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Abstract—Vehicle capacities and intelligence are rapidly increasing, which 
will likely support a wide range of novel and interesting applications. However, 
these resources are not effectively utilized. To take advantage of these invaluable 
capabilities in smart vehicles, they can be used in the cloud environment and can 
be operated through distributed computing platforms in order to benefit from 
their combined processing power, storage capacity, and memory resources. Ve-
hicular edge computing (VEC) is a promising field that allows computing tasks 
to be transferred from cloud servers to vehicular edge servers for processing, al-
lowing data and apps to be placed closer to vehicles (users). This paper proposes 
a framework that combines two modules, the first one for managing microservice 
caching in vehicle-mounted edge networks, such that we use cluster-based cach-
ing technique to deal with the case where similar microservices are frequently 
requested in VEC. The second one integrates the computational capabilities of 
the edge servers with the capabilities of vehicles to perform task offloading in a 
collaborative manner. Our solution addresses the limitations of existing edge 
computing platforms during peak times by combining microservices caching 
with computational task offloading to improve overall system performance.  

Keywords—Mobile Edge Computing (MEC), task offloading, microservice 
caching 

1 Introduction 

Smart devices like smartphones, smart vehicles, and all internet of things (IoT) de-
vices are becoming increasingly popular as the development of information technology 
and the growing need for improving quality of life [1]. However, IoT faces significant 
challenges like bandwidth limitations, storage limitations, power consumption limita-
tions etc. To address these challenges, IBM [2] and Nokia Siemens Network [3] intro-
duced a platform that could execute applications within a mobile base station, the term 
Mobile Edge Computing (MEC) was first used to characterize the execution of services 
at the edge of the network. It enables cloud services to be deployed close to the IoT 
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devices, which reduces the communication latency and the response time of the ser-
vices. It can improve the quality of service for a wide range of applications such as 
video analytics, gaming, augmented reality, and autonomous vehicles by offloading 
some of the computation to the edge and thereby reducing latency and bandwidth re-
quirements [3]. 

1.1 Multi-Access Edge Computing  

The name "Mobile Edge Computing" has been changed to "Multi-Access Edge 
Computing" by the ETSI MEC industry group since 2017 to better represent the in-
creased interest in MEC from non-cellular carriers [4]. A new technology in the 5G era 
makes it possible to deliver cloud and IT services in close proximity to mobile users. It 
makes it possible to extend cloud computing capabilities to the radio access network's 
edge. This new paradigm reduces backhaul use and processing at the core network 
while enabling the execution of delay-sensitive and context-aware applications near 
end users [4]. 

1.2 Vehicular Edge Computing (VEC) 

Vehicular edge computing (VEC)[5] is a promising field that would distribute com-
putational tasks across vehicular terminals and VEC servers to enhance vehicular ser-
vices. The capacities and intelligence of vehicles are now growing quickly, which will 
probably support a wide variety of novel and interesting applications. Utilizing the re-
sources of nearby vehicles allows for efficient use of network resources by reducing 
the load on the VEC server. The decision for partitioning and offloading tasks[5] is 
nontrivial, because the optimal computation offloading depends on the dynamic avail-
ability of local resources such as CPU and memory capacity within the vehicle and 
network bandwidth on the communication links that link the VEC servers and the ve-
hicular terminal. These parameters change frequently due to the dynamic nature of road 
traffic conditions. 

With the increasing number of VEC devices, a centralized deployment model is not 
feasible as it would consume too many resources and increase latency of communica-
tion. In a distributed infrastructure model, each device is responsible for processing 
some subset of tasks, and collectively these tasks form the workload. An efficient sys-
tem should balance the workload among all devices such that their computational ca-
pability is used optimally to avoid unnecessary delays and overload. To achieve this, a 
collaborative edge computing framework that exploits the available resources in the 
edge nodes as well as available infrastructure in the edge servers is an essential[6]. It 
can combine various (heterogenous) edge computing technologies to maximize edge 
computing resources, such that it may combine resources from edge computing, local 
computing, and cloud computing to fully utilize each.  
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1.3 Task offloading 

Tasks Offloading is one of the fundamental components of MEC. It is described as 
a technique that addresses the issues of computing resources, real-time, and energy 
consumption of mobile devices by having edge devices delegate some or all of their 
processing responsibilities to edge servers or cloud servers [7]. Task offloading requires 
coordination between the edge servers and the mobile device, which can be challenging. 
Several methods for effective task offloading at the edge have been proposed 
[8][9][10][11][12]. Traditional task offloading techniques upload the entire task to edge 
servers. This results in high transmission overhead and high energy consumption. In-
stead, there is a need for efficient techniques that offload only parts of the task to the 
edge server so that the edge server can process these parts and send the result back to 
the device. In this way, subtasks can be parallelized, which results in faster processing 
times and lower computational and communication overhead in the main cloud servers 
and data centers. 

Many of the new smart devices are equipped with powerful computational capabili-
ties and are able to support a variety of computing-intensive applications. However, 
these resources are not utilized [8][9]. These capabilities can be used "voluntarily" in 
the cloud environment and can be operated through distributed computing platforms in 
order to benefit from their combined processing power, storage capacity, and memory 
resources.  

There are several challenges in building an efficient collaborative edge computing 
system [12]. First, it is necessary to enable heterogeneous platforms to communicate 
and share resources efficiently. For example, mobile devices running different operat-
ing systems need to be able to communicate with each other and access the same set of 
shared resources. Second, the management and operation of these distributed systems 
need to be coordinated in such a way that they work together seamlessly and securely 
to carry out the task at hand. Third, the system should be capable of supporting a wide 
variety of applications and workloads that are heterogeneous in nature. And finally, as 
the system grows in size and complexity, it should also be scalable so that new devices 
can be easily added while maintaining a manageable level of overhead. 

1.4 Microservice caching 

Microservice caching allows a local microservice to perform a task without the need 
to access the corresponding back-end service in the cloud [13]. This minimizes the costs 
incurred by end users by allowing microservice caching in a localized data center dur-
ing off-peak hours. These microservices can be cached on MEC servers during off-peak 
hours and executed directly by the mobile device, or fetched from the cache when 
needed [13]. Hence, it improves the response time of the system by eliminating the need 
for frequent communication between the mobile device and the cloud data centers. 
Moreover, since the latency for communications from the mobile device to the edge 
server and from the edge server to the cloud is reduced, the users can enjoy a seamless 
experience even when the system is under heavy traffic.  

80 http://www.i-jim.org



Paper—Joint Microservices Caching and Task Offloading Framework in VEC Based on Deep… 

However, edge servers have limited storage resources, so a wise cache allocation 
strategy should be used in this case, i.e., the cache needs to be selected based on the 
demand of each microservice [14]. Furthermore, we would like to take advantage of 
the massive storage capacity available in smart vehicles.  

1.5 Contributions 

In this research, we propose an intelligent caching framework to select the cacheable 
microservices based on their usage patterns to minimize memory consumption and re-
duce the communication overhead between the edge servers and the cloud data centers. 
The framework is based on clustering the vehicles based on their preferences, such that 
all vehicles that are interested in a specific microservice will be considered as part of 
one cluster and will share the same cache resources. Consequently, the edge server will 
just keep track of the microservices that have already been requested and the IDs of the 
vehicles that store them in their caches. Then, the edge server updates the global cache 
table. When a specific vehicle requests a microservice, it just searches for the micro-
service in the cache table and communicates directly with the list of vehicles that have 
the requested microservice. If the microservice is not found or there is no response from 
the hosting vehicles, it will communicate directly with the edge server to get access to 
the microservice from the cache of the edge cache or to pass the request to the cloud 
servers. Cached microservices can also be removed from the cache when they are no 
longer required to avoid wasting cache space. 

The use of virtual clusters to implement a cache that is specific to each microservice 
allows for more fine-grained control over the cached data. This could be particularly 
useful in situations where different microservices have different cache needs and would 
allow for more efficient use of the cache by ensuring that only the data that is relevant 
to a particular microservice is stored in its cache. This could potentially improve the 
performance of VEC algorithms by reducing the latency associated with accessing the 
cached data as well as increasing the overall capacity of the cache by utilizing the com-
bined resources of multiple servers. 

Additionally, the use of clusters could also allow for the implementation of more 
advanced VEC techniques, such as the use of machine learning algorithms to improve 
the cache's performance. For example, a cluster of servers could be used to train a ma-
chine learning model that is able to predict the microservices that are likely to be ac-
cessed in the future and pre-fetch those microservices into the cache to improve perfor-
mance. This could potentially improve the hit rate of the cache, as well as reduce the 
overall latency of the VEC algorithms. 

The rest of the paper is organized as follows: Section 2 presents the related work. 
Section 3 shows the proposed framework. Section 4 describes the deep reinforcement 
learning model. Finally, Section 5 is a brief conclusion to the paper. 
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2 Related work 

Javed and Zeadally [15] provided a task-based architecture for content caching in 
VEC. Within this design, three key jobs are recognized. These tasks are the prediction 
of the content's popularity, the placement of the content in the cache, and the retrieval 
of the material from the cache. They provided an outline of how artificial intelligence 
approaches such as regression and deep Q-learning can increase the efficiency of vari-
ous activities. The authors also highlighted related future research objectives in areas 
such as secure caching, effective sub-channel allocation for content retrieval in C-V2X, 
and collaborative data sharing for enhanced caching. 

Sharma et al. [16]presented a macroscopic flow model for an intersection in Dublin, 
Ireland, using real vehicle density data. They showed that aggregated flows are ex-
tremely predictable (even though the paths of individual vehicles are not known in ad-
vance), making it possible to deploy services using vehicles' sensors. After analyzing 
the possibility of using car clusters as infrastructure, they presented a task-based, dis-
tributed service placement model. The distributed service scales according to the re-
source requirements and is robust to the changes caused by the mobility of the cluster. 
The goal is to minimize total processing and communication expenses. The results 
showed that scaling activities and finding a mobility-aware optimal placement reduces 
processing and communication costs. 

The framework that Ko et al.[17] made for offloading computation and caching ser-
vices in MEC systems takes into account how each user chooses to use services. The 
framework that has been proposed makes use of machine learning algorithms in order 
to make predictions about the service preferences of customers and choose the most 
effective offloading and caching approach with which to provide for those preferences. 
The capability of the proposed framework to successfully meet the compute offloading 
and service caching requirements of MEC systems is demonstrated by the results of a 
simulation that evaluates the performance of the framework in question. 

Yu et al. [18] presented an adaptive task clustering method based on task dependence 
(ATCA) for task-dependent job clustering. Using data-aware scheduling, tasks with 
comparable characteristics are clustered and given to edge servers based on the highest 
value of task dependencies. It has been determined through simulation tests that the 
ATCA algorithm has a shorter task processing time delay and lower energy consump-
tion than standard clustering methods. In the heterogeneous vehicle-mounted network 
environment, the job assigned after ATCA clustering performs well in terms of pro-
cessing time delay and energy consumption, assuming all tasks are handled by the edge 
servers. 

Thai M et al. [19] proposed a general architecture for cloud-edge computing with 
the goal of enabling both vertical and horizontal offloading between service nodes. 
They established the definitions of a service node's parent and sibling nodes, to which 
it may perform vertical offloading and horizontal offloading, respectively, in order to 
solve the issues of loop situations between service nodes. In this study, the scalability 
issue for large-scale cloud-edge computing systems was not solved, and the horizontal 
model on the level of the edge servers only was taken into consideration. 
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Dash S. et al. [20], presented a cloud and fog-based federated two-tier architecture, 
with the cloud having a higher cost and the fog having a lower cost. This design takes 
into account omnidirectional offloading, which allows for vertical and horizontal of-
floading, such as Fog to Cloud, Cloud to Fog, and Fog to Fog. Federation refers to a 
group of clouds working together to fulfill user requests for resources. However, they 
did not take into account dividing up computing work among edge nodes. 

The heterogeneous mobile cloud, which combines mobile cloudlets with infrastruc-
ture-based cloudlets, was investigated by Ziyu Wu et al. [9] In such a case, mobile 
cloudlets can assist in offering compute offloading services when the infrastructure-
based cloudlets become unavailable due to insufficient resources. For the offloaded du-
ties, they created a centralized task scheduling method to choose trustworthy worker 
nodes in mobile cloudlets. 

Nguyen K et al. [21], proposed a collaborative computing paradigm that efficiently 
offloads online heterogeneous computation tasks to parked vehicles (PVs) during peak 
hours. They used a container manager based on Kubernetes to integrate into the infra-
structure due to its pioneering features such as auto-healing, load-balancing, and secu-
rity. They did not use machine learning techniques for task offloading problems. 

Hu X et al.[22], introduced a multiple parked vehicle-assisted edge computing 
(MPVEC) paradigm, previous works preferred to allocate workload between MEC 
server and single parked vehicle. A joint load balancing and offloading optimization 
problem is formulated to minimize the system cost under delay constraint. In this work, 
only the computing resources of parked vehicles (PVs) are considered to optimize the 
system performance.  

Maftah S. et al. [23], presented a strategy for optimizing task processing and energy 
usage in mobile edge computing environments. The suggested system employs an in-
telligent offloading strategy to dynamically distribute workloads between mobile de-
vices and adjacent edge servers based on a number of variables, including available 
resources, network circumstances, and energy usage. 

Shaikh S. et al. [24], described 6G mobile technology's expected capabilities. The 
study notes that 5G technology will improve data throughput, latency, dependability, 
and energy efficiency. 6G technology requires sophisticated antenna technologies, new 
frequency bands, and new communication protocols. The authors also cover 6G appli-
cations such mobile edge computing, augmented reality, virtual reality, and haptic com-
munication. 

Raza S. et al.[25], explored the task offloading schemes by exploiting vehicle to 
vehicle and vehicle to infrastructure communication modes and exploiting the vehicle’s 
under-utilized computation and communication resources, and taking the cost and time 
consumption into account. They presented a relay task-offloading scheme in vehicular 
edge computing (RVEC). According to this scheme, the tasks are offloaded in a vehi-
cle-to-vehicle relay for computation while being transmitted to VEC servers. 

To enhance the collaboration between edge and cloud resources, other researchers 
used joint optimization for task offloading and microservices caching in edge cloud 
computing environments. A three-stage heuristic approach was proposed by Chen X et 
al. [26] to solve the issue in polynomial time. They initially attempted to fully utilize 
the resources that were available in the cloud by pre-offloading as many tasks as they 

iJIM ‒ Vol. 17, No. 08, 2023 83



Paper—Joint Microservices Caching and Task Offloading Framework in VEC Based on Deep… 

could. By offloading remaining tasks and caching associated services on edge re-
sources, their approach aimed to make full use of low-latency edge resources. Their 
strategy improved the performance of activities that were previously offloaded to the 
cloud in the final stage by re-offloading some jobs from cloud resources to edge re-
sources. The use of heuristics has disadvantages as well. They could be quick and dirty, 
but they won't always result in the best choice and they might even be completely 
wrong. Errors in judgment and blunders might result from making rapid judgements 
without all the facts. 

For the purpose of jointly optimizing task offloading and caching, Tang C et al. [27] 
studied a caching enabled task offloading in MEC. They take into account both energy 
consumption and response delay while solving the optimization problem. They built an 
alternate algorithm that depends on both the continuous variable (i.e., task offloading 
decision) and discrete variable (i.e., task caching decision).  

Xiang L. et al.[28], investigated the collaborative task offloading issue in MEC with 
the aid of a dynamic caching method. To achieve a great computing resource allocation 
and task offloading method, they presented a two-level computing technique called 
joint task offloading and service caching (JTOSC). The simulation results have demon-
strated that the proposed JTOSC can effectively reduce the maximum delay of all users, 
improve the user experience, and balance the edge load. In this work, it is assumed that 
all users share communication resources equally, and the inter-cell interference is ig-
nored. 

As we can note from the previous work, traditional distributed task offloading deci-
sion is mostly made by vehicles based on local states, they do not learn from each other. 
In addition to that, other papers used machine-learning-based methods that rely on the 
design of features, which leads to different feature designs that have great differences 
in performance.  

Finally, the majority of researchers who used joint task offloading and microservices 
caching optimization approaches rely on heuristics methods, which frequently impose 
incorrect caching strategies. 

3 Proposed framework 

3.1 System model 

To study dynamic microservice caching and task offloading, we look at the edge-
cloud computing system shown in Figure 1, which is made up of different vehicles, 
multiple vehicular edge servers, and one cloud center.  

Each vehicle has a wireless connection with the VEC server over various roadside 
units (RSUs). 

Let 𝑁𝑁 =  {1, 2, … ,𝑁𝑁} represents the vehicles, each one randomly requests different 
microservices from the VEC servers, and each one generates a task and sends an of-
floading request to its corresponding VEC server, which performs the offloading com-
puting. Let 𝑀𝑀 = {1, 2, … ,𝑀𝑀} denotes the VEC servers. We divide time into discrete 
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time slots, where the operating period is slotted with an equal length 𝑡𝑡 and indexed 
by 𝛵𝛵 = {0,  1, … }.  

Vehicles has a computation task 𝜏𝜏𝑖𝑖(𝑡𝑡) = {𝜏𝜏𝑖𝑖_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝜏𝜏𝑖𝑖_𝑐𝑐𝑐𝑐𝑐𝑐, 𝜏𝜏𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚} to be executed at 
time slot 𝑡𝑡 where 𝜏𝜏𝑖𝑖_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 denotes the size of the task, 𝜏𝜏𝑖𝑖_𝑐𝑐𝑐𝑐𝑐𝑐 denotes the CPU cycles 
required to execute the task, and 𝜏𝜏𝑖𝑖_𝑚𝑚𝑚𝑚𝑚𝑚 denotes the maximum latency allowed. 

 
Fig. 1. General System Architecture 

3.2 Task computational model 

The task computation mode selection depends on the processing time requirement. 
Each vehicle can choose to accomplish its computation task either locally, on another 
vehicle, or on the VEC server. 

We define the computation offloading decision of vehicle 𝑖𝑖 as 𝑐𝑐𝑖𝑖 ∈ {0,1}. When 𝑐𝑐𝑖𝑖 =
1, it means the task is offloaded to VEC server or to other vehicle, while we set 𝑐𝑐𝑖𝑖 = 0 
for local computation.   

If the vehicle decided to execute its task locally, the computation time can be ob-
tained by 

 𝑡𝑡𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = τ𝑖𝑖_𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 (1) 

While 𝑐𝑐𝑐𝑐𝑐𝑐_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the vehicle's CPU frequency. 
The computation time of the offloaded task 𝜏𝜏𝑖𝑖 to VEC server can be obtained as: 

  𝑡𝑡𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = τ𝑖𝑖_𝑐𝑐𝑐𝑐𝑐𝑐

𝑝𝑝𝑛𝑛∗𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
  (2) 

𝑝𝑝𝑛𝑛 ∈ [0,1] is the allocated percentage of the computation resource to vehicle 𝑛𝑛 in the 
VEC server. 
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3.3 Cache model 

In order to accomplish the  computation tasks, the VEC server can request contents 
(e.g., microservices) from the cloud servers through the backhaul link. 

The VEC server is equipped with a cache to store popularly requested microservices 
so that VEC can reuse the cached microservices directly from the cache instead of ob-
taining the data from the cloud servers to reduce communication latency. VEC server 
can cache contents from cloud and use them or dispatch them to end users. If a micro-
service is requested, the VEC server contacts other nearby VEC servers to request the 
previously cached microservices.  

In this paper, we assume three ways (situations) for vehicles to fetch the wanted 
microservices. 

Local fetching: The target microservice is found in the local cache of the vehicle. 
VEC fetching: The target microservice is not found at the local cache of the vehicle 

and is fetched from the VEC server cache or from the nearby vehicles "collaboratively." 
Cloud fetching: The target microservice is neither found at the local cache of the 

vehicle nor at the VEC server cache. It is fetched from the cloud center. 

3.4 Microservice fetch delay 

Let 𝑥𝑥𝑛𝑛𝑠𝑠(𝑡𝑡) denotes the way a vehicle 𝑛𝑛 fetch a microservice 𝑠𝑠 at time 𝑡𝑡, such that  

𝑥𝑥𝑛𝑛𝑠𝑠(𝑡𝑡) = � 1,    if m is found at the local cache
       0,    if m is not found at the local cache 

Let 𝑥𝑥𝑣𝑣𝑠𝑠(𝑡𝑡) denotes the way a VEC server v fetch a microservice 𝑠𝑠 at time 𝑡𝑡, such that  

𝑥𝑥𝑣𝑣𝑠𝑠(𝑡𝑡) = � 1,    if m is found at the local cache
       0,    if m is not found at the local cache 

So, the resultant types of delays are: 
Local fetch delay: If the target microservice is cached in the local cache list, it can 

be accessed directly. In this way, we neglect the local fetching delay, i.e., zero. If the 
requested microservice is not found in local storage, the vehicle downloads the request 
from the VEC server.  

 d𝑠𝑠,𝑛𝑛
local(t) = 0 (3) 

VEC fetch delay: If the target microservice is cached in the local cache list, it can 
be accessed directly. In this way, the fetching delay of the microservice 𝑠𝑠 from the VEC 
server at time slot 𝑡𝑡 will be equal to: 

 d𝑠𝑠,𝑛𝑛
VEC(t) = ssize

RnVEC(t)
  (4) 

Where 𝑠𝑠_size is the microservice size, and 𝑅𝑅𝑛𝑛𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡) the transfer rate between the ve-
hicle 𝑛𝑛 and VEC server at time slot 𝑡𝑡.  
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Cloud fetch delay: If the target microservice is not cached on the VEC server, we 
need to fetch it from the cloud center. The fetching delay of the microservice 𝑠𝑠 from 
the cloud center at time slot 𝑡𝑡 will be equal to: 

 d𝑠𝑠,𝑛𝑛
Cloud(t) = ssize

RnCloud(t)
  (5) 

Where 𝑠𝑠_size is the microservice size, and 𝑅𝑅𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡) the transfer rate between the 
vehicle 𝑛𝑛 and cloud center at time slot 𝑡𝑡. 

3.5 Proposed dynamic cache management 

In this paper, we propose to manage the caching of the microservices in the VEC 
servers and in the participating vehicles. The proposed framework places vehicles in 
virtual clusters according to the microservices in which they have an interest. As shown 
in Figure 2. This could help to ensure that the cache is being used as efficiently as 
possible, and could potentially improve the overall performance of the VEC system.  

 
Fig. 2. The concept of virtual clusters and microservice table 
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Table 1 describes the abbreviations that we have used. 

Table 1.  List of abbreviation 

Abbreviation Definition 
𝑉𝑉 Vehicle 
𝑉𝑉𝑥𝑥 Current Vehicle 
𝑉𝑉𝑉𝑉𝑉𝑉 Vehicular Edge Computing 
𝑀𝑀𝑀𝑀 Microservice 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 Local Microservice Cache Table 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 Global Microservice Cache Table 
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 VEC Server 
𝐶𝐶𝐶𝐶 Cloud Server 
𝑠𝑠𝑠𝑠𝑠𝑠 Source of the Microservice 

 
The potential approach to using clusters for VEC caching involves dividing the 

cache into several segments, with each segment being managed by a separate cluster. 
This would allow for efficient distribution of caching tasks and could potentially im-
prove the performance of the overall cache. 

The idea for using clusters to improve caching techniques for microservices in a 
VEC system used to store and manage each individual microservice in a separate cluster 
(table). This would allow for each microservice to have its own dedicated cache, which 
could be managed and optimized separately. This could potentially improve the perfor-
mance of each individual microservice, as well as allowing for more fine-grained con-
trol over the caching strategy for each microservice. 

The cluster in the framework is based on the preference (i.e., the microservice itself), 
but if the size of the cluster increased (in different zones, for instance), the number of 
the active copies (which are managed by an external orchestrator) of the microservice 
may increase, and different copies of the microservice may be run on different locations 
(Edge Severs, Nodes, etc.). 

Using clusters for VEC caching makes sure that all vehicles that are interested in a 
certain microservice are in the same virtual cluster. This makes sure that all vehicles 
that are interested in a certain microservice are in the same virtual cluster. For instance, 
vehicles 𝑉𝑉1,𝑉𝑉2,𝑉𝑉3,𝑉𝑉4,𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉5 all belong to the same virtual cluster, as shown in Figure 
2. Meanwhile, vehicles 𝑉𝑉4,𝑉𝑉5,𝑉𝑉6,𝑉𝑉7,𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉8 all belong to different virtual cluster, and 
vehicles 𝑉𝑉8 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉9  both belong to a third interest virtual cluster. It has also been 
brought to light that, given the interest in microservices, there is overlap between the 
three different clusters. For instance, as shown in Figure 2, 𝑉𝑉4 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉5 vehicles are in-
terested in more than one microservice. Each cluster that shares an interest in the same 
microservice is denoted by an individual dashed line in Figure 2. On the other hand, 
dashed arrows connect all vehicles linked directly within the same physical zone. 

The presence of a microservice table in the vehicle implies that this microservice is 
preferred for this vehicle. However, if the microservice table does not exist locally and 
the vehicle is interested in this microservice, the vehicle contacts the VEC server to 
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request the microservice table, which contains all relevant microservice-related infor-
mation, as in the scenario in Figure 3.  This information includes a sorted list of the 
vehicles that are interested in the same microservice, the current location of each vehi-
cle, and a flag indicating the existence of the microservice in the vehicle. The list of 
vehicles is sorted by where they are and whether or not they have the microservice in 
their local storage. The microservice table is stored locally in the vehicle that requested 
the microservice table in order to dynamically update the local microservice table 
whenever a new microservice is requested. The vehicle then looks up the microservice 
in the vehicles’ list by sending a request to the nearest car that has the microservice in 
its storage, and so on. As in Figure 4.  

Algorithm (1) describes the process of executing a microservice of interest, as shown 
in Figure 4. As we can see in line (5), if the MS is in the storage of the vehicle, then it 
will be executed directly. 

The cost of loading is determined locally in the vehicle. If the cost of loading the 
microservice exceeds the cost of remotely executing the microservice, the microservice 
will be executed remotely.  

If the local execution cost of the microservice is lower, the microservice will be 
loaded and run locally. The cost of execution will be calculated based on equations (1-
5) as in Algorithm (2).  

The vehicle updates the local microservice table according to the circumstances, 
such that it indicates whether the microservice exists locally or whether it is interested 
in the microservice without storing it locally. Finally, the VEC server is called in order 
to update the global microservice table with the information originating from the vehi-
cle. 

If the vehicle requests a microservice that the VEC server does not have, the VEC 
server delivers the microservice table to the vehicle to update its local microservice 
table. Then, the vehicle verifies the availability of the microservice with one of the 
vehicles in the same zone, and if the microservice is not available in any of the vehicles 
in the same zone, the vehicle requests the microservice from a vehicle in the same clus-
ter by communicating with the VEC server connected directly to it, and then the VEC 
server connected to the vehicle that has the requested microservice via the VEC server, 
as depicted in Figure 4 and Figure 5. 

Algorithm (1) describes the process of obtaining the MS from another vehicle. As 
stated in line (5), if the MS is not found within the cache of the current vehicle, it will 
contact the VEC server to obtain the most recent global cache table for the specific MS 
that it wishes to run.  

The list will be sorted by the IDs of the vehicles that are nearest to the vehicle that 
requested the MS. Then, the vehicle will determine if the remote execution cost is 
higher than the local execution cost, and the vehicle request to load the microservice 
and execute it locally is determined.  

The VEC server then changes the global microservice table and adds the vehicle re-
quest for the microservice to the microservice table. 

iJIM ‒ Vol. 17, No. 08, 2023 89



Paper—Joint Microservices Caching and Task Offloading Framework in VEC Based on Deep… 

 
Fig. 3. If the microservice table does not exist locally as in 𝑉𝑉1 and the vehicle is interested in 

this microservice, the vehicle 𝑉𝑉1 contacts the VEC server 𝑉𝑉𝑉𝑉𝑉𝑉1 to request the micro-
service table, which contains all relevant microservice-related information. 

 
Fig. 4. If the microservice table locally as in 𝑉𝑉1 and the vehicle is interested in this micro-

service, the vehicle 𝑉𝑉1 contacts the vehicle  𝑉𝑉2 to request the microservice. 
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Algorithm 1: Vehicle_Interest 
01: Input: MS 
02: Output: Finish 
03: Finish ← FALSE  
04: interest [MS] ← interest [MS] + 1   
05: if MS in 𝑉𝑉𝑥𝑥 Storage then  
06:     call Run_MS_From(MS, 𝑉𝑉𝑥𝑥) 
07:     Finish ← TRUE 
08: else 
09:     foreach 𝑉𝑉𝑉𝑉 in cluster [MS] do 
10:         if 𝑉𝑉𝑖𝑖 in Zone [𝑉𝑉𝑥𝑥] then  
11:             request MS from 𝑉𝑉𝑖𝑖 
12:             Finish ← call Run_MS(MS, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) 
13:             if Finish then 
14:               add 𝑉𝑉𝑥𝑥 to cluster [MS] 
15:               break; 
16:           end if 
17:         end if  
18:     end foreach 
19: end if  
20: if NOT Finish then  
21:     request MS from 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑥𝑥 
22:     Finish ← call VEC (MS, 𝑉𝑉𝑥𝑥)  
23: end if 
24: return Finish            
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Fig. 5. If the vehicle, 𝑉𝑉2 requests a microservice that is in 𝑉𝑉5 in the same virtual cluster but in a 

different physical zone, The request will be forwarded through the connected VEC 
servers, and then vehicle 𝑉𝑉5 will reply to the request through the VEC server that is 

connected to it. 

Finally, if the microservice is not available at any of the VEC servers, and it is re-
quested from one of the vehicles in the system, the VEC server will contact the cloud 
center to download the microservice to its cache, as shown in Figure 6. Algorithm (3) 
describes this process. 

There are several potential benefits to using clusters in managing microservices, in-
cluding: 

Improved scalability: By using a cluster for the microservice, it is possible to scale 
the system up or down as needed to meet changing workloads and demand. This can 
help make sure that the microservices can always meet the system's requirements for 
performance and availability, even if traffic or work load goes up quickly. 

Algorithm 2: Run_MS 
01: Input: MS,src, 𝑉𝑉𝑥𝑥 
02: Output: Finish 
03: Finish ← FALSE 
04: if MS in Source_Storage then 
05:     if Cost (MS,src) < Cost (MS, 𝑉𝑉𝑥𝑥) then 
06:         call Run_MS_From (MS,src) 
07:     else 
08:         call Load_MS_From (MS,src) 
09:     end if 
10:     update LMSCT 
11:     Finish ← TRUE 
12: end if 
13: return Finish 
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Algorithm 3: VEC 
01: Input: MS, 𝑉𝑉𝑥𝑥 
02: Output: Finish 
03: Finish ← FALSE 
04: if MS in 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑙𝑙 Storage then 
05:     Finish ← call Run_MS(MS, 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑙𝑙) 
06:     if Finish then 
07:         add 𝑉𝑉𝑥𝑥 to cluster [MS] 
08:        break; 
09:     end if 
10: end if 
11: if NOT Finish then  
12:     foreach 𝑉𝑉𝑖𝑖 in cluster [MS] do 
13:        if 𝑉𝑉𝑖𝑖 not in Zone [𝑉𝑉𝑥𝑥] then  
14:            request MS from 𝑉𝑉𝑖𝑖 
15:            Finish ← call Run_MS(MS, 𝑉𝑉𝑖𝑖) 
16:            if Finish then 
17:                add 𝑉𝑉𝑥𝑥 to cluster [MS] 
18:                break; 
19:            end if 
20:        end if  
21:    end foreach 
22: end if  
23: if NOT Finish then  
24:     request MS from CS 
25:     Finish ← call Run_MS(MS,CS) 
26:     add 𝑉𝑉𝑥𝑥 to cluster [MS] 
27:     update GMSCT 
28: end if 
29: return Finish             

Improved reliability: Clustering can help to improve the reliability of the micro-
services by providing redundancy and failover capabilities. If one VEC server in the 
system goes down, the other VEC servers can still provide the services that are needed. 
This helps make sure that the system stays up and running even if hardware or software 
fails. 

Improved performance: Clustering the cache can also improve the performance of 
the microservices by allowing for the distribution of the workload across multiple serv-
ers in the system. This can help to reduce the latency associated with accessing the 
microservices and can also allow for faster processing of large amounts of data, partic-
ularly in real-time applications. 

Improved management and maintenance: Clustering can also make it easier to man-
age and maintain the microservices, as the cluster can provide tools and services for 
managing the configuration and deployment of the microservices, as well as monitoring 
their performance and usage. This can help to ensure that the microservices are running 
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smoothly and efficiently, and it can also make it easier to identify and resolve any issues 
that may arise. 

4 Deep reinforcement learning based decision 

4.1 Reinforcement learning background 

Reinforcement learning (RL) is a field of machine learning concerned with how an 
intelligent agent has to act in an environment to maximize some cumulative reward 
[29]. It is a field, which seeks to find solutions to the sequential decision in stochastic 
environments. At the highest level, the goal of RL is to act in an environment to opti-
mize the reward received from the environment. 

RL algorithms are important method-making for solving the Markov Decision Pro-
cess (MDP) tasks [29]. In RL, agents gain rewards and change behavior policies 
through interacting with the surrounding environment. Therefore, the agents can obtain 
the highest rewards from the environment and maximize long-term accumulative re-
wards. Then, the goal of RL is to find the optimal policy, which is considered as the 
control strategy of the agent to reach the maximum expected cumulative return from 
each state in the state space by establishing a mapping between the state space S and 
action space A of the agent [29].  

As shown in Figure 6, at any time 𝑡𝑡, the agent receives state 𝑆𝑆𝑡𝑡 from state space 𝒮𝒮 
and selects an action 𝐴𝐴𝑡𝑡 from action space 𝒜𝒜, based on mapping policy 𝜋𝜋(𝐴𝐴𝑡𝑡|𝑆𝑆𝑡𝑡). The 
environment generates the reward 𝑅𝑅𝑡𝑡 and the next state 𝑆𝑆𝑡𝑡+1. 

 
Fig. 6. RL agent and environment interaction [29] 

Markov decision processes (MDP) [29]are used as a mathematical model to solve 
policy optimization problems.  It is represented by the tuple: (𝒮𝒮,𝒜𝒜,𝒫𝒫, 𝑟𝑟, 𝛾𝛾, 𝑠𝑠0), where 𝒮𝒮 
is a set of continuous states and 𝒜𝒜 is a set of continuous actions. 𝒫𝒫 ∶  𝒮𝒮 ×  𝒜𝒜 ×  𝒮𝒮 →
 ℝ is the transition probability, 𝑟𝑟 ∶  𝒮𝒮 ×  𝒜𝒜 →  ℝ is the reward function, 𝛾𝛾 ∈ [0, 1] is 
the discount factor, and 𝑠𝑠0 is the initial state distribution. 

The goal of the RL agent is to maximize the long-term expected return from each 
state. In MDP, the transition probability of states is vital for estimating the value func-
tion of states and actions. In many RL tasks, however, the model of the transition prob-
ability cannot be measured precisely. As a result, model-free RL approaches [29]are 
commonly used to find the RL agents' best policies. Without the model of the transition 
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probability, the policy evaluation and improvement are calculated through the historical 
trajectories generated by the current policy of the agent as in Monte Carlo methods. 

One of the most common model-free reinforcement learning algorithms is Q-learn-
ing [29]. It seeks to find the best action to take, given the current state. It is an off-policy 
RL algorithm; in this case, the learned action-value function, 𝑄𝑄, directly approximates 
𝑞𝑞∗, the optimal action-value function, independent of the policy being followed. How-
ever, convergence requires that all state-action pairs continue to be updated throughout 
the training process. A straightforward way to ensure this is by using an ε-greedy pol-
icy. The update rule for Q-Learning is as in “(6)”. 

𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) = 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) + 𝛼𝛼(𝑟𝑟𝑡𝑡+1 + 𝛾𝛾max
𝑎𝑎

𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎) − 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)) (6) 

4.2 Deep reinforcement learning based decision 

In many practical decision-making problems, the state 𝒮𝒮 of the MDP are high-di-
mensional (e.g., images from a camera or the raw sensor stream from a robot) and can-
not be solved by traditional RL algorithms[29]. 

In deep reinforcement learning, the agent uses a deep neural network to learn how 
to take actions in an environment in order to maximize a reward. The agent learns by 
trial and error, receiving feedback in the form of rewards or penalties for its actions. 
Over time, the agent learns which actions are most likely to lead to the highest rewards, 
and it becomes better at achieving its goals. 

One of the key advantages of deep reinforcement learning is that it can learn complex 
behaviors that are not easily specified in traditional algorithms. This makes it well-
suited for a wide range of applications, including robotics, gaming, and natural lan-
guage processing. 

The deployment of the microservices in our system is managed by an external or-
chestrator. When the microservice is deployed, the orchestrator sets the service state to 
"active," which may be part of the state of the environment anticipated by the RL agent 
that will learn the optimal policy to take actions for deploying or removing a micro-
service. If the microservice is active, the RL agent will automatically detect that from 
the current state of the microservice, and then it will use it directly. A watch mechanism 
inside the external orchestrator can be implemented to manage the state of the micro-
service and balance the load.  

The deep neural network takes the state of the network as the input and produces the 
Q-value 𝑄𝑄(𝑠𝑠(𝑡𝑡),𝑎𝑎(𝑡𝑡);  𝑤𝑤) of each action as output, where w is the weight of the deep 
neural network. 

The action 

  𝑎𝑎(𝑡𝑡) =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄(𝑠𝑠(𝑡𝑡),𝑎𝑎;  𝑤𝑤) (7) 

with the largest Q-value is normally chosen on the environment. Nonetheless, the 
action adopted may not be ideal. There is a trade-off relationship between exploration 
and exploitation.  

Therefore, the chosen action in time epoch 𝑡𝑡 is 
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 𝑎𝑎(𝑡𝑡)  = � 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑎𝑎 𝑄𝑄(𝑠𝑠(𝑡𝑡),𝑎𝑎;  𝑤𝑤) 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 1 − 𝜀𝜀
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝜀𝜀    (8) 

Then, the agent takes action 𝑎𝑎(𝑡𝑡) and the environment generates the reward 𝑟𝑟(𝑡𝑡) and 
then transits to the next network state 𝑠𝑠(𝑡𝑡 + 1).  

The produced reward 𝑟𝑟(𝑡𝑡) and the next state 𝑠𝑠(𝑡𝑡 +  1), with 𝑠𝑠(𝑡𝑡) and 𝑎𝑎(𝑡𝑡), com-
bined as a tuple 〈𝑠𝑠(𝑡𝑡),𝑎𝑎(𝑡𝑡), 𝑟𝑟(𝑡𝑡), 𝑠𝑠(𝑡𝑡 +  1)〉, are kept in a replay memory. Due to ca-
pacity constraints, the replay memory retains the most recent tuples and discards older 
ones. Then, a mini-batch is sampled from the replay memory to train the deep neural 
network so that it can increase its accuracy by learning from past events. 

The aim of training the deep neural network is to minimize the loss function, which 
reflects the difference between the actual Q value and the estimated Q value. 

 𝐿𝐿(𝑤𝑤) =  𝔼𝔼[−𝑟𝑟 + 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠′,𝑎𝑎′;𝑤𝑤′) − 𝑄𝑄(𝑠𝑠,𝑎𝑎;𝑤𝑤)] (9) 

Where 〈𝑠𝑠,𝑎𝑎, 𝑐𝑐, 𝑠𝑠′〉 are tuple samples from the replay buffer and 𝑤𝑤′ is a neural net-
work parameter copied from 𝑤𝑤 with a certain frequency [29].  

Algorithm (4) describes the steps needed to learn the agent to take the suitable action 
based on the current state of the system, the output of the learning process is the policy 
𝜋𝜋 that maps the states to the actions.  

Algorithm 4: Pseudo code of DRL agent learning policy π  
01: Initialize replay buffer capacity 
02: Initialize the policy network with random weights 
03: Copy the policy network, and call it the target 

network 
04: For each episode: 
05:    Initialize the starting state 
06:    For each time step: 
07:        Select an action based on eq (8)  
08:        Execute the selected action 
09:        Observe the reward and the next state 
10:        Store experience in replay buffer 
11:        Sample random mini batch from replay buffer 
12:        Preprocess states from the mini batch 
13:        Pass batch of preprocessed states to policy 

network 
14:        Calculate loss function based on eq(9) 
15:        Gradient descent updates weights to minimize 

loss function 
16:        After specified time steps, copy weights in 

the policy network to the weights in the target network 
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5 Conclusions 

The proposed dynamic caching framework with the elaborated deep reinforcement 
learning model will anticipate managing microservice caching in vehicle-mounted edge 
networks, such that the decisions of task offloading and microservice caching will be 
done by machine learning algorithms to improve the performance of the cache. 

Our solution gets around the problems with existing edge computing platforms dur-
ing peak times by combining microservices caching with offloading computational 
tasks to improve the overall performance of the system. 

In our framework, we built virtual clusters of the vehicles that were interested in a 
microservice. The potential approach to using clusters for VEC caching involves divid-
ing the cache into several segments, with each segment being managed by a separate 
cluster. This would allow for efficient distribution of caching tasks and could poten-
tially improve the performance of the overall cache. 

In order to find the optimal policy by optimizing the loss function, the system is 
modeled as a Markov Decision Process - MDP. 

Finally, this framework could improve the hit rate of the cache and reduce the overall 
latency of microservices that use VEC algorithms. 
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