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Abstract—The large branches of Machine Learning represent an immense 
support for the detection of malicious websites, they can predict whether a URL 
is malicious or benign, leaving aside the cyber attacks that can generate for net-
work users who are unaware of them. The objective of the research was to know 
the state of the art about Neural Networks and their impact for the Detection of 
malicious Websites in network users. For this purpose, a systematic literature 
review (SLR) was conducted from 2017 to 2021. The search identified 561 963 
papers from different sources such as Taylor & Francis Online, IEEE Xplore, 
ARDI, ScienceDirect, Wiley Online Library, ACM Digital Library and Microsoft 
Academic. Of the papers only 82 were considered based on exclusion criteria 
formulated by the author. As a result of the SLR, studies focused on machine 
learning (ML), where it recommends the use of algorithms to have a better and 
efficient prediction of malicious websites. For the researchers, this review pre-
sents a mapping of the findings on the most used machine learning techniques 
for malicious website detection, which are essential for a study because they in-
crease the accuracy of an algorithm. It also shows the main machine learning 
methodologies that are used in the research papers.  

Keywords—machine learning, neural network, web site detection, malicious 
web sites, algorithms, systematic literature review 

1 Introduction 

Nowadays, websites offer services of all kinds to network users, such as e-mail, so-
cial networks, online shopping, among others. These websites store users' confidential 
information. Fraudsters always try to steal users' confidential information by using mis-
leading URL text [41]. Researchers have been applying different types of algorithms 
for example Sequential Minimum Optimization (SMO), logistic regression and naive 
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bayes, decision tree, K nearest neighbors, among others. These algorithms achieve re-
liable and accurate results when detecting malicious websites [10]. In order to evaluate 
the performance of the models and algorithms, some experiments are carried out using 
a set of comparative data: accuracy and area under the receiver operating characteristic 
(ROC), receiver operating characteristic (ROC) and area under the curve (AUC) [41]. 
In this work, we identified the algorithms most commonly used by researchers from 
different studies with the aim of detecting malicious websites. 

In this SLR we obtained papers related to the topic, but not focused on the prediction 
of malicious websites with a comparative approach using neural networks. However, 
the papers reviewed propose algorithms for the prediction of these websites thus giving 
their effectiveness for this detection process.  

In the general study for the prediction process Sahingoz, Buber, Demir and Diri [45] 
propose to use two lists, Whitelist (whitelist) and Blacklist (blacklist), to classify legit-
imate and malicious websites. Whitelist-based website detection systems create safe 
and legitimate websites to provide the necessary information. Every website that is not 
on the whitelist is considered malicious. In the study of the prediction process there are 
a number of algorithms that give different results for different varieties of malicious 
websites. 

Authors Gandotra and Gupta [15] use machine learning algorithms SVM, Random 
Forest (RF), Neural Network, Logistic Regression and Naïve Bayes (NB); to differen-
tiate suspicious websites from benign ones. 

Authors P. Yang, Zhao and Z. Yang [47] argue that deep learning (Deep Learning) 
is a research direction of neural networks that can discover hidden information within 
complex data through level-by-level learning. CNN is an artificial deep feedback deep 
neural network. Compared with traditional back propagation neural networks, CNNs 
adopt a weight sharing network structure similar to that of a biological neural network, 
and its neurons are sparsely connected, which reduces the complexity of the network 
model and improves the training performance. 

According to Haider and Singh [1], phishing is a deception technique that aims to 
steal sensitive personal information such as passwords, credit cards, identity theft and 
other fraudulent activities by an individual or a group. Intruders can take this infor-
mation using phishing techniques (e.g., when a user enters their data on a phishing 
website, their data is stolen and they are then redirected to the original site).  

Al-Milli and Hammo [43] claim that convolutional neural network (CNN) is one of 
the most successful methods used recently in classification problems. CNN is used for 
complex classification problems. More specifically, CNN is used in the image pro-
cessing domain.  

The uniqueness of this research is the use of the Mendeley tool useful for the man-
agement of the papers, as well as the use of artificial intelligence for the generation of 
the bigrams, trigrams and bibliometric networks that show relevant information, as well 
as a comparison between the keywords in the reviewed papers. 

The main objective is to determine the current state of the art of worldwide experi-
mental research on Neural Networks and their influence on the Detection of Malicious 
Websites in network users. The structure of the paper is organized as follows; section 
II presents an interpretation of previous research and what the study aims to achieve. 
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Section III details the methodology to be used for the systematic literature review and 
this was developed according to Kitchenham and Charters [83]. Section IV shows the 
results of each question and also a comparison with a review paper. Section V finally 
gives conclusions and recommendations. 

2 Review methodology 

2.1 Review protocol 

This research followed the model and steps proposed by Kitchenham and Charters 
[83]; it covered the following: research questions, sources of information, identified 
studies, exclusion criteria, quality assessment, data extraction, and synthesis of findings 
(Figure 1). 

Research Problems 
and Objectives

Information Sources 
and Search Strategies Identified Studies

Exclusion CriteriaStudy SelectionQuality Assessment

Synthesis of the DataData Extraction 
Strategies

 
Fig. 1. RSL process  

2.2 Research problems and objectives 

For the SLR, research questions (RQs) were developed that are necessary for the 
data search, extraction and analysis strategy. Each research question has an objective, 
which are shown in Table 1. 

Table 1.  Research questions and objectives 

Research Question Objetive 
RQ1: What types of algorithms are being consid-
ered to detect malicious websites in web users? 

Identify the most considered types of algorithms for 
detecting malicious websites in network users 

RQ2: What machine learning methodologies are 
used to detect malicious websites?  

Report the machine learning methodologies that are 
used for malicious website detection 

RQ3: What are the criteria for measuring the over-
all effectiveness of neural networks with machine 
learning? 

Determine what are the criteria for measuring the 
overall effectiveness of neural networks with machine 

learning 
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RQ4: What are the most commonly used and rele-
vant keywords about neural networks and their in-
fluence on the process of detecting malicious web-
sites in network users?  

Determine which are the most used and relevant key-
words, on neural networks and their influence on the 

process of detecting malicious websites in network us-
ers. 

RQ5: What are the keywords that show co-occur-
rence in neural network research and their influ-
ence on the process of malicious website detection 
in network users?  

Detect which keywords present co-occurrence in neu-
ral network research and their influence on the process 

of detecting malicious websites in network users 

2.3 Information sources and search strategies 

Figure 2 shows the sources used in the search for research papers. 

 

Fig. 2. Sources of information 

For the search strategy of the studies, the thematic descriptors and their synonyms 
were identified (See Table 2). 

Table 2.  Search descriptors  

Descriptor Variable 
neural network / machine learning Independent 
website / URL detection Dependent 

 
For the search of the papers, equations were used for each source of information, as 

shown in Table 3. 
 
 
 

Taylor & Francis Online 

IEEE Xplore 

ARDI 

ScienceDirect 

Wiley Online Library 

ACM Digital Library 

Microsoft Academy 

Source 
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Table 3.  Information sources and search equations  

Source Search equation 
Taylor & Fran-
cis Online 

[[All: "neural network"] OR [All: "machine learning"]] AND [[All: "website detection"] 
OR [All: URL*]] 

IEEE Xplore  ("Neural network" OR "Machine Learning") AND ("website detection" OR URL*) 
ARDI  ("Neural network" OR "Machine Learning") AND (" website detection" OR URL*) 
Science Direct  ("neural network" OR "machine learning") AND (website detection OR URL OR URLS) 
Wiley Online 
Library  

""neural network" OR "machine learning"" anywhere and ""website detection" OR 
URL*" anywhere 

ACM Digital 
Library  

[[All: "neural network"] OR [All: "machine learning"]] AND [[All: website detection] 
OR [All: URL*]  

Microsoft Aca-
demic  ("Neural network" OR "Machine Learning") AND ( "website detection" OR "URL*") 

2.4 Identified studies 

The papers identified in each source are shown in Figure 3. 

 

Fig. 3. Number of relevant studies 

2.5 Exclusion criteria 

Al Some exclusion criteria (EC) were necessary for the filtering and selection of the 
papers: 
CE1.The papers are older than 5 years old 
CE2. The papers are not written in English 
CE3. The papers are not published in Conferences or Journals 
CE4. The papers are repeated 
CE5. The titles and keywords of the papers are not very appropriate 
CE6. There is not enough information to make the assessment 
CE7. The abstracts of the papers are not very relevant 

Número de 
Fuentes Relevantes 

(N=561 963) 

ACM Digital 
Library 
(n=516 310) 

Taylor & Francis 
Online 

(n=548) 

Microsoft 
Academic 
(3 274 128) 

ScienceDirect 
(n=14 786) 

ARDI 
(n=22 784) 

 

Wiley Online 
Library 

(n=6 260) 

IEEE Xplore 
(253) 
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2.6 Studio selection 

Initially, 561963 papers were obtained, based on the search performed using the key-
words relevant to the study.  

Then, a series of selection and filtering steps were applied, as shown in Figure 4. 

 
Fig. 4. PRISMA flow chart 
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2.7 Quality assessment 

An important phase in rigorously evaluating the final list of papers was the quality 
assessment criteria (QAs). These were applied to measure the quality of the research 
papers. Seven QAs were identified: 

QA1. Is the purpose of the research clearly explained?  
QA2. Are the research findings clearly explained?  
QA3. Is the paper well organized?  
QA4. Does the document include practical experiments? 
QA5. Are data collection and measurements adequately described? 
QA6. Are the results of the experiments performed clearly identified and reported?  
QA7. Is the document considered useful? 
 
In general, the use of these 7 QAs ensures that these findings could make a valuable 

contribution to the review. Each of the 7QAs was rated on a dichotomous scale. There-
fore, the research described in the papers is understandable and their results can be 
relied upon. Of the studies evaluated for quality assurance, the 82 papers have been 
retained. 

2.8 Strategies of data extraction  

For the final data extraction, the list of total papers was integrated in order to answer 
the research questions formulated. 

The information extracted from each paper included the following: ID of the paper, 
title of the paper, URL, source, year, country, number of pages, language, publication 
type, publication name, authors, affiliation, number of citations, abstract, keywords, 
sample size. The Mendeley desktop tool was used to perform the data extraction. 

2.9 Synthesis of the data 

The data collected for research questions RQ1-RQ5 were tabulated and presented as 
quantitative data that were used to develop a statistical comparison between the various 
solutions for each question, taking into account research conducted in the last 5 years. 

3 Results and discussion 

3.1 General description of studies 

Eighty-two papers were selected for the review, which were evaluated for their qual-
ity and the data extraction and analysis strategy was applied. Figure 5 shows the number 
of papers published per year. This indicates that the year in which the most papers were 
published was 2020. 
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Fig. 5. Papers by year 

Figure 6 details the number of papers by country, this shows that the country with 
the highest number of papers for the research was India as well as China. It can be seen 
that India and China are the countries that have a greater focus on the detection of ma-
licious websites with machine learning by the number of papers published and the coun-
tries that have less participation are Jordan and Slovenia. 

 
Fig. 6. Number of papers by country 

Figure 7 shows the papers by type of publication. As shown in the figure, a total of 
82 papers were found, of which 40% were published in Conferences and the remaining 
60% were published in Journals. 
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Fig. 7. Papers by publication type 

Figure 8 shows the most common words in the abstracts of the papers reviewed. It 
can be seen that the most used word was phishing, this was even the most common 
word in the keywords. This is followed by the words learning and detection. 

 
Fig. 8. Most recurrent words in the abstract 

3.2 Answers to research questions 

The following are the answers (results) for each of the RQs formulated, which were 
obtained after an exhaustive review of the 82 papers selected. 
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RQ1: What types of algorithms are being applied to detect malicious websites 
in network users? The results shown in Table 4 indicate which were the most used 
machine learning algorithms in the area of malicious website detection in network us-
ers. In this research 10 algorithms were considered, it is observed that the one with the 
highest percentage of references are neural networks with 23%, it can be said that it is 
the most popular in this area of malicious website detection, the second most applied 
type of algorithm was Super Vectore Machine with 19%. 

Table 4.  Machine learning algorithms 

ML algorithm Reference Qty. 
(%) 

Neural network [1][3][4][5][7][8][9][16][18][19][20][23][26][21] 
[22][28][34][44] [54] [57] [64][69][82] 

24 
(23) 

K-nearest neighbors [4][8][11][12][15][25][26][21][30] [35] 10 
(10) 

Decision tree [4][10][11][14][25][30][35] [44] [54] [65] 10 
(10) 

Logistic regression [7][10][11][21][30][35][47] [65] [77] 10 
(10) 

Random forest [4][8][10][11][15][25][30] 54][65] [69] 10 
(10) 

Naive Bayes [7][8][14][15][16][26][30]35][44][46][47][54][57] 
[62] 

14 
(14) 

Super Vector Machine [4][7][8][11][12][14][15][16][25][21][28][35][44] 
[46] [47][54] [57] [69] [77] 

19 
(19) 

Extreme machine learning 
(ELM) [21][79] 2 

(2) 

Ripper algorithm [60] 1 
(1) 

Cultural Algorithm [1] 1 
(1) 

 
According to authors Badawi and Jourdan [89], in their research question they refer 

what mechanisms are available to detect cybercriminal activities; it answers that the 
models that offer the best results are random forest with an accuracy of 99%, another 
algorithm model that also stands out in their answer is SVM with an accuracy of 97.9%. 

According to the authors Gheewala and Patel [86], neural networks are a widely used 
data mining algorithm for detecting malicious websites and it in turn depends on the 
proper selection of its features, such as model performance and the level of prediction 
accuracy of the algorithm. 

 
RQ2: What machine learning methodologies are used to detect malicious web-

sites? To answer the question the following machine learning methodologies in neural 
networks were considered: convolutional neural network and artificial neural network 
as the most considered in the research papers, this is because these methodologies offer 
better results in the area of malicious website detection, on the other hand convolutional 
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neural network was mentioned in many papers that have more than 5 citations (See 
Table 5). 

Table 5.  Machine learning methodologies 

ML Methodologie Reference Qty. 
(%) 

Convolutional Neural Network (CNN) [9][7][23][26][28][35][43][47][5][54][64][6
9][77][82] 

14 
(34) 

Deep Neural Network [10][23][41][46][47] [57][64] 7 
(17) 

Artificial Neural Network [1][3][4][11][16][18][19][20][21][22][34][4
4][49][54][57] 

15 
(36) 

Recurrent Neural Network [5][7][9][28][54][82] 5 
(13) 

 
From the point of view of authors Odeh, Keshta and Abdelfattah [85], they argue 

that convolutional neural networks and long short-term memory (LSTM), are widely 
used techniques for website phishing detection, but when both are used in a study both 
CNN and LSTM get better results. A clear example of this is that CNN learns from 
URL features and sends them to LSTM for final resolution. This approach motivates 
other researchers to design a model using a combination of deep learning models. 

 
RQ3: What are the criteria for measuring the overall effectiveness of neural 

networks with machine learning? To answer this question, the criteria for measuring 
the effectiveness of Machine Learning were taken into account. The most commonly 
used criteria are the ROC curve and AUC to determine the accuracy in the tests per-
formed statistically based on the machine learning algorithms proposed in the papers 
studied (See Table 6). 

Table 6.  Criteria for measuring ML effectiveness 

Criteria Reference Qty. 
(%) 

ROC CURVE [5][7][10][19][30][57] [69][82][2][3][9][36] 
[43] 

12 
(43) 

AUC [4][7][10][19][28][82] [2][3][36][41][43][51] 12 
(43) 

PCA [8][14][16] [9] 4 
(14) 

 
According to Dou, Khalil, Khreishah, Al-Fuqaha and Guizani [88], ROC curves can 

be used as comparisons between two or more models or techniques of algorithms thus 
giving greater efficiency in terms of the result, it is also possible to interpret that in the 
combination of these algorithms a result greater than 90% is achieved taking into ac-
count the characteristics given in the combination. 
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RQ4: What are the most frequently used and relevant keywords about neural 
networks and their influence on the process of detecting malicious websites in net-
work users? Figure 9 shows the keywords with more frequency in the papers, in first 
place is "machine learning", this word is repeated in 25 papers, in addition, this word 
was key when searching the papers and it is also the independent variable in Table 3. 
In second place is the keyword "phishing" with 17 repetitions, a very common word 
when searching for papers related to the detection of malicious websites in network 
users. 

 
Fig. 9. Keyword repetitions 

The authors Mondal, Maheshwari, Pai, and Biwalkar [87], identify "machine Learn-
ing" and "pishing" as very common keywords when searching for papers on malicious 
website detection. 

One can also display the most repeated words as a word cloud in Figure 10. 
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Fig. 10.  Cloud of most repeated keywords 

RQ5: What are the keywords that show co-occurrence in neural network re-
search and their influence on the process of malicious website detection in network 
users? In order to answer this RQ, a biometric network of keywords as they appear 
together in the reviewed research has been elaborated (see Figure 11). 

 
Fig. 11.  Keyword bibliometric network 
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In the bibliometric network it is possible to visualize the keywords most used by the 
authors together, as well as it can also be visualized that "phishing" and "machine learn-
ing" are together in 56 reviewed papers, also "phishing" and "url" are together in 11 
papers. Then it is deduced that the words have a relationship, the first one which is 
phishing and machine learning its relationship is problem-solution because nowadays 
machine learning method is used for prediction of malicious websites (phishing). The 
second relationship of phishing and url, its relationship is of similarity because phishing 
is a technique of deception, in this case it would be through a misleading url imperson-
ating someone close or a particular company in order to steal information. 

4 Conclusion 

This study has used the SRL methodology proposed by Kitchenham and Charters 
[83], whose purpose was to respond to the problems posed, so high quality papers that 
address the RQs formulated have been evaluated. As a result, 82 research papers have 
been identified, which answer the research questions. These papers were carefully se-
lected by applying exclusion criteria and had a quality assessment. It should be noted 
that the Mendeley tool was used, which was very helpful for the management of the 
papers analyzed. In the results section and its discussions, the 5 RQs formulated have 
been answered, using statistical graphs, tables and the novel bibliometric networks. 
These were very helpful in answering the research questions and a comparison has been 
made with many review papers. 

Therefore, future research should consider reviewing more recent publications on 
the process of detecting malicious websites. This will benefit to optimize the inquiry 
on the topic of malicious website detection process in order to be able to have a wider 
scope and depth on the topics of cybersecurity. 
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