
PAPER
PROBLEMS IN CONTEXT-AWARE SEMANTIC COMPUTING

Problems in Context-Aware Semantic Computing
http://dx.doi.org/10.3991/ijim.v8i3.3870

O.A. Nykänen and A. Rivero Rodriguez
Tampere University of Technology, Tampere, Finland

Abstract—Acknowledging the user context, e.g., position and
activity, provides a natural way to adapt applications ac-
cording to the user needs. How to actually capture and ex-
ploit context, however, is not self-evident and it is tempting
to assign the related responsibilities to individual context-
consuming applications. Unfortunately, this confuses the
user, complicates application development and hinders con-
text-aware semantic computing as a research discipline. In
this article, we outline context-aware semantic computing
research topics and the state-of-the-art mobile application
development frameworks of special interest to us, acknowl-
edging best practices for accessing and modeling sensor
context. From the integrated point of view, context-aware
semantic computing is demonstrated in terms of a software
component called context engine. In order to better under-
stand how theory is tied with practice, we also introduce a
simple context engine prototype. Finally, we use the re-
search background and the empirical setting to discuss the
significant problems and relevant research directions in
context-aware semantic processing.

Index Terms—Context Engine, Context-Aware Services,
Mobile Computing, Semantic Computing

I. INTRODUCTION
Acknowledging the user context provides a natural way

to focus user attention and the use of resources in applica-
tions. For instance in mobile applications, user position,
time, calendar activity, and task establish a convenient
starting point for filtering, organizing, and providing ac-
cess to relevant information and tools.

Pioneering research in context-aware computing re-
search dates back to early 1990s [7]. Since then, studying
and building context-aware systems have been first tack-
led in application-specific manner, then in terms of reusa-
ble toolkits, and finally, on infrastructure level [19]. For
various reasons, however, the rate of infrastructure-level
deployment and adoption in production systems is still
catching up. Significant technological progress has been
made, in particularly in mobile applications [34]. Simply
looking at application volumes, it is fair to say that con-
temporary mobile sensor frameworks establish the de fac-
to technology driver for context-aware computing.

Still, despite the research results and technological ad-
vancements, it is not self-evident how context should be
realized and what is the role of sophisticated context-
aware computing in the application ecosystem(s). From
the perspective of context-aware computing, the current
sensor APIs and frameworks provide rather low-level ac-
cess to sensor information, which in practice suggests that
each application deals with the context as it sees fit. This
confuses users and hinders the development of more ab-
stract context-aware computing.

A modern reincarnation of the middleware for context-
aware computing is a system called a context engine. In
brief, the main task of a context engine is to filter and re-
fine the contextual clues, e.g., for recommendation appli-
cations [30].

Through this notion of the context engine, context-
aware computing gets closely affiliated with a multidisci-
plinary research topic called semantic computing [39]. In
brief, semantic computing is about computing with (ma-
chine processable) descriptions of content and (user) in-
tentions [22]. Aligned with Semantic Web technologies
[46], this provides the methodological and technological
baseline for modeling, understanding, and computing with
the user context (cf. e.g. [43]). Significant research prob-
lems, however, need still to be properly addressed before
the promise of context-aware semantic computing can be
fulfilled.

In this article, we outline context-aware semantic com-
puting research topics and the state-of-the-art mobile ap-
plication development frameworks of special interest to
us, acknowledging best practices for accessing and model-
ing sensor context. From the integrated point of view,
context-aware semantic computing is demonstrated in
terms of a software component called context engine. In
order to better understand how theory is tied with practice,
we also introduce a simple context engine prototype. Fi-
nally, we use the research background and the empirical
setting to discuss the significant open problems and rele-
vant research directions in context-aware semantic pro-
cessing.

The main contribution of this article is to review the re-
lated sensor and context modeling research in order to
systematically characterize the role of context-aware se-
mantic computing in (mobile) applications, and to use this
setting to discuss the related significant research and engi-
neering questions.

Considering (our) future research, we believe that con-
text-aware semantic computing will have an increasingly
significant impact in application development. In addition
to mainstream mobile computing, perhaps two of the most
prominent application areas with a large volume of indus-
trial applications include Web of things and the Industrial
Internet paradigm [48] [14].

Our current work stems from the ongoing Marie Curie
ITN research project MULTI-POS, Multi-technology po-
sitioning professionals (Grant agreement no. 316528,
2012-2016) where we study context-aware semantic pro-
cessing.

The rest of this article is organized as follows: in Sec-
tion 2, we outline the background of our work, highlight-
ing the current technology driver and the best practices for
modeling context. In Section 3, we present context engine
architecture and a simple prototype implementation.
Equipped with the research background and implementa-

32 http://www.i-jim.org

PAPER
PROBLEMS IN CONTEXT-AWARE SEMANTIC COMPUTING

tion experience, we then discuss the related open research
and engineering questions in Section 4. Finally, in Section
5 we conclude the article.

II. BACKGROUND
Context can refer to any information that can be used to

characterize the situation of an entity, where an entity can
be a person, place, or physical or computational object [6].

Contextual information may include physical infor-
mation such as accelerometer data, virtual information
such as calendar events, recognized patterns such as ob-
served user activities, and predictions such as weather
forecasts. In the abstract sense, context can be used to
reduce the computational complexity of problem solving
by restricting the search space – in turn decreasing the
number of irrelevant end user choices.

A. Related Research and Basic Concepts
The term context-aware (computing) appeared first time

in early 1990s, with the beginning of context-aware sys-
tem research [7]. In addition to solely computing with
respect to time and place, context-aware systems can cap-
ture many other things as well, such as places, things,
commitments, and user knowledge and preferences [30].
A typical application area is context-aware search, which
includes the phases of data acquisition, context reasoning
and state updates, and contextualized output [44].

The main components of a context-aware system in-
clude context providers and context-aware services, per-
haps associated with service locating services or brokers
[19]. In applications, the computing context, the user con-
text, and the physical context are often differentiated [7].
Processing contextual information is carried out by a
component called context interpreter, and the relevant data
is stored in a context database. The basic activities include
context assertion, i.e. making contextual information
available, and context retrieval, i.e. exploiting the context
in an application [30]. Reasoning with the context is typi-
cally based on logic programming [5][20].

In brief, we may identify three complementary ap-
proaches on how the context providers acquire contextual
information [7][35][8]:

- Direct sensor access, where sensor information is di-
rectly read from the sensor APIs.

- Middleware infrastructure, which introduces a layered
architecture that enhances reusability and provides con-
current sensor access. Instead of accessing directly the raw
data from sensors, an intermediate software layer manages
sensorial data.

- Context server, which in addition allows gathering in-
formation from remote data sources and distributing the
costs of measurements and computations.

In any case, direct sensor access is not usually feasible
since sensor access needs to be encapsulated for multi-
tasking, concurrency etc.

In principle, context-computing tasks may be delegated
to a software component called context engine [30]. For
purposes of this article, we say that a context engine is a
software component, which integrates and refines the gen-
eralized (sensor) context, the related services, and the user
preferences, for the benefit of individual (user) applica-
tions. Note that the term context broker is sometimes used
for a similar architecture [8].

Typical tasks of a context engine include acting as a lo-
cal context provider, providing logical context interpreta-
tion, accessing external context providing services, and
managing an archived sensor information database e.g. for
minimizing battery consumption and user preferences.
Note that these tasks typically exceed the boundaries of
individual applications.

Acknowledging the close relationship between context
and sensor information, the notion of a "sensor" is typical-
ly generalized. We may acknowledge at least three differ-
ent types of sensors providing contextual data [4]:

- Physical sensors are the most frequently used sensors,
capable of capturing physical data (e.g. position, orienta-
tion, and acceleration).

- Virtual sensors provide contextual information from
applications and services. Virtual sensors may further be
based on local or external data sources (e.g. user calendar
vs. weather service).

- Logical sensors provide new contextual information
by combining and computing information from physical
and virtual sensors.

Considering past research, known context-aware
frameworks and systems include Context Broker Archi-
tecture (CoBrA), Context-Awareness Sub-Structure
(CASS), CORTEX, Gaia, Context Management Frame-
work, and Context Toolkit, which have introduced many
of the elements related to context-aware computing [4].
Besides query requests, (logical) reasoning my also be
founded on event-based processing [33].

Today, vendor-specific physical sensor middleware
frameworks establish the major technology driver in
mainstream context-aware computing. This has a major
impact both in application development and in the current
strategies of modeling context.

B. Current Technology Driver: Physical Sensor Context
A nice overview of the current state-of-the-art sensor

technologies can be compiled by looking at the wide-
spread mobile platforms, Android and iOS, and consider-
ing the various Web-based cross-platform development
tools.

Android developers can make use of contextual infor-
mation in several ways [1]. The first approach is using the
Android Sensor Framework, which includes the motion
sensors (e.g. accelerometers), environmental sensors (e.g.
temperature) and position sensors (e.g. orientation sensor).
It is also possible to access location information with Lo-
cation API and other additional location services, such as
Geofence API to alert user or applications when the user
is entering a certain region.

 iOS developers can access similar kinds of sensor in-
formation [2], with the chief exception of using Objective-
C instead of Java.

In addition to device-specific interfaces, various brows-
er APIs are also being developed. Accepting the obvious
challenges in generalizing the sensor context of different
operating systems, an interesting research perspective on
context providers is established by cross-platform tools.
These abstract the details of the various platforms, aiming
to allow implementation of an application and its user
interface for several mobile platforms more efficiently
[34]. Table 1 lists the most popular cross-platform devel-

iJIM ‒ Volume 8, Issue 3, 2014 33

PAPER
PROBLEMS IN CONTEXT-AWARE SEMANTIC COMPUTING

opment tools, pointing out what sensor information is cur-
rently available.

The need for standard access to application context has
been also acknowledged by the related standardization
organizations, namely the World Wide Web Consortium
(W3C). In particular, the standardization of the so-called
Open Web Platform includes several browser APIs that
can be used in device and application independent manner
for acquiring context [47].

It is interesting to observe that in most applications, de-
velopers must access and exploit sensor information di-
rectly, i.e. without the explicit notion of context engine.
Further, the sensor information is mostly related to partic-
ular mobile device; any negotiation with additional con-
text providing servers takes place in application-specific
manner and is not directly supported by the (sensor)
toolkits.

C. Modeling Context
Even if the mobile development frameworks do not yet

provide integrated means for context-aware computing,
various theoretical modeling approaches exist. We may
identify several major strategies for modeling context
[4][7], including key-value models, object-oriented mod-
els, and ontology-based models. Further, context can be
defined in various ways [11].

Currently, there is no commonly agreed standard model
or systems for sensing contextual information from vari-
ous sources to enable reuse across various middle-ware
systems and frameworks [4]. Ontology-based models,
however, seem to offer many desirable properties such as
information alignment, dealing with incomplete or partial-
ly understood information, domain-independent modeling,
and formally working with context model of varying level
of detail [8]. Adopting an context ontology standard might
be beneficial but require global consensus on the matter.

Perhaps the most widely known sensor ontology is the
W3C Semantic Sensor Network (SSN) ontology. SSN was
developed based on reviewing 17 existing sensor or ob-
servation-centric ontologies [9]. In order to normalize the
ontology and support its adoption with other ontologies,
the SSN ontology is aligned with the general DOLCE
Ultra Lite upper ontology, providing concepts such as
PhysicalObject, Event, Situation, and Region.

According to the SSN ontology, sensors may have
properties such as accuracy in certain conditions, or may
be deployed to observe a particular feature (see Figure 1)
[29]. While abstractions or extensions are applicable, the
SSN ontology in practice emphasizes the aspects of physi-
cal sensor networks.

Some context ontologies, however, by design do
acknowledge the generalized logical (sensor) context. A
prime example is the Service-Oriented Context-Aware
Middleware (SOCAM) architecture, which aims providing
efficient infrastructure support for building context-aware
services in pervasive computing environments [19].

In SOCAM, context modeling is carried out in OWL
ontologies based on two-level information architecture:
the general context concepts are captured in the common
upper ontology and application-specific concepts in do-
main ontologies (see Figure 2). This approach suggests
using upper-level context ontology, in addition to general
top-level alignment ontology, for integrating various kinds

of domain ontologies, suitable for explaining their role in
providing context.

TABLE I.
APIS SUPPORTED BY MAIN CROSS-PLATFORM DEVELOPMENT TOOLS

(ADAPTED FROM [34])

Tool

API

Rhodes
 (JS)

Phone-
Gap
(JS)

Mo-
Sync
(JS)

Mo-Sync
(C, C++) Dragon-

Rad

Accelerometer X X
Barcode X X X
Bluetooth X X X
Calendar X X X X X
Camera X X X
Capture X X X X
Compass X X
Connection X X X
Contacts X X X
Device X X X X X
File X X X X
Geolocation X X X X X
Menu X X
NFC X X X X X
Notification X X X X
Screen Rot X X X
Storage X X X X X

Figure 1. Overview of the SSN ontology structure prior to its modular-

ization and alignment [29]

Figure 2. Class hierarchy of the upper (SOCAM) ontology [19]

34 http://www.i-jim.org

PAPER
PROBLEMS IN CONTEXT-AWARE SEMANTIC COMPUTING

It is worth observing that both of the referred ontologies
above are static by design: They provide a fixed structure
for observations (etc.) that is assumed to be true and
which does not change overtime. Indeed, a considerable
practical challenge lies in managing imprecise, uncertain,
or evolving information. While the significance of this
topic is widely acknowledged in the related research
[41][3], related standardization is still underway [28].

III. CONTEXT ENGINE
It is quite difficult to study context-aware semantic

computing and context engines based on very abstract
definitions. To make discussion more concrete, let us next
first specify a certain kind of context engine and then il-
lustrate the chief properties of a related prototype imple-
mentation. The context engine architecture is novel but of
course influenced by the aforementioned, related research.

A. Main Properties and Abstract Architecture
In brief, a context engine accepts the overlapping re-

sponsibilities and tasks of the local context provider and
(logical) context interpretation, which typically exceed the
boundaries of individual applications. The essential tasks
of a context engine include providing context information
to the applications via various logical queries in terms of a
standard I/O interface, and managing user preferences.

The chief communication mechanism between the con-
text engine and the applications is the context ontology.
Any domain-specific knowledge is captured in terms of
references to domain-specific ontology modules and user
preferences.

Individual applications do not necessarily have to fully
understand the knowledge base of the context engine for
making simple queries or asking questions about the cur-
rent context, and vice versa. For instance, a simple teleph-
ony application might only need to know whether the us-
er's activity status is currently "working" and if the user is
in a business meeting or not.

Note that domain-specific knowledge, i.e. how to actu-
ally utilize context in applications is not a responsibility of
the context engine (cf. Figure 2). It does not have to un-
derstand application specific ontologies either. When
needed, any extralogical computation (including heuris-
tics, predictions, etc.) can be delegated to other services.

Simplified context engine architecture is depicted in
Figure 3. In brief, the end user interacts with an applica-
tion, which executes user activities and accesses contextu-
al information through the context engine. Typical user
applications include information management and com-
munication applications, such as calendar, messaging and
telephony applications, and novel software agents.

The context engine implements the context engine (ser-
vice) Application Programing Interface (API). When con-
text-aware semantic processing is needed, the user appli-
cation requests context engine services. To fulfill these
requests, the context engine has access to local context
providers and possibly to external services. In addition to
asking individual sensor values, a context interpretation
query might ask the context engine to interpret and infer
additional information about a given context, e.g. asking
the known weather prediction (or archived value) for a
given place at a given time. This might involve requests to
external services.

Figure 3. Simplified Context Engine Architecture

To provide internal (sensor) context archives, the con-
text engine maintains a context database. This can be
used, e.g., to analyze and optimize context engine behav-
ior. Note that the applications may also depend on exter-
nal services in their internal design.

From the perspective of the end user, the context engine
also manages global user preferences that are taken into
account in context-aware semantic computing. For in-
stance, the user might prefer not accepting certain kinds of
phone calls outside the office hours. For this purpose, the
context engine provides the user a dashboard GUI, for
defining appropriate context engine settings – or explain-
ing how to extract the information from sensor data. The
user preferences might be considered as a rule system that
refers to the context ontology and user tasks.

The end user dashboard might also be used for provid-
ing extra or overriding information, e.g. to check out how
context affects a particular applications, or for overriding
physical sensor context (perhaps "lying").

Notably extensions to the context engine include an
event listener service (e.g. notify application when specif-
ic contextual event takes place) and shortcuts for certain
kinds of commonly needed queries. More complex con-
text engines might also extend the related knowledge ba-
ses and add extralogical services to the content engine I/O
interface.

B. Experimental Context Engine Environment
We anticipate that eventually, a context engine (of a

mobile device) is a service provided by an appropriate
sensor framework, including an operating system level
utility similar to personal details or privacy settings. When
Internet connectivity can be assumed, the main alternative
is providing context engine as a webized service.

Further, considering the current mobile application eco-
system(s), it seems likely that context engines are a busi-
ness for large and established Internet service and applica-
tion providers, simply due user base, credibility and criti-
cal mass of applications.

In the meantime, however, it is instructional to outline a
research prototype deployable to a particular device that
allows us to study both the concept and implementation of
context-aware semantic computing. This allows us also to
learn from the developer and the user experience, and en-
ables discussing context-aware semantic computing re-
search questions in a concrete setting.

iJIM ‒ Volume 8, Issue 3, 2014 35

PAPER
PROBLEMS IN CONTEXT-AWARE SEMANTIC COMPUTING

Figure 4 presents the main view of a Java-based context
engine dashboard prototype running in an Android emula-
tor. The user interface includes the essential functionality
to start and stop the context engine service and to provide
custom properties to the context ontology. Note that in
this case, the context engine service has been physically
deployed in a mobile device; a design stance that we will
later challenge since the applications only need some ac-
cess to the API and the dashboard.

Indeed, from the implementation and deployment per-
spective, a major design decision lies in exposing the CE
API to the applications. In an Android environment, a
standard approach would be to deploy the context engine
as a CE background service bound to a CE dashboard ac-
tivity equipped with a graphical user interface. In this ar-
chitecture, any application that wishes to utilize CE ser-
vices would have to either bind to the CE service, or
communicate with the CE activity via the so-called intent
messaging. While this approach is clearly the most power-
ful one within the Android environment, it would require
that each application is a native Android application
which somewhat complicates experimental development.

For research purposes, we have adopted an alternative
implementation strategy. In our case, the context engine
includes a web server that allows publishing the CE API
over HTTP, based on the NanoHttpd server implementa-
tion [15]. This allows prototyping the context engine quite
flexibly, and supports experimenting and analyzing the
context engine in various real and in simulated environ-
ments.

In itself, a sole context engine is of course not useful.
Figure 5 depicts a sample Javascript application executed
within the default browser of the Android emulator. In
brief, the application depicts user location using the
Google Maps API [17] and shows the activity status. Note
that due to the default browser's Javascript security re-
strictions, the application needs to be downloaded through
the localhost.

Behind the scenes, the application communicates with
the context engine prototype via the HTTP-based Context
Engine API, which allows accessing the local, built-in
(generalized) sensor information. These include a subset
of the Android sensor API and the custom properties
communicated via the dashboard interface.

In cases when key-value sensor data is not sufficient,
contextual information can be semantically bound togeth-
er via the sample context OWL ontology. Put another
way, the classes of the context ontology can be populated
by the individual sensor information retrieved from the
environment. In principle introducing any of the sensor
APIs (cf. Table 1) is also straightforward.

In a production environment, controlling the applica-
tions' access to context information would require addi-
tional management controls. Recall that when installing a
native android application, similar information is asked
from the user, e.g. for granting access to user location or
contacts.

Since the Google Maps API is used in rendering the
map view, some user data is exposed to Google by the
sample application. The (user of the) context engine can
either choose to accept this, or refuse using the application
altogether. While several map providers exist, it seems
likely that all free services include terms that allow the
service providers to collect usage data in order to improve

Figure 4. A context engine dashboard prototype

Figure 5. A sample browser application accessing the context engine

the user experience and to provide value-added services to
their customers.

Once started, the context engine provides applications
two ways to access context-aware processing services.
The first approach is straightforwardly asking specific,
most recent raw sensor information using a HTTP GET
request. In this case, the context ontology is only used as a
sort of information architecture, for application and con-
text engine (key-value) communication. The second, more
powerful approach is formulating a query in SPARQL,
using an Android port of the Jena framework [13]. With
the help of reasoner services, e.g. transitive or OWL rea-
soning, this allows logical context (ontology-based) inter-
pretation beyond mere syntactic queries.

When compared to using the built-in Android sensor
API – in addition to the interface design – a major feature
of the context engine prototype is that it can provide a
single entry point to all sensor information. This allows
analyzing context-aware processing, refining and optimiz-
ing the use of contextual information, and considering
various implementation strategies, above the level of indi-
vidual applications.

In addition to accessing the explicit context providers,
the context engine can also exploit the usage patterns of
the applications to infer the properties of the current con-
text. For instance, with proper training data, the current
status (Working) might be statistically inferred with cer-
tain degree of belief from the user logs so that the user
would not have to explicitly enter the status at all.

36 http://www.i-jim.org

PAPER
PROBLEMS IN CONTEXT-AWARE SEMANTIC COMPUTING

IV. SIGNIFICANT RESEARCH PROBLEMS
The research background suggests that there is a theo-

retical need for a context engine component that mixes the
responsibilities of context-aware and semantic computing.
Empirical work verifies that this is also doable in several
types of common application systems, including sensor
networks and mobile machine platforms.

In the general case, however, several practical and theo-
retical challenges still remain, including:

Deployment. Deploying a context engine requires not
only providing it to a device but also exposing it to appli-
cations – and attracting application developers' interest in
using it.

In principle, access to a context engine can be provided
on the operating system level (such as the Android Sensor
Framework [1]), cross-platform development tool level
(such as PhoneGap [34]), browser platform level (such as
the navigator browser API [45]), on Internet service level
(such as Google API [17]), or as a "yet another" HTTP
service (such as our Context Engine prototype).

The device independent approaches provide obvious
flexibility of devices and platforms but might require In-
ternet connectivity, lack device-specific features, and raise
privacy concerns.

Efficiency. In a production environment, it is not self-
evident how the context ontology should be populated
since accessing sensor information consumes processing
and energy resources. The context engine should thus
somehow optimize its performance, typically in terms of a
trade-off between accuracy and costs [37]. One approach
is to use a context database to cache recent sensor readings
and/or to choose the cheapest matching sensors for better
performance [31]. Further, deploying a complete query
endpoint or a reasoner into a mobile device introduces its
own overhead [13][5].

A potential solution is exploiting external computing
services. In cases when the role of external context pro-
viders is particularly significant or Internet access must
anyway be assumed, this might in fact suggest delegating
certain context engine responsibilities to an external ser-
vice altogether (cf. [12]). Relying onto external providers
is also in line with the business logic of the major Internet
service and product providers (c.f. [18]).

Note, however, that deploying e.g. the reasoning and
the database modules of the context engine as an external
service does not completely remove the need for local
components with local computing costs [34]. This is par-
ticularly true when accessing local sensors.

Privacy. From a very practical point of view, the main
utility of the context engine lies in the fact that it provides
(within device or user session) a "centralized" access point
to context information. This allows it to provide individual
applications far better and more abstract information about
the user context than each application could possibly do
on its own. Note that in addition to using the explicitly
registered context providing services, the context engine
may also keep logs of the regular applications usage, e.g.
to statistically infer contextual information.

When detailed personal information is managed, poten-
tial privacy issues are of course raised [8]. While depend-
ency on external services may significantly help in provid-
ing more efficient context engine services of better quali-

ty, the obvious challenge lies in controlling and managing
access to this information [24].

The baseline level of privacy is established by the relat-
ed technologies and policies, such as submitting and stor-
ing sensitive information anonymously and securely [23].
A significant dependency lies in managing user prefer-
ences and matching these with the end user agreements
when using various kinds of applications and services.
Note that involves not only the context engine but also the
individual application components (cf. [17]).

Understandability. In principle, it is not technically
too difficult to provide a sophisticated rule system so that
users could quite flexibility assert rules for acquiring and
exposing their personal information to applications and
managing how context is used in applications. For in-
stance, consider adding a complete user preference rule
component to our context engine. Such system, however,
would be close to full-fledged logic programming and
might be quite difficult use and understand in full detail
[21].

More on the end user side, the adaptation due context-
aware processing is another potential issue since it can be
very difficult to users to recognize which parts of the ap-
plication were adapted due context-aware computing in
the background. To minimize the problems, adaptation
might be visualized and analyzed during design [16].
Quality of contextual information is also a potential issue
and may require managing additional metadata for quality
control [26].

 Problems of adaptive systems are well understood in
personalized search systems, where increased adaptation
may e.g. guide the decision making of the inexperienced
users, but be perceived as too restrictive by expert users
[25]. This seems to insist a tradeoff between the level of
application adaptation and user control.

Semantics. Finally, while logical queries based on sen-
sor information using a fixed ontology suffice for many
tasks, a fundamental challenge is introduced by the very
notion of context itself: Some contextual properties can be
derived from others and thus, context is not a fixed con-
cept in the first place [10].

For instance, the user location (e.g. Office) can some-
times be reliably used to (statistically reason and) predict
the user activity status (e.g. Working), and vice versa.

Further, sensor and other information sources evolve
over time, which should also be taken into account in se-
mantic modeling. In particular, when regulations or organ-
izational processes undergo changes at the workflow lev-
el, so does the notion of context. This may involve intro-
ducing new terms explaining context, or worse; using the
old terms with a new meaning.

Thus, the design of the context ontology should ideally
reflect the fact that some contextual properties may de-
pend on each other, and that the context ontologies evolve
over time. Alternatively, ontologies can also be used to
support and evaluate the quality of statistical reasoning
[36]. While using an alignment or top-level ontology
seems indeed necessary, it may not be sufficient unless
further semantics required in the evolution (e.g. same as,
broader than) and statistical reasoning (e.g. evidence for,
statistically independent) are encoded as well. Indeed,
semantically modeling the aforementioned challenges,
include a variant of the frame problem [38] and schema-

iJIM ‒ Volume 8, Issue 3, 2014 37

PAPER
PROBLEMS IN CONTEXT-AWARE SEMANTIC COMPUTING

level information evolution [32], which might well be
called the hard problems of semantic computing.

V. CONCLUSION
Access to contextual information provides computa-

tional advantage in theory and in practice. In this article,
we have outlined key elements of contemporary context-
aware semantic computing. To make the discussion more
concrete, we have also introduced a simple context engine
prototype environment.

Intuitively, the insight of context-aware semantic com-
puting is quite clear: information about the proper context
can significantly improve the user experience by enabling
the design of more efficient applications and help in opti-
mizing the related computation beneath. However, when
the related theoretical and engineering dependencies are
analyzed in more detail, the single objective of context-
aware semantic computing gets broken down into several,
evidently competing design requirements [40].

Instead of a single problem, we thus have many. To ad-
dress this observation, we have acknowledged several
significant research questions in the area, including de-
ployment, efficiency, privacy, understandability, and se-
mantics.

Looking at the specific research problems related to
context engine implementation, the topics of efficiency
and access, understandability, and privacy deserve special
attention. In principle, a local installation of the context
engine gives best control over user privacy. In practice,
however, the design choices and the user agreements of
individual applications may easily invalidate this assump-
tion. Local installation also means computation and
memory overhead, and of course increases the risk of a
single-point failure.

When Internet connectivity can be assumed, the idea of
decentralizing the context interpretation and sensor (etc.)
database management tasks seems like a viable design
stance. This also potentially provides the context engine
the ability to coordinate e.g. pattern recognition, classifi-
cation, and context ontology evolution activities among
users groups and sharing and reusing sensor data, effec-
tively providing more efficient and better user experience.
It seems likely, however, that this takes place at the ex-
pense of user privacy, even if it might offer only a limited
access to the local sensors.

Strictly from the semantic computing point of view, the
question how to properly model the related semantics,
coined by the context ontology, is also highly relevant.
Even quite simple use case scenarios point out that assum-
ing fixed context ontology is an oversimplification, and
that evolution at the level of domain-specific context on-
tology components have to be assumed at some point.
Further, when learning, classification, and prediction algo-
rithms are taken into account, it seems rather obvious that
particular sensor information may appear either in the role
of "physical" or "logical" sensor, e.g. in relationship with
most recent sensor data and a particular prediction algo-
rithm. This suggests introducing also evidence-based rela-
tionships (etc.) in the context ontology.

Thus, due to the complexity of the topic, it is unrealistic
to assume that a single best solution exists for context
engines and hence context-aware semantic computing in
general. Instead, one must be satisfied with special-
purpose approaches, e.g., finding a compromise between

easy deployment and privacy, and between expressivity
and understandability. From the perspective of context
engine standardization, this of course requires prioritizing
the design objectives, and/or acknowledging several con-
text engine profiles and modes.

We believe that the large-scale adoption of context-
aware semantic computing is inevitable, and is likely to
take place in terms of the mainstream Internet service and
product providers. Either way, context-aware semantic
computing will have profound impact in applications.

REFERENCES
[1] Android Developer. Location and Sensors APIs. Available at

http://developer.android.com/guide/topics/sensors/index.html
[2] Apple Developer. Features – iOS Technology Overview. Availa-

ble at https://developer.apple.com/technologies/ios/features.html
[3] J.C. Augusto, J. Liu, P.J. McCullagh, H. Wang, and Y. Jian-Bo,

"Management of uncertainty and spatio-temporal aspects for mon-
itoring and diagnosis in a Smart Home," International Journal of
Computational Intelligence Systems, 1(4) 2008, 361-378.
http://dx.doi.org/10.1080/18756891.2008.9727632

[4] M. Baldauf, S. Dustdar, and F. Rosenberg, "A Survey on Context
Aware Systems," Int. J. Ad Hoc Ubiquitous Computing 2, no. 4,
2007, 263–277. http://dx.doi.org/10.1504/IJAHUC.2007.014070

[5] K. Broda, K. Clark, R. Miller, and A. Russo, "SAGE: A Logical
Agent-Based Environment Monitoring and Control System," Pro-
ceedings of the 3rd European Conference on Ambient Intelligence,
AmI-09, 2009, pp. 112-117, Springer.

[6] J. Brown, P., Nigel Davies, Mark Smith, and Pete Steggles, "To-
wards a Better Understanding of Context and Context-
Awareness," Handheld and Ubiquitous Computing, edited by
Hans-W. Gellersen, pp. 304–307. Lecture Notes in Computer Sci-
ence 1707. Springer Berlin Heidelberg, 1999.

[7] G, Chen and D. Kotz, "A survey of context-aware mobile compu-
ting research," Technical Report TR2000-381. Dartmouth College,
2000.

[8] H. Chen and T. Finin, "An ontology for a context aware pervasive
computing environment," IJCAI Workshop on Ontologies and Dis-
tributed Systems, Acapulco MX 2003.

[9] M. Compton, P. Barnaghi, L. Bermudez, R. Garcia-Castro, O.
Corcho, S. Cox, J. Graybeal, M. Hauswirth, C. Henson, A. Her-
zog, V. Huang, K. Janowicz, W.D. Kelsey, D. Le Phuoc, L.
Lefort, M. Leggieri, H. Neuhaus, A. Nikolov, K. Page, A. Passant,
A., Sheth, and K. Taylor, "The SSN Ontology of the W3C Seman-
tic Sensor Network Incubator Group," Journal of Web Semantics,
2012. http://dx.doi.org/10.1016/j.websem.2012.05.003

[10] U. Christoph and J. von Stülpnagel, "Context Detection on Mobile
Devices," Second Workshop on Context-Systems Design, Evalua-
tion and Optimisation (CoSDEO 2011), in conjunction with the
24th International Conference on Architecture of Computing Sys-
tems (ARCS) in Como, Italy, February 22nd - 25th, 2011.

[11] A. Dey and G. Abowd, "Towards a better understanding of con-
text and context-awareness," Workshop on the What, Who, Where,
When and How of Context-Awareness at CHI 2000, 2000.

[12] O. Droegehorn, "Optimizing background-communication of mo-
bile Devices and Sensors to drive End-User Services," IEEE 22nd
International Symposium on Personal, Indoor and Mobile Radio
Communication, 2011.

[13] e-Lite. Apache Jena on Android. Available at
http://elite.polito.it/jena-on-android

[14] Forschungsunion, "Securing the future of German manufacturing
industry: recommendations for implementing the strategic initia-
tive INDUSTRIE 4.0," Final report of the Industrie 4.0 Working
Group. Forschungsunion & Acatech, 2013.

[15] GitHub. NanoHttpd. Available at https://github.com/NanoHttpd/
nanohttpd

[16] J. C. Georgas, A. van der Hoek, and R. N. Taylor, "Using Archi-
tectural Models to Manage and Visualize Runtime Adaptation,"
Computer, October 2009. http://dx.doi.org/10.1109/MC.2009.335

[17] Google. Google Maps API. Available at https://developers.
google.com/maps/

38 http://www.i-jim.org

PAPER
PROBLEMS IN CONTEXT-AWARE SEMANTIC COMPUTING

[18] Google. Google+ API. Available at https://developers.
google.com/+/api/

[19] T. Gu, P. Hung Keng, and Z. Da Qing, "A Service-Oriented Mid-
dleware for Building Context-Aware Services," Journal of Netw.
Comput. Appl. 28, no. 1, 1-18, 2005. http://dx.doi.org/10.1016/
j.jnca.2004.06.002

[20] M. Hatala, R. Wakkary, and L. Kalantari, “Ontologies and rules in
support of real-time ubiquitous application,” Journal of Web Se-
mantics, Special Issue on ”Rules and ontologies for Semantic
Web”, vol. 3, no. 1, pp. 5–22, 2005.

[21] A. Hoffmann, Paradigms of Artificial Intelligence: A Methodolog-
ical & Computational Analysis. Springer-Verlag, August 1998.

[22] International Journal of Semantic Computing. World Scientific
Publishing. Available at http://www.worldscientific.com/
page/ijsc/aims-scope

[23] P. Jagtap, A. Joshi, T. Finin, and L. Zavala, "Preserving Privacy in
Context-Aware Systems," Fifth IEEE International Conference on
Semantic Computing, 2011.

[24] X. Jiang and J. A. Landay, "Modeling Privacy Control in Context-
Aware Systems," IEEE Pervasive computing, pp. 59-63, 2002.
http://dx.doi.org/10.1109/MPRV.2002.1037723

[25] A. Kamis and M.J. Davern, "Personalizing to Product Category
Knowledge: Exploring the Mediating Effect of Shopping Tools on
Decision Confidence," Proceedings of the 37th Hawaii Interna-
tional Conference on System Sciences, IEEE, 2004.

[26] E. Kim and J. Choi, "A Context Management System for Support-
ing Context-Aware Applications," IEEE/IFIP International Con-
ference on Embedded and Ubiquitous Computing, 2008.

[27] A. Kofod-Petersen and M. Mikalsen, “Representing and Reason-
ing about Context in a Mobile Environment,” Revue d’Intelligence
Artificielle, vol. 19, no. 3, pp. 479–498, 2005.
http://dx.doi.org/10.3166/ria.19.479-498

[28] K.J. Laskey, K.B. Laskey, P.C.G. Costa, M.M. Kokar, M. Trevon,
and T. Lukasiewicz, " Uncertainty Reasoning for the World Wide
Web," W3C Incubator Group Report 31 March 2008. Available at
http://www.w3.org/2005/Incubator/urw3/XGR-urw3/

[29] L. Lefort, C, Henson, and K. Taylor, "Semantic Sensor Network
XG Final Report," W3C Incubator Group Report 28 June 2011.
Available at http://www.w3.org/2005/Incubator/ssn/XGR-ssn-
20110628/

[30] P. Mehra, "Context-Aware Computing: Beyond Search and Loca-
tion-Based Services," IEEE Internet Computing 16, no. 2, 12 – 16,
2012. http://dx.doi.org/10.1109/MIC.2012.31

[31] S. Nath, "ACE: exploiting correlation for energy-efficient and
continuous context sensing," In MobiSys'12, June 25-29, UK, pp.
29-42, 2012.

[32] O. Nykänen, "Semantic Web for Evolutionary Peer-to-Peer
Knowledge Space," In Birkenbihl, K., Quesada-Ruiz, E., &
Priesca-Balbin, P. (Eds.) Monograph: Universal, Ubiquitous and
Intelligent Web, UPGRADE, The European Journal for the Infor-
matics Professional, Vol. X, Issue No. 1, February 2009, ISSN
1684-5285, CEPIS & Novática. Available at http://www.upgrade-
cepis.org/issues/2009/1/upgrade-vol-X-1.html

[33] T. Patkos, I. Chrysakis, A. Bikakis, D. Plexousakis, and G. Anto-
niou, "A Reasoning Framework for Ambient Intelligence," SETN
2010, pp. 213-222.

[34] M. Palmieri, I. Singh, and A. Cicchetti, "Comparison of Cross-
Platform Mobile Development Tools," 16th International Confer-
ence on Intelligence in Next Generation Networks (ICIN), pp.
179–186, 2012.

[35] A. Ranganathan and R.H. Campbell, "A middleware for context-
aware agents in ubiquitous computing environments,"
ACM/IFIP/USENIX International Middleware Conference, Rio de
Janeiro, Brazil, June 2003.

[36] D. Riboni, "Towards the Combination of Statistical and Symbolic
Techniques for Activity Recognition," IEEE Pervasive Computing
and Communications, 2009.

[37] N. Roy, A. Misra, C. Julien, S. K. Das, and J. Biswas, "An Ener-
gy-Efficient Quality Adaptive Framework for Multi-Modal Sensor
Context Recognition," IEEE International Conference on Perva-
sive Computing and Communications (PerCom), Seattle, March
21-25, 2011.

[38] S. Russel and P. Norvig, Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, 1995.

[39] P. Sheu, H. Yu, C.V. Ramamoorthy, A.K. Joshi, and L.A. Zadeh,
Semantic Computing. Wiley-IEEE Press, 2010.
http://dx.doi.org/10.1002/9780470588222

[40] W. Sitou, and B. Spanfelner, "Towards Requirements Engineering
for Context Adaptive Systems," 31st Annual International Com-
puter Software and Applications Conference, 2007.

[41] U. Straccia, "Foundations of Fuzzy Logic and Semantic Web
Languages," Chapman & Hall, USA:CRC Press, 2014.

[42] T. Strang and C. Linnhoff-Popien, "A Context Modeling Survey,"
Workshop on Advanced Context Modelling, Reasoning and Man-
agement, In UbiComp 2004 - The Sixth International Conference
on Ubiquitous Computing, Nottingham/England, 2004.

[43] A. Toninelli, R. Montanari, L. Kagal, and O. Lassila. "A Semantic
Context-Aware Access Control Framework for Secure Collabora-
tions in Pervasive Computing Environments," Proceedings of the
5th International Semantic Web Conference, Springer, pp. 5-9,
2006.

[44] E. Yndurain, D. Bernhardt, and C. Campo, "Augmenting Mobile
Search Engines to Leverage Context Awareness," IEEE Internet
Computing 16, no. 2, pp. 17–25, 2012. http://dx.doi.org/10.1109/
MIC.2012.17

[45] WebPlatform.org. APIs. Available at
http://docs.webplatform.org/wiki/apis

[46] W3C Data Web Activity – Building the Web of Data. World Wide
Web Consortium (W3C). Available at http://www.w3.org/
2013/data/

[47] W3C Standards. World Wide Web Consortium (W3C). Available
at http://www.w3.org/standards/

[48] W3C WOT. Web of Things Community Group. World Wide Web
Consortium (W3C). Available at http://www.w3.org/community/
wot/

AUTHORS
Dr. O. A. Nykänen works as Adjunct Professor at the

Tampere University of Technology, Department of Math-
ematics, Tampere, Finland (e-mail: ossi.nykanen@tut.fi).
His research interests include semantic computing, infor-
mation modeling and scientific visualization, (computer-
supported) mathematics and education, and the related
applications. In addition to his research and higher educa-
tion activities, Dr. Nykänen is the Manager of the World
Wide Web Consortium (W3C) Finnish office.

M.Sc. A. Rivero Rodriguez works as Researcher at the
Tampere University of Technology, Department of Math-
ematics, Tampere, Finland (e-mail:
Alejandro.rivero@tut.fi), within the Marie Curie ITN re-
search project MULTI-POS. His research interests include
context-awareness, semantic modelling/computing, and e-
learning.

This work was supported in part by the Marie Curie ITN research project
MULTI-POS, Multi-technology positioning professionals (Grant agree-
ment no. 316528, 2012-2016). Submitted 13 May 2014. Published as re-
submitted by the authors 08 June 2014.

iJIM ‒ Volume 8, Issue 3, 2014 39

	iJIM – Vol. 8, No. 3, 2014
	Problems in Context-Aware Semantic Computing

