
PAPER
A C++ APP FOR DEMONSTRATION OF SORTING ALGORITHMS ON MOBILE PLATFORMS

A C++ App for Demonstration of Sorting
Algorithms on Mobile Platforms

http://dx.doi.org/10.3991/ijim.v8i1.3464

R. Meolic and T. Dog!a
University of Maribor, Maribor Slovenia

Abstract—This paper presents a systematic approach for
designing a C++ app for demonstrating sorting algorithms
on smartphones and tablets. It is part of an on-going project
on the usages of new technologies in education. The general
properties of mobile platforms are discussed together with
details specific to demonstrating sorting algorithms. The
implementation of Insertion Sort is given as an example.
The obtained results (e.g. design rules and algorithms) have
been tested within a prototype application.

Index Terms — Usability, Qt, Engineering Education,
Mobile learning

I. INTRODUCTION
The American Dialect Society named “app” the word of

the year for 2010. Though it is a short for “application” it
is rarely used to denote just any computer program but
only those intended to run on a mobile platform i.e. on
smartphones, tablets, and similar devices. Apps are also
special in their methods of distribution. Authors upload
and users download them from special web-stores called
markets. This is the most effective way of software
distribution ever. Just anyone can publish or sell an app.
From amongst millions of these apps, many of them are
oriented towards mobile learning. It is expected that
mobile platforms will influence the education process at
least as much as personal computers and the internet. The
benefits of mobile learning include learning from rich
interactive content (in contrast to books), flexible learning
locations (in contrast to PCs), and at flexible learning
times (in contrast to classrooms).

The C++ programming language was born in the early
1980s and it was first standardised in 1998. The current
standard was ratified in 2011. Although C++ itself is
widespread and ubiquitous, C++ apps are not. Default
system development kits (SDK) for today’s more popular
mobile platforms do not emphasise C++. Apps for
Apple’s iOS are written in Objective-C, Microsoft’s
Windows Phone apps are created with C#, and Google’s
Android apps are Java programs. On the other hand, all
these platforms allow for the developing of C++ apps, iOS
by simply integrating different programming technologies
together (e.g. Objective-C++) and Windows Phone and
Android by provided support for (ambiguously named)
native code. In a standard model–view–controller (MVC)
design, the “model” and “controller” parts which consist
of data and functions for data manipulation are suitable
targets for C++ implementation, whilst the “view” part

which is responsible for data representation and user
interface is usually bound to the default technology. When
considering the broader spectrum of mobile platforms, the
situation is more challenging. For many of them, C++
apps are first class citizens, i.e. C++ is used thoroughly.

Sorting is a relatively narrow and straightforward
subject as long as we are not creating science from it [1].
In [2] the author states that sorting is the fundamental
algorithmic problem in computer science and that learning
the different sorting algorithms is like learning scales for a
musician. Indeed, sorting is the first step in solving a host
of other algorithmic problems. Today, the pseudocodes of
different sorting algorithms and their implementations in
different programming languages can easily be found on
the internet (e.g. project Rosetta Code). However, the
most respected reference is the 3rd volume of Knuth’s
encyclopaedia [3].

 Engineers do not learn computer algorithms only for
being able to write their straightforward implementation
— efficient implementations are already present in
libraries. The goal of knowing various algorithms is to be
capable of adapting and extending existing ones and to
help in inventing completely new algorithms. Indeed, one
can benefit a lot from studying a high quality algorithm’s
implementation. Graphical debuggers allow for easy
observation of every memory bit, and the tracking of any
program flow. But these tools are really oriented towards
testing and debugging, not teaching. A purpose-built
demonstration of an algorithm may differ considerably
from the debugger approach:
• Pseudocode can be used instead of a real

programming language;
• Program flow can be reversed;
• Actions can be explained in advance;
• Explanations can go beyond simple comments;
• Additional functionality can be added such as an

examination mode for testing the user’s
knowledge.

When overviewing the markets we found apps
dedicated to sorting algorithms that already include some
of these functionalities, e.g. the app described in [4]
encourages learning by awarding students with points.
However, existing apps are still pretty elementary, the
ultimate app (will there ever be one?) should include a
large set of functionalities already available in Java and
JavaScript-based applications on the Web. Let us mention
some of them that could serve as the origins of ideas.

40 http://www.i-jim.org

PAPER
A C++ APP FOR DEMONSTRATION OF SORTING ALGORITHMS ON MOBILE PLATFORMS

The well-known web site called Sorting Algorithm
Animations (http://www.sorting-algorithms.com/) gives a
plain visual comparison between different sorting
algorithms and their efficiencies. The main properties and
very formal pseudocode are also given for each algorithm.

Project JHAVE includes demonstrations of different
sorting algorithms (http://jhave.org/). It is a client-server
project where each demonstration is implemented in a
special scripting language. The demonstrations look
different from each other because they are precisely
created to explain each particular algorithm.

D. K. Nester set up an interesting web page, that shows
pseudocode for various sorting algorithms and enables the
tracing of their executions (http://www.bluffton.edu/
!nesterd/java/SortingDemo.html).

This paper is an updated report on the on-going project
as recently presented at the International Conference on
Computer Supported Education [5]. It is further organised
as follows. In Section II, the design of an universal
framework is discussed. Section III provides specific
details of tracking sorting algorithms. In Section IV, a
prototype app is described.

II. AN UNIVERSAL MOBILE FRAMEWORK FOR
DEMONSTRATION OF SORTING ALGORITHMS

In order to help developers create consistent apps,
vendors provide default application frameworks for their
platforms and may also offer a dedicated development
environments (IDE). In contrast, there is a tendency to use
third-party application frameworks which supports cross-
platform development. Surely, multi-platform support can
be the more easily addressed with web technologies but
such solutions are not always suitable or flexible enough
[6]. In the presented project we aim for portability but we
also want to support complex data structures that cannot
be efficiently implemented using scripting languages. We
have chosen Qt (http://qt.digia.com/), a default application
framework for BlackBerry 10, Sailfish OS, and Ubuntu
Touch, which is actively being extended to also become
also a third-party framework for Android and iOS. Qt
supports all standard libraries and adds a special signals
and slots mechanism for communication between objects.
Effective user interfaces for Qt-based apps are designed
for using the declarative language QML. Qt Creator (Fig.
1) is very helpful while developing Qt-based apps.

Mobile platforms share many common properties such
as touchscreen display, virtual keyboard on demand, and
various sensors. However, developing apps that can be
used on different platforms is often extremely difficult [7].
For example, when taking into account the limited screen
size and resolution of an average device it is important to
create a minimalistic GUI. We found a helpful review of a
mobile interface design in [8]. Based on the feedback
from users, it is suggested that:
• All description texts that do not provide extra

knowledge should be omitted;
• The appropriate colours and text sizes are very

important for increasing readability and clarity;
• The usages of icons and images should be limited;
• Concepts from Web applications may help users to

transfer known user experience to the mobile app,
but input methods and menu organisation should
resemble standard mobile functionalities.

There is a lot of information, numerical and graphical,
that we want to present to the user. However, we cannot
show it all at once because of the limited space and
because this would be too demanding for the user. Some
possible solutions are:
• Let the device show different data in the portrait

and landscape modes;
• Use pop-ups to show detailed data about items;
• Implement different screens that can be navigated

by using tabs or swipe gestures;
• Use a hierarchical presentation where different

groups and subgroups of data can be shown
(expanded) or hidden (collapsed).

There is also a wide choice of mechanisms for
controlling the app’s run:
• Tapping and other gestures on the touchscreen;
• Rotating and other movements perceived by

different sensors;
• Visual gestures observed by a camera;
• Voice commands, etc.
Let us discuss the advantage of orientation detection,

only (Fig. 2). The portrait view is an obvious choice to
show source code. Thus, the greater part of the screen may
be reserved for that component. Thus the table of elements
must be as small as possible but readable. Before an
algorithm is chosen, the area reserved for source code can
be used to show statistics. The landscape view may serve

Figure 2. Portait and landscape view show different data

Figure 1. Qt Creator is a powerful IDE for cross-platform

development

iJIM ‒ Volume 8, Issue 1, January 2014 41

PAPER
A C++ APP FOR DEMONSTRATION OF SORTING ALGORITHMS ON MOBILE PLATFORMS

for presentations and interactions unrealised on the
portrait view. Large elements make the user’s interaction
with them easier, thus almost all the area should be
occupied by a table of elements. A status bar with one-line
comment about the algorithm’s current action could be
added to allow for tracking the algorithm even without
seeing it completely.

III. TRACKING SORTING ALGORITHMS ON MOBILE
PLATFORMS

Sorting algorithms can be demonstrated in many
different ways. In order to compare their effectiveness it is
best to run them concurrently and use only global view
(e.g. each element is represented by a bar). To emphasise
the differences, animations with fancy effects (e.g. colours
or sounds) can be created. In order to explain the
implementation details, pseudocode may be involved.

Detailed tracking of the algorithm’s run seems to be the
crucial functionality for deep understanding. Due to
limited space let us discuss this aspect only. We are
interested in the basic form of sorting algorithms where
the elements to be sorted are stored in the table and no
optimisations are used (i.e. each time the algorithm needs
a value of an element it performs a memory read). Our
goal is using the same framework for demonstrating the
various sorting algorithms. In order to display details,
differing algorithms may require different approaches.
However, in our approach we sacrifice some flexibility for
uniformity because we obtain more direct comparisons
between different solutions. Also, shared platforms for
demonstrating the problems and solutions are well
accepted in computer science teaching books.

In order to study an algorithm one has to view it in one
form or another. We went for the pseudocode in the form
of a simplified source code because this is concise
representation whilst also suitable for the usage within a
basic computer science course. Hence, each algorithm is
composed of sentences that are either assignments,
decisions, or flow control statements. We preferred C-
style syntax for assignments, keywords, and parenthesis
but we have discarded the semi-colons at the end of
sentences (to reduce the text width and also to make it
more appealing for developers using scripting languages).
An indent of 2 spaces is the most we could afford on a
small screen. Syntax highlighting is used to make
pseudocode comprehensible. We omitted variable
declarations but assumed that all the elements and indices
are integers. The following naming scheme is used:
• The number of elements is denoted by n;
• The value of the i-th element is denoted by [i],

i.e. the name of the table is discarded;
• The loops use variables i and j, whereas other

variables are named as usual in the literature.
As well as the syntax, we paid careful attention to the

presentation of the semantics. The inclusion of compound
and otherwise complicated sentences is undesirable. Flow
control by using the “for” loop is a typical example of a
complex statement that is composed of an initial
assignment, a condition to stop, and control actions
applied at the end of every looping. Thus, we preferred
“while” or “foreach” loops over the “for” loop within the
pseudocode.

In order to avoid an inconsistent handling of different
semantic parts, we identify a set of atomic operations (i.e
functions) that reveal the concept of sorting algorithms.
Atomic operations are those that will create actions on the
screen, either by simply showing/changing some values or
applying some graphical effects, e.g. highlighting a part of
the screen, doing some animation etc. Moreover, the
atomic operations correspond to an algorithm’s steps
during step-by-step tracing. To some extent, the atomic
operations coincide with the pseudocode statements, but
we would have lost all the flexibility by equating these
two formalisms. The following atomic operations are
necessary and sufficient:
• Reading the value of an element;
• Changing the value of a variable;
• Comparing the values;
• Starting/continuing/finishing a loop;
• Swapping and moving elements.
We consider swapping and moving elements to be

atomic operations. They are autonomous principles
usually taught along with the sorting algorithms.

Once atomic operations are being identified, we can
determine the necessary highlighting effects. Two mark-
up functions are quite enough for a simple app:
• Function setMark that denote which element is

currently observing;
• Function setSpecial that denote elements with

some special feature, e.g. they are already in order.
Functions setMark and setSpecial can be used

for the same element simultaneously and therefore their
visual effects must be compatible. All other informations
will be presented through labels and comments. Swapping
and moving elements are supposed to be animated and
hence we do not need extra effects for these operations.

The user studying sorting algorithms could be
interested in different statistics about the efficiency, e.g.
the number of required data comparisons, memory reads,
memory writes, etc. Static bounding of statistical data to
the pseudocode statements is adequate for many
situations, e.g. each swap of two elements consists of 2
write operations (plus 2 read operations if the values are
not already stored in local variables). But once again, such
fixation is inflexible and, for example, in the case of
compound decisions or in the case of single-line loops it is
also very impractical. Thus we propose explicit
manipulation of statistical data via special functions.

In order to illustrate the presented approach, let us
observe the source code for demonstration of Insertion
Sort given in Fig. 3. The bold lines correspond to the lines
of pseudocode that is shown to the user. Function CC is
used to identify and describe single steps. Functions
setLabel and incrLabel are used to update the
values of labels and statistical counters. A log from
running the presented implementation is illustrated in Fig.
4. There, elements marked with functions setMark and
setSpecial are illustrated as framed or shaded,
respectively. For each step, the corresponding pseudocode
line number and comment are displayed. Please note, that
it is up to controller to implement step-by-step and
backward running.

42 http://www.i-jim.org

PAPER
A C++ APP FOR DEMONSTRATION OF SORTING ALGORITHMS ON MOBILE PLATFORMS

IV. THE PROTOTYPE APP
We have created a prototype app for Nokia N9. This

smartphone uses Meego OS and allows native C++ apps
(devices with more recent Sailfish OS or Ubuntu Touch
are unavailable as yet and Qt for Android is still a kind of
beta software). The prototype app is planned to have
Teaching mode (demonstrating and teaching), Practice
mode (checking the user's knowledge), and Game mode
(learning by playing). In version 0.2, only a part of
Teaching mode is implemented with about 2,300 lines of
C++ code and about 1,800 lines of QML code. Gnome
sort, Insertion Sort, and Quicksort are included. Fig. 5
shows that the structure of the C++ code is carefully
designed to separate the “model” part (a pure C++ code)
from the “controller” part (a Qt specific code). Fig. 6 and
Fig. 7 give some screenshots from prototype app.

Furthermore, we briefly discuss the implemented
algorithms. Please, compare the given pseudocodes with
the implementations, as given in Fig. 3 and [5].

Figure 4. The log from running the Insertion Sort

insertionSort(table T, int n) {
 int i, j, key;
 setLabel("i",-1);
 setLabel("j",-1);
 setLabel("key",-1);
 setLabel("read",0);
 setLabel("write",0);
 setLabel("sourceLine",1);
 setSpecial(0);
 CC("Skip first element");
 i = 1;
 while (i < n) {
 setLabel("sourceLine",2);
 setLabel("i",i);
 setMark(i);
 CC("Outer loop now at i");
 key = T[i];
 incrLabel("read",1);
 setLabel("key",key);
 setLabel("sourceLine",4);
 CC("[i] stored into variable key");
 j = i - 1;
 if (j >= 0) {
 setLabel("sourceLine",5);
 setLabel("j",j);
 setMark(j);
 CC("Inner loop starts at j=i-1");
 while (j >= 0 && T[j] > key) {
 incrLabel("read",1);
 setLabel("sourceLine",6);
 CC("Decrement j ([j]>key)");
 clearMark(j);
 j--;
 setLabel("j",j);
 if (j >= 0) setMark(j);
 }
 }
 setSourceLine(7);
 if (j >= 0) {
 incrLabel("read",1);
 CC("Stop inner loop ([j]<=key)");
 clearMark(j);
 } else \{
 CC("Stop inner loop (j<0)");
 }
 if (j != i-1) {
 setLabel("sourceLine",8);
 CC("Move [i] to index j+1");
 clearMark(i);
 move(i,j+1);
 incrLabel("write",i-j);
 }
 if (j == i-1) clearMark(i);
 setSpecial(j+1);
 setLabel("sourceLine",9);
 if (j >= 0) setLabel("j",-1);
 CC("Increment i");
 i++;
 setLabel("key",-1);
 }
 setLabel("sourceLine",11);
 setLabel("i",i);
 CC("All elements sorted");
}

Figure 3. Implementation of Insertion Sort

iJIM ‒ Volume 8, Issue 1, January 2014 43

PAPER
A C++ APP FOR DEMONSTRATION OF SORTING ALGORITHMS ON MOBILE PLATFORMS

A. Gnome Sort
Gnome Sort is advertised as the technique used by the

standard Dutch garden gnome to sort a line of flower pots.
Gnome Sort is supposed to be the simplest sorting
algorithm and it is indeed very easy to demonstrate it. The
pseudocode of the Gnome Sort as shown in the prototype
app is given in Fig. 9. The index used by the algorithm
(yes, Gnome Sort uses only one index) is called “position”
and is for brevity denoted by variable i. We use function
setMark to mark the element on the index “position”
and function setSpecial to denote the elements that
are already in order.

B. Insertion Sort
Insertion Sort (Fig. 10) is a simple sorting algorithm

that builds the final sorted array one item at a time. It is
much less efficient on large arrays than more advanced
algorithms, but for small arrays it can even outperform
them. Moreover, Insertion sort handles nearly sorted
arrays quite efficiently. When humans manually sort
something (e.g. a deck of playing cards), most of them use
a method similar to Insertion Sort. In our implementation
of Insertion Sort we use function setMark to denote
elements with indices i and j, that are currently being
compared, and function setSpecial to mark the
already sorted elements (see Fig. 3 and Fig. 4).

C. Quicksort
Quicksort is a divide-and-conquer algorithm that first

divides the elements into two subgroups and then
subsequently sorts these subgroups. Many versions exist
of the original algorithm, which are either called a simple
version or an in-place version. In our project we have

Figure 5. Class diagram showing a C++ part of prototype app

Figure 6. When algorithm is not selected, app shows the list of

implemented algorithms together with short statistic data; when the
algorithm is running, app shows the actual table of elements and

pseudocode with marked current line

Figure 7. In landscape mode, app shows actual table of elements, the

value of labels and the comment for current action

44 http://www.i-jim.org

PAPER
A C++ APP FOR DEMONSTRATION OF SORTING ALGORITHMS ON MOBILE PLATFORMS

chosen one of the in-place versions (Fig. 11), i.e. an
algorithm that does not need an extra space for dividing
elements into two subgroups. Moreover, we used a
recursive version of the algorithm, which is also the more
common. The presented variant is not the original version
of the algorithm [9] but in our opinion it is the more
appropriate one for the use in the class. Please, note that
we omitted details of pivot calculation to make
pseudocode shorter. In the prototype app we used the
median of the first, middle, and last elements.

V. CONCLUSION
We have studied sorting algorithms with the goal of

tracking their run by using a set of given visual effects
whilst taking into account the limitations of the mobile
platform. It is important to choose the proper presentation

of the algorithm’s flow and the proper type and amount of
visual effects. We successfully managed three different
algorithms, so we believe that our approach can be
extended for most of the other sorting algorithms as well.

The paper has reported about a prototype app for a
specific mobile platform. Nevertheless, we have
researched and discussed all the problems in such a
general way that the results are applicable on any mobile
platform. Each statement in C++ code either belongs to
the sorting algorithm, or collects statistical data, or serves
as a part of the demonstration strategy. We were careful
not to mix these roles. Hence, the obtained code is very
portable. Furthermore, the statistical data can be obtained
by only excluding all GUI statements.

Although not being the main goal of this project, the
obtained platform itself was found usable when teaching
software engineering. Today, students often underestimate
the benefit of appropriate planning (e.g. preparation of
graphical views) and appropriate testing (e.g. preparation
of test cases). Developing an app similar to the presented
one is quite a challenge due to the limited screen sizes on
mobile devices and because the effective demonstration of
sorting algorithms involves many navigation options.

REFERENCES
[1] P. Vitanyi, “Analysis of Sorting Algorithms by Kolmogorov

Complexity (a survey)”. In Entropy, Search, Complexity, pp. 209–
232, 2007. http://dx.doi.org/10.1007/978-3-540-32777-6_9

[2] S. S. Skiena, The Algorithm Design Manual. Springer, 2nd ed.,
2008.

[3] D. E. Knuth, The Art of Computer Programming, 2nd ed., vol. 3:
Sorting and Searching, Addison-Wesley Professional, 1998.

[4] I. Boticki, A. Barisic, S. Martin, and N. Drljevic, “Teaching and
Learning Computer Science Sorting Algorithms with Mobile
Devices: A case study,” Computer Applications in Engineering
Education, vol. 21, pp. E41-E50, 2013.
http://dx.doi.org/10.1002/cae.21561

[5] R. Meolic, “Demonstration of Sorting Algorithms on Mobile
Platforms,” In The Fifth International Conference on Computer
Supported Education, pp. 136-141, 2013.

[6] W. Jobe, “Native Apps vs. Mobile Web Apps”, International
Journal of Interactive Mobile Technologies, vol. 7, no. 4, 2013.

[7] A. Holzinger, P. Treitler, and W. Slany, “Making Apps Useable
on Multiple Different Mobile Platforms: On Interoperability for
Business Application Development on Smartphones,” In
Multidisciplinary Research and Practice for Information Systems,
volume 7465 of LNCS, pp. 176–189, 2012.

[8] J. Mirkovic, H. Bryhni, and C. M. Ruland, “Designing User
Friendly Mobile Application to Assist Cancer Patients in Illness
Management”. In The Third International Conference on eHealth,
Telemedicine, and Social Medicine, pp. 64–71, 2011.

[9] L. Khreisat, “Quicksort — a Historical Perspective and Empirical
Study,” International Journal of Computer Science and Network
Security, 2007, vol. 7, no.12, pp. 54–65, 2007.

AUTHORS
R. Meolic is with the Faculty of Electrical Engineering

and Computer Science, University of Maribor, Smetanova
ulica 17, SI-2000 Slovenia. (e-mail: meolic@uni-mb.si).

T. Dog!a is with the Faculty of Electrical Engineering
and Computer Science, University of Maribor, Smetanova
ulica 17, SI-2000 Slovenia. (e-mail: tdogsa@uni-mb.si).

This article is an extended and modified version of a paper presented at
the 5th International Conference on Computer Supported Education
(CSEDU 2013), 6-8 May 2013, Aachen, Germany. Submitted 06
December 2013. Published as re-submitted by the authrs 05 January
2014.

 0: function gnomeSort(n) {
 1: i = 0
 2: while (i < n) {
 3: if (i == 0 || [i] >= [i-1]) {
 4: i++
 5: } else {
 6: swap [i] and [i-1]
 7: i--
 8: }
 9: }
10: }

Figure 8. Pseudocode of Gnome Sort

 0: function insertionSort(n) {
 1: i = 1
 2: while (i < n) {
 3: key = [i]
 4: j = i-1
 5: while (j >= 0 && [j] > key) {
 6: j--
 7: }
 8: if (j != i-1) move [i] to [j+1]
 9: i++
10: }
11: }

Figure 9. Pseudocode of Insertion Sort
 0: function quickSort(begin, end) {
 1: left = begin
 2: right = end
 3: if (left < right) {
 4: calculate pivot
 5: while (left <= right) {
 6: while ([left] < pivot) left++
 7: while ([right] > pivot) right--
 8: if (left <= right) {
 9: swap [left] and [right]
10: left++
11: right--
12: }
13: }
14: quickSort(begin,right)
15: quickSort(left,end)
16: }
17: }

Figure 10. Pseudocode of Quicksort

iJIM ‒ Volume 8, Issue 1, January 2014 45

	iJIM Vol. 8, No. 1, January 2014
	A C++ App for Demonstration of Sorting Algorithms on Mobile Platforms

