One of the 
solutions to this problem was the introduction of Thumb 16-bit Instruction Set by ARM, 
which compresses the 32-bit ARM instructions into 16-bit instructions. Those instruc-
tions are decompressed before they enter the pipeline [21].  

As power consumption is the factor of greatest concern in designing embedded sys-
tems [22]. This motivates researchers to study and investigate power consumption in 
those systems. Such systems must use optimized systems in order to achieve high 
throughput accompanied with low power consumption [23].  

The remainder of this paper is organized as follows: we will provide a background 
about computer architectures and some related work in Sect. 2. Then, in Sect. 3, we 
introduce some details about the ARM architecture. A comparison between the three 
processors that were used in this paper is provided in Sect. 4. Section 5 shows our ex-
perimental results. Finally, we make our conclusions and suggest the future work in 
Sect. 6. 

2 Related work 

The Von Neumann architecture is the basic and general computer architecture [24]. 
Basically, the Von Neumann computer consists of three components, namely: (1) Cen-
tral Processing Unit (CPU), (2) memory, and (3) I/O interfaces [16]. The components 
of the Von Neumann architecture are shown in Figure 1.  

One of the drawbacks of the Von Neumann architecture is the Memory Wall problem 
which is characterized by the existing of a gap between the CPU speed and memory 
latency which causes a system bottleneck [25]. Adding levels of cache to the system is 
one solution to the memory wall problem [26].  
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Fig. 1. Components of the Von Neumann Architecture [27] 

Harvard architecture is another type of computer architectures that exhibits an en-
hancement to the Von Neumann architecture. Harvard architecture is common in em-
bedded systems which require low power consumption and higher levels of reliability 
[28]. In Harvard architecture, there are two distinct memories, one for the program and 
the other is for the data [29]. Figure 2 illustrates the main difference between both ar-
chitectures.  

 
Fig. 2. a) Harvard Architecture, b) Von Neumann Architecture 

As shown in Figure 2, Harvard architecture implements separate paths (buses) for 
each memory, one bus for the data memory and another bus for the instruction memory. 
This solves the bottleneck problem in Von Neumann architecture in which the same 
path is used for both data and instructions. Consequently, the performance is enhanced.  
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Pipelining enables concurrent execution of multiple instructions by overlapping in-
struction execution [30]. Instruction-Level Parallelism (ILP) refers to the technique in 
which instruction execution is overlapped [31]. Consequently, instructions are executed 
in parallel, which speeds up execution [32].  

Conventionally, there are 5 pipeline stages, namely, (1) Fetch, (2) Decode, (3) Exe-
cute, (4) Memory, and (5) Write Back [33]. The number of stages of a pipeline are 
referred to as the depth of the pipeline [34].  

In deeper pipelines, i.e., pipelines with greater number of steps, a given step can be 
implemented with simpler circuitry, which results in a faster processor clock [35]. 

A compiler is a kind of system software that is responsible for translating programs 
written in different programming languages to machine code. Programs are executed 
either:  

• In-order: instructions are issued and executed in the order they appear in the pro-
gram. One disadvantage of this execution model is the dependency between instruc-
tions, i.e., if one instruction stalls, then all instructions that are dependent on the 
stalled instruction will also stall, which will result in pending program execution 
until the stalled instruction is released [34].  

• Out-of-order: aka. dynamic execution [36] or dynamic scheduling [37], a technique, 
or execution model, used to improve performance [38]. Instructions are fetched in 
order. They also complete in order. But their execution may not be in order, and 
hence the name out-of-order execution [39].  

It is noteworthy that dynamic scheduling adds extra work to static scheduling, i.e., 
compile-time scheduling, which in turn affects power consumption remarkably [37]. 
Nevertheless, out-of-order execution is significantly faster and requires more core 
logic, smarter CPU architecture and more registers to deal with. 

Tiwari et al. [40] analyzed the performance of 64-bit ARM processors that are in-
stalled on a cluster of computers in terms of performance and energy efficiency. The 
cluster is an ARM-based cluster that is used for High-Performance Computing (HPC). 
The performance was also compared with the performance of an x86 Intel Ivy Bridge 
system. The Energy-Delay Product (EDP) was computed as the product of energy by 
performance. The results show that the higher the number of cores is, the more effi-
ciency is obtained.  

Paunski and Angelov [41] studied the performance and power consumption of single 
board computers with respect to their engagement in the educational service robots. 
They conducted their work on a number of processors including the Raspberry Pi 3B+ 
which an ARM-based processor. The results revealed that although the Raspberry Pi 
processor showed the highest levels of power consumption, still it is the number 1 
choice in robotics due to the large area of community, support, and packages availabil-
ity.  

Taffoni et al. [42] studied how energy consumption is affected by computation on 
CPUs and Graphics Processing Units (GPUs) on ARM MPSoC platforms. They pre-
sented a comparison between CPUs and GPUs on SoCs in terms of power efficiency. 
Similarly, Qasaimeh et al. [43] compared the performance of three hardware accelera-
tors for embedded vision applications. Also, the performance of ARM processors on 
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Deep Learning was investigated by Dolz et al. [44]. ARM Cortex-A57 and Cortex-
A78AE CPUs were studied among other processors.  

The emphasis in the work that was conducted by Marantos et al. [45] was on design-
ing a tool that allows performance and energy consumption estimation of applications 
that run on embedded devices. They proposed a framework that is based on static anal-
ysis.  

Eum et al. [46] studied the ARIA block cipher algorithm on ARMv8 processors. 
They compared their work to other work in the literature and found that their results 
reveal 8.73x performance improvements using ARM processors. 

The work that was conducted by Chheda et al [47] targeted the performance of ma-
chine learning training and inference on 64-bit ARM processors. The work concluded 
that the A64-bit ARM processor can be used for workload scaling in machine learning. 

3 ARM architecture 

ARM microprocessors have many generations:  

• The 32-bit version of processors which comprises six main processor families: 
ARM7TDMI, ARM9TDMI, ARM7EJ, ARM9E, ARM10E and ARM Cortex.  

• The 64-bit version such as the ARMv8-A processor. 

For applications where the code density is a priority and high-volume applications 
with memory restrictions [48], ARM introduced the Thumb architecture. Thumb is a 
16-bit architecture; it is a 16-bit instruction set that is a subset of the 32-bit instruction 
set. Statistically, the size of code written using the Thumb instruction set is 65% smaller 
than the code written using regular 32-bit instruction set. Additionally, the performance 
of such code is 160% higher when running from a 16-bit memory [49]. This makes the 
Thumb instruction set ideal for the situations that imply restrictions on the memory. As 
well, the higher code density it provides makes it ideal for systems that require low 
power consumption.  

Some ARM processors are based on the Von Neumann architecture while others are 
based on the Harvard architecture. However, there are some differences between pro-
cessors of the same family. For instance, in ARM7TDMI the depth of the pipeline was 
3 stages, and the architecture was a Von Neumann computer architecture [49]. As an 
upgrade, the ARM9TDMI used a deeper pipeline with 5 stages and moved to the Har-
vard architecture which incurs improvement over the traditional Von Neumann archi-
tecture [50]. However, both processors are 32-bit processors [49, 50].  

ARMv7 defines three architecture profiles [38]: 

• Application Profile (A-Profile): supports Virtual Memory System Architecture 
(VMSA) based on a Memory Management Unit (MMU). This profile can also be 
referred to as VMSAv7 [38]. It is designed for high-performance systems that can 
run operating systems [51]. 

• Real-time Profile (R-profile): supports Protected Memory System Architecture 
(PMSA) based on a Memory Protection Unit (MPU). It is also known as PMSAv7 

98 https://www.i-jim.org



Paper—A Comparative Study on the Performance of 64-bit ARM Processors 

[38]. This profile is designed for systems that require deterministic timing and low 
interrupt latency [51].  

• Microcontroller Profile (M-profile): is a variant of the PMSAv7, designed for low 
latency interrupt processing [38].  

For real-time systems, there is no need for the processor to be equipped with a full-
fledged MMU; a PMU would be sufficient, as it only performs the required protection 
operations and does not perform anything related to memory management and address 
translation [52].  

The migration from 32-bit to 64-bit architecture is fundamental to many recent com-
puting problems. Reasons to migrate to higher word width may include the capability 
to process data volumes larger than the capacity of a given CPU, i.e., the word width 
of the data to be processed could be larger than that of the CPU which prevents the CPU 
from processing that data and makes migration a necessity. Furthermore, it could be a 
form of Single-Instruction Multiple-Data (SIMD) processing, which is one kind of par-
allel processing. Multiple instructions, or event data items can be fetched to the CPU 
simultaneously if the word width of the data to be transferred is less than the bus width 
[53].   

Thus, migration to 64-bit architectures doubles the speed and enables the processor 
to access more physical memory beyond 4GB or higher of physical memory [54], which 
in turn increases the computational capabilities and achieves higher performance. 

ARMv8 is a 64-bit version of ARM with support for backward compatibility for 32-
bit ARMv7 programs and applications. The migration also includes deeper pipelines 
with out-of-order, speculative, and superscalar execution [54].  

ARM microprocessor designs benefit from the big.LITTLE architecture, aka. Heter-
ogenous Computing architecture, in which a microprocessor comprises a number of 
high-performance big cores and a number of low-power LITTLE cores [55]. The objec-
tive is to create a multi-core processor that can achieve: (1) high performance, and (2) 
low power consumption; actually, these are the two constraints of mobile systems de-
sign [56]. Switching between the big and LITTLE cores is done by means of the inter-
cluster core switching, aka. big.LITTLE Switching [55].  

Figure 3 shows a schematic diagram for the big.LITTLE architecture by ARM. 

 
Fig. 3. ARM big.LITTLE (Heterogenous Computing) Architecture [55] 
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4 Processor architecture comparison 

In the following we introduce three types of processors from different vendors. All 
of them contain several ARM cores. The processors are: (1) Snapdragon 778G+ 5G 
Mobile Platform, (2) Exynos 1280, and (3) Hisilicon Kirin 980.  

4.1 Snapdragon 778G+ 5G Mobile Platform 

Snapdragon 778G+ 5G Mobile Platform comprises a Qualcomm Kryo 670 CPU 
which is an octa-core, i.e., eight-core, 64-bit processor win an up to 2.7 GHz clock 
speed [57]. The Kryo 670 CPU supports the ARMv8 Cortex technology [58]. The Kryo 
670 CPU comprises the following set of cores [57, 58]:  

1. Kryo Gold plus, which is a Cortex-A78 based core with speed up to 2.7 GHz. 
2. Kryo Gold, which comprises three Cortex-A78 based cores with 2.4 GHz speed 

each. 
3. Kryo Silver, which consists of four Cortex-A55 based cores with 1.9 GHz speed.  

The Snapdragon 778G+ SoC leverages the 5-nm FinFET manufacturing process 
[57]. The Fin-FET technology aims at minimizing the number of transistors that are 
used in the chip, minimizing the risk of leakage by adding more gates to the transistors, 
achieving higher performance, and consuming less power [59]. 

The big core, Cortex-A78 is a high-performance low-power, it has a superscalar var-
iable-length pipeline [60]. On the other hand, the LITTLE Cortex-A55 is a low-power 
processor with an 8-stage in-order pipeline with symmetric dual issue for most instruc-
tions [61]. 

4.2 Exynos 1280 

Exynos 1280 is an octa-core 64-bit processor that leverages the 5-nm FinFET man-
ufacturing process [62]. Two of its cores are big ARM CortexA-78 cores, each with a 
clock speed up to 2.4 GHz, used for rigorous tasks. The other six cores are LITTLE 
ARM Cortex-A55 cores, each with a clock speed up to 2.0 GHz used for small tasks 
[63]. 

Both Exynos 1280 and Snapdragon 778G+ have the same number of cores, as well 
as similar architecture, which implies that both process have the same pipeline archi-
tecture and depth.  

4.3 Hisilicon Kirin 980 

Huawei HiSilicon Kirin 980 is a 64-bit octa-core processor that comprises two Cor-
tex-A76 cores clocked at 2.6 GHz, two Cortex-A76 cores clocked at 1.92 GHz, and 
four Cortex-A55 cores clocked at 1.8 GHz [64]. 

Table 1 summarizes the characteristics of the three-selected processors. 
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Table 1.  Summary of the Specifications of the Three-Selected Processors 

Factor 
                  Brand Snapdragon 778G+ Exynos 

1280 
Kirin  
980 

Cores 8 

Pipeline Depth Variable-length (big cores) 
8 (LITTLE cores) 

CPU 1x Cortex-A78 
4x Cortex-A55 

2x Cortex-A78 
6x Cortex-A55 

4x Cortex-A76 
4x Cortex-A55 

CPU Clock 
1x 2.5GHz (A78) 
3x 2.4GHz (A78) 
4x 1.9GHz (A55) 

2x 2.4GHz (A78) 
6x 2.0GHz (A55)  

2x 2.6 GHz (A78) 
2x 1.92 GHz (A78) 
4x 1.8 GHz (A55) 

Architecture 64-bit ARM  

5 Experimental results 

The experiments are conducted on three mobile devices, namely, (1) Motorola Edge 
30 5G equipped with a Snapdragon 778G+ microprocessor, (2) Samsung Galaxy 
XCover Pro 2 with an Exynos 1280 processor, and (3) Huawei P40 Pro with a HiSilicon 
Kirin 980 processor.  

There are no select ion criteria on the phones, except that we intended to experiment 
all the three types of processors. Those were the devices available when conducting the 
research.  

The performance test are configured to run using the following benchmarks: (1) 
Geekbench, (2) Benchmark & Tuning, (3) CPU and Battery Temperature, and (4) 
Power Consumption. 

5.1 Geekbench 

It is a benchmark commonly used for performance testing and is implemented on 
single and multicore [65]. Figure 4 shows results of applying Geekbench on the three 
aforementioned CPUs using a single core.  

Results of Figure 4 do not consider the number of cores in the SoC. According to the 
results, Snapdragon 778G+ comes in the first place with 775 points, followed by 
Exynos 1280 with 746 points, then Kirin 980 with 701 points. Actually, Snapdragon 
and Exynos came in the first two places due to the type of pipeline used in each of them, 
which comprises additional stages and out-of-order stages. Additionally, they both have 
Cortext-A78 with higher CPU Clock rate rather than Kirin processor. 
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Fig. 4. Geekbench Scores on Single Core 

Figure 5 shows the results of running the Geekbench on the same three processors, 
this time on a multicore basis.  

 
Fig. 5. Geekbench Scores on Multicore 

Kirin 980 is in the last place again, this is because it has Cortex- A78 cores and 
Cortex- A55 cores which have lower specifications than those of the Cortex-A78 and 
Cortex-A55 cores that used in Snapdragon 778G+ and Exynos 1280. Snapdragon 
778G+ is in the first rank again, followed by Exynos1280. Although they both have 
Cortex A78 and Cortex A55 cores, as well as the same pipeline stages and architecture, 
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but the 5nm Fin-FET technology used in Snapdragon 778G+ reveals the difference, as 
it comprises multi-gate transistors which improves the current flow, reduces the current 
leakage, and thus improves the overall performance. 

5.2 Antutu benchmark 

This benchmark is used to measure the performance of the CPU, Memory, and I/O 
without wasting the battery's energy. The benchmark supports multicore, with the ca-
pability to run single-threaded and multithreaded tests [66]. Figure 6 shows results of 
running this benchmark on the three-selected processors. 

 
Fig. 6. Benchmark & Tuning Results 

The benchmark measures CPU capability by executing arithmetic operations, sorting 
algorithm, and cryptography operations. To measure memory capability, the bench-
mark uses some memory operations such as resources allocation. Finally, I/O capability 
is measured by executing sequential-file access, random-file access, and database read-
ing/writing operations.  

Again, Snapdragon 778G+ achieved the highest scores in CPU tests. Exynos 1280 
follows in the second place with a slight difference. Finally, Kirin 980comes in the last 
place. 

Typically, the results that were obtained so far by this benchmark conform to the 
previous results that we obtained by the Geekbench test, which can be considered as a 
double check on the CPU performance.  
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5.3 CPU and battery temperature 

This test measures CPU and battery temperature when the CPU load increases. Fig-
ure 7 shows CPU temperature and Figure 8 shows battery temperature. In both figures, 
the lower the values, the better the results are. 

 
Fig. 7. CPU Temperature 

 
Fig. 8. Battery Temperature 

Although Snapdragon 778G+ and Exynos 1280 have approximately the same CPU 
clock rate, a slight difference in battery temperature is realized when the CPU load was 
100%, this is because Snapdragon processor throttles down several times when big 
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cores switch to the maximum speed (2.5 GHz). This throttle causes the CPU tempera-
ture to boost. On the other hand, Exynos 1280 big cores take several minutes on the 2.4 
GHz speed before throttling down. Additionally, the 5nm FinFET SoC has a thermal 
headroom available to cool the SOC down when the CPU core load goes high. How-
ever, Hisilicon Kirin 980 have more LITTLE cores, it is suitable for the power con-
sumption situation. This, in turn, has a great influence on reducing the CPU and battery 
temperature. 

5.4 Power consumption 

This test has been conducted to compare power consumption capability when the 
CPU load increases. Figure 9 shows results on four CPU load values with Hisilicon 
Kirin 980 showing the best results. 

 
Fig. 9. Power Consumption 

The values are obtained by measuring total energy consumption during each test, 
which takes two minutes, and repeating the test five times to ensure accuracy of the 
obtained results, then we take the average of the readings.  

It is noteworthy that each time we deduct the power of the screen in order to give a 
pure representation of the load power of the SoC only. 

As long Kirin 980 uses four Cortex-A55 1.8 GHz cores, then, the power consump-
tion by those cores are the least. This is because the CPU overhead is reduced in those 
cores. Exynos 1280 comes in the second place, followed by Snapdragon 778G+, which 
comes in the last place.  

iJIM ‒ Vol. 17, No. 13, 2023 105



Paper—A Comparative Study on the Performance of 64-bit ARM Processors 

In average, Figure 10. Shows that Snapdragon 778G+ achieved the best results. This 
gives an intuition that Exynos 1280 is not affected by CPU throttling or CPU and bat-
tery overheating. Exynos 1280 comes in the second place, in average. Finally, Hisilicon 
Kirin 980 comes last except in power consumption tests. 

 
Fig. 10.  Exynos, Snapdragon, and Kirin Comparison 

According to the results we obtained, we can divide the SoC's into two categories. 
The first is the high-performance category, which contains Snapdragon 778G+ and 
Exynos 1280. Actually, these two processors recorded slight differences between them 
due to leveraging the big.LITTLE architecture. The second category is the low-power-
consumption category, which is the Hisilicon Kirin 980.  

In conclusion, each SoC has its advantages and disadvantages. For instance, Figure 
10 shows Snapdragon 778G+ has an increased CPU performance compared to Kirin 
980 by 1000 unit (almost 25%). On the other hand, Kirin 980 achieves lower device 
power consumption. Regarding Battery temperature, there is a 10-degree Celsius for 
Kirin 980 lower than Snapdragon 778G+, which is considered a high difference, and 
thus it appears to be a disadvantage of Snapdragon 778G+. Additionally, there is a 9-
degree Celsius difference for Kirin 980 over Exynos 1280, which constitutes a heating 
problem with Exynos 1280.   

Similarly, Snapdragon 778G+ performance increases by 25%, power consumption 
increases by 20%, and CPU temperature increase by 19%. Those readings for Snap-
dragon 778G+ are considered valuable. On other hand Hisilicon Kirin 980 increase the 
performance by only 18% and decrease the power consumption by 25% but increase 
the CPU temperature by 17%, which consider worthless. Regarding Exynos 1280, it 
increases the performance by 20%, with relatively high-power consumption by 23%, 
and CPU temperature by 21%. Briefly, Snapdragon 778G+ is the best SoC, followed 
by Exynos 1280and finally Kirin 980. 
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6 Conclusion 

ARM processors have combined the benefits of RISC architecture's while imple-
menting some not so trifling components. The right arrangement of architecture and the 
simplicity of ARM cores made them the mostly used processor cores in the mobile 
world.  

In this paper, we evaluated mobile ARM CPU designs and how design development 
impacted the mobile's performance and power consumption. We studied advantages of 
the 64-bit architecture. We considered how pipeline design and depth affects the per-
formance, we also analyzed the effect of the processor cores on both CPU and battery 
temperature. The results indicate that mobile ARM processors design generations have 
exhibited significant performance improvements through aggressive core scaling tech-
niques. 

we believe that there are no significant variations between various types of phones 
with the same processors. As a result, there are no significant differences in the results 
if the experiments were conducted on different devices. 

As a future work, machine learning and deep learning [67] techniques can be used 
to predict power and energy consumption and efficiency based on the architecture of 
the processor [68, 6], such as artificial neural networks (ANN) [69], and convolutional 
neural networks (CNN) [70]. Metaheuristic algorithms can be also used to suggest op-
timized solutions to the performance of mobile devices, such as harmony search (HS) 
[71], genetic algorithm (GA) [72, 73], and grey wolf optimizer (GWO) [74]. Also, pro-
cessor performance can be investigated on IoT [75]. Fuzzy logic can also be incorpo-
rated in the investigation and design of energy-efficient mobile solutions [76, 77].  
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