
Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

Performance Analysis of Machine Learning Methods with 
Class Imbalance Problem in Android Malware Detection 

https://doi.org/10.3991/ijim.v16i10.29687

Abimbola Ganiyat Akintola1, Abdullateef Oluwagbemiga Balogun1,2(*), 
Hammed Adeleye Mojeed1,3, Fatima Enehezei Usman-Hamza1, 

Shakirat Aderonke Salihu1, Kayode Sakariyau Adewole1, 
Ghaniyyat Bolanle Balogun1, Peter Ogirima Sadiku1

1Department of Computer Science, University of Ilorin, Ilorin, Nigeria
2Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, 

Perak, Malaysia
3Institute of Technical Informatics and Telecommunication, Gdansk University of Technology, 

Gdańsk, Poland
Balogun.ao1@unilorin.edu.ng

Abstract—Due to the exponential rise of mobile technology, a slew of new 
mobile security concerns has surfaced recently. To address the hazards con-
nected with malware, many approaches have been developed. Signature-based 
detection is the most widely used approach for detecting Android malware. This 
approach has the disadvantage of being unable to identify unknown malware. 
As a result of this issue, machine learning (ML) for detecting malware apps was 
created. Conventional ML methods are concerned with increasing classification 
accuracy. However, the standard classification method performs poorly in rec-
ognizing malware applications due to the unbalanced real-world datasets. In this 
study, an empirical analysis of the detection performance of ML methods in the 
presence of class imbalance is conducted. Specifically, eleven (11) ML methods 
with diverse computational complexities were investigated. Also, the synthetic 
minority oversampling technique (SMOTE) and random undersampling (RUS) 
are deployed to address the class imbalance in the Android malware datasets. The 
experimented ML methods are tested using the Malgenome and Drebin Android 
malware datasets that contain features gathered from both static and dynamic 
malware approaches. According to the experimental findings, the performance 
of each experimented ML method varies across the datasets. Moreover, the pres-
ence of class imbalance deteriorated the performance of the ML methods as their 
performances were amplified with the deployment of data sampling methods 
(SMOTE and RUS) used to alleviate the class imbalance problem. Besides, ML 
models with SMOTE technique are superior to ML models based on the RUS 
method. It is therefore recommended to address the inherent class imbalance 
problem in Android Malware detection.

Keywords—Android, malware detection, machine learning, data sampling

140 http://www.i-jim.org

https://doi.org/10.3991/ijim.v16i10.29687
mailto:Balogun.ao1@unilorin.edu.ng


Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

1 Introduction

In recent years, virtually every member of society uses the internet in their day-to-
day activities either for social interaction, getting the latest information, health-related 
transactions, or for educational purposes [1, 2]. The increase in the number of internet 
usage has led to a rise in the growth and popularity of mobile devices such as smart-
phones or tablets, as well as the Android operating system (OS) that is mostly used 
on these devices. In particular, the Android OS has emerged as the top mobile OS 
with a significant global market value and presence. Records have shown that more 
than a billion Android devices have been purchased, with Google Play alone account-
ing for an estimated 65 billion mobile software application downloads [3, 4]. Conse-
quentially, Android’s increasing popularity and usage, as well as the development of 
third-party app stores, has rendered it vulnerable to a variety of malware [5]. Malware 
is a malicious software application developed to execute harmful payloads on victim 
devices such as computers, smartphones, etc. [3]. In other words, it can be referred to 
as any software application that performs unwanted and suspicious activities on target 
devices. Malware can be categorized into various types such as virus, worm, Trojan, 
rootkit, ransomware, etc. Malware variants can successfully steal confidential data, 
initialize distributed denial of service (DDoS) attacks, and perform disruptive dam-
age to host systems. All these malware have the potential of being harmful to mobile 
devices and this has become a challenge in the field of information security [6, 7]. 
According to McAfee Labs Threats Report, the number of mobile malware is con-
tinually growing [5]. In a similar report, Kaspersky [8] detected more than 5 million 
malicious installation packages, which includes new variants of trojans and ransom-
ware. As viable solutions, different techniques such as malware detection, vulnerability 
detection, and application reinforcement, to impose protection on the Android OS have 
been proposed and developed [9–11]. Malware detection is widely adopted among the 
proposed security protection measures to prevent dangerous applications. Primarily,  
malware detection methods can be divided into two types: signature-based and 
 anomaly-based methods. The signature-based method relies on a collection of  specified 
characteristics of such threats to identify malicious behaviour. However, while this 
method may reliably detect previously known malware, it cannot discover new unknown 
dangerous behaviours. That is, the signature-based malware detection method cannot 
detect zero-day attacks [12, 13].

The anomaly-based method, on the other hand, aims to detect malicious behaviour 
in the network by continually measuring any deviations from known typical behaviour. 
Since anomaly-based methods do not require prior knowledge of malware, they are 
more effective at identifying previously undiscovered malware. In comparison with 
conventional (i.e., statistical and knowledge-based) strategies, the performance of mal-
ware detection algorithms based on machine learning (ML) approaches outperforms 
the conventional methods [10, 14–16]. Studies have shown that security experts and 
researchers are now focusing on ML solutions for malware detection. Deployment of 
ML methods for malware detection involves the extraction of features from both mali-
cious and benign Android applications and thereafter the generated dataset will be used 
to train ML methods and generate malware detection models. In particular, the features 

iJIM ‒ Vol. 16, No. 10, 2022 141



Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

are extracted using static and dynamic malware analysis. Static malware analysis inves-
tigates the Android application’s code to identify the malware pattern without executing 
the code [6]. It offers high efficiency in identifying the apps. The shortcoming of this 
method is that it fails against obfuscation techniques [1]. The dynamic malware analy-
sis examines the app’s behaviour while running in a virtual environment like a sandbox. 
This method is effective but consumes more resources, time and is unable to explore 
all execution paths. The integration of both these methods gives better results using ML 
methods. However, the use of clean and well-defined datasets is critical when develop-
ing an ML-based malware model, because the performance of the ML model depends 
largely on the quality of the dataset [17, 18]. Specifically, the distribution of class labels 
in a dataset is critical for developing effective ML models. In real-world circumstances, 
the class label distribution is unequal and, in many cases, highly skewed. This inher-
ent phenomenon is known as the class imbalance problem. In other words, the class 
imbalance problem occurs when one of the class labels in a dataset has many instances 
(majority class) and the other class has a limited number of instances (minority class). 
Inadequately balanced class labels in a dataset make the classification process more 
difficult and undependable for ML models [19–21].

As there are more instances of benign applications as compared to malicious appli-
cations, the Android malware detection can be said to have a class imbalance problem 
[1, 11, 12]. In this research, an extensive comparative performance analysis is con-
ducted to ascertain the performance of ML methods in the presence of a class imbalance 
problem. Specifically, eleven (11) ML methods with diverse and distinct computational 
characteristics are deployed on imbalanced and balanced Android malware datasets. 
The synthetic minority over-sampling technique (SMOTE) and random under-sampling 
(RUS) is used as a data sampling method to balance the Android malware datasets. The 
primary aim of this research is to empirically evaluate and validate the detection per-
formances of ML models with an immensely imbalanced dataset.

The main contribution of this research is summarized as follows:

 i. A detailed empirical analysis of the performance of eleven (11) ML methods with 
diverse computational characteristics on balanced and imbalanced Android malware 
detection datasets.

ii. Investigation on the effect of data sampling on the performance of ML methods in 
Android malware detection.

The remaining part of these papers are arranged as follows: Section 2 discusses the 
related concepts and related works while section 3 illustrates the methodology for the 
analysis. Section 4 entails the presentation and discussion of experimental results and 
findings while Section 5 concludes this study. 

2 Related works 

The task of malware detection in android devices and applications using ML algo-
rithms have been widely researched in the literature. Many earlier works in this domain 
have utilized baseline classifiers to detect Android malware. SafeDroid presented by 

142 http://www.i-jim.org



Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

Sen, et al. [22] utilized Decision Tree (DT) based on structural features rather than 
application program interface (API) calls and permissions as commonly used by other 
approaches. Experimental results indicated that the approach with structural features 
could detect new malware better than API-based features. Application of other baseline 
ML algorithms can be found in [23–29]. 

Considerable efforts have also been made to enhance the performance of the baseline 
classifiers using ensemble approaches. Rahman and Saha [30] presented StackDroid- a 
2-level architecture for detecting malware in Android devices based on stacked gen-
eralization to reduce the error rate. The first level is composed of baseline classifiers 
such as Extremely Randomized Tree (ERT), Random Forest (RF), Multi-Layer Per-
ceptron (MLP) and Stochastic Gradient Descent (SGD). The second level utilized a 
meta-estimator/predictor Extreme Gradient Boosting (EGB) as the final predictor by 
stacking the initial predictions of the baseline classifiers. Evaluated on publicly avail-
able DREBIN dataset, StackDroid produced very promising results achieving up to 97% 
area under the curve (AUC) value and only 1.67 false-positive rates (FPR). Yerima and 
Sezer [3] presented DroidFusion a framework for detecting malware in mobile Android 
devices based on the fusion selected baseline classifiers prediction using various clas-
sifier rank aggregation algorithms. The performance was found to be superior to the 
stacked generalization approaches previously used in multilevel architecture systems.

Recently, Dhalaria and Gandotra [31] proposed a Cost-Sensitive Forest (CS-Forest) 
as a technique to combat the data imbalance problem in android malware detection. The 
method is composed of a group of decision trees that employ a cost-sensitive voting 
method to aggregate the individual predictions of the decision trees. Its performance 
was compared with similar approaches without cost-sensitive methods, it proved to be 
more effective in performance.

There have also been works that focused on comparative performance analysis of 
techniques in detecting malware in Android devices. Rana and Sung [32] compared the 
performance of individual classifiers: support vector machine (SVM), Neural networks 
(NN), naïve bayes (NB), DT, Linear Discriminant Analysis (LDA) and k Nearest 
Neighbor (KNN) in detecting Android malware. KNN was found to perform better 
than the rest. Salihu, et al. [33] evaluated the performance of four individual classifiers: 
SVM, K-means, NB, and DT in detecting Android malware. Their study supports the 
claim that ML algorithms are effective in detecting malware in Android devices. The 
performance of three individual classifiers RF, SVM, NB were evaluated by Agrawal 
and Trivedi [14] for Android malware detection. Though all the selected classifiers 
performed effectively, RF was found to be superior to all the selected classifiers. Shar, 
et al. [34] carried out an extensive experimental comparative study of selected classifi-
ers from different classes of learning techniques. The study considered four statistical 
approaches, three rule induction approaches and three deep learning approaches. The 
evaluation involved both static analysis and dynamic analysis with features granularity 
based on API calls at class level and the sequence of API calls at method level. In all, 
the RF classifier trained with the static API sequence-based features achieved the best 
results. In Gyunka, et al. [35], performance comparison of six ML algorithms: NB, 
Logistics Regression (LR), RF, Classification And Regression Tree (CART), KNN, and 

iJIM ‒ Vol. 16, No. 10, 2022 143



Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

SVM leveraging on the permission-based feature set for anomaly Android malware 
detection. RF and KNN outperformed other algorithms considering Android permission 
features in malware detection. Various ensemble approaches were experimentally eval-
uated by Agrawal and Trivedi [36] for the detection of malware in Android devices. 
Out of all the nine ensemble techniques considered, the Category Boosting (CatBoost) 
algorithm outperformed the rest.

Most of the existing comparative performance analyses conducted did not consider 
the class imbalance problems in their investigation. This work is orthogonal to previous 
performance comparative analysis as it considered evaluation of ML algorithms with 
and without class imbalance problem in Android malware detection.

3 Methodology

This section describes the research approach that was used in this study. Specifically, 
details on the implemented classifiers are presented. Also, the experimented Android 
malware datasets, performance evaluation metrics and the experimental procedure are 
illustrated

3.1 Classification algorithm

In this study, eleven (11) classification algorithms with diverse classification proce-
dures are selected. Specifically, algorithms from Bayesian (NB and Bayesian Network 
(BN)), Instance-based learning (KNN and KStar (K*)), linear-based (SVM and 
LR), rule-based (Conjunctive Rule (CR) and Decision Table (DTab)) and tree-based 
(Random Tree (RT), DT and CART) classification family are selected and implemented 
for Android malware detection. The choice of these classifiers is primarily based on 
their respective performances and usage in existing ML studies [37]. Moreover, this 
study aims to extensively compare the performance of prominently deployed classifiers 
in Android malware detection. To the best of our knowledge, no existing study has 
investigated the effectiveness of the selected classifiers on Android malware datasets in 
the presence of a class imbalance problem.

Bayesian classification algorithms. Bayesian classification algorithms are primarily 
based on Bayesian Theorem. This set of classifiers can determine the probabilities of 
an instance belonging to a specific class. This is based on the notion that the Bayesian 
theorem depends on the assumption that given a predicted outcome, the features 
deployed for generating a prediction are independent of each other [38]. In this study, 
the duo of NB and BN are selected from the Bayesian classification algorithms. Both 
NB and BN have been extensively used in ML experiments across different research 
domains and are known to have good prediction performance [19, 39, 40]. Table 1 
presents the parameters of NB and BN as deployed in this study.

144 http://www.i-jim.org



Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

Table 1. Parameter setting of selected Bayesian classification algorithms

Algorithms Parameter Setting

Naïve Bayes (NB) NumDecimalPlaces = 2;  NumAttrEval = Normal Dist.

Bayesian Network (BN) estimator = SimpleEstimator;  searchAlgo = sim-pleBayes;  
useADTree = false

Instance-based learning classification algorithms. Instance-based learning 
classification algorithms are also known as memory-based or lazy classification 
algorithms. This set of algorithms outrightly compares new instances with already 
encountered instances stored in memory during model training [41]. That is, model 
evaluation is performed only when new instances are detected. In this study, KNN and 
K* algorithms are selected as instance-based learners. Both KNN and K* are instance-
based learners, which means that the class of a test instance is decided by the class of 
training instances that are like it, as defined by some similarity function. In the case of 
K*, an entropy-based distance function is deployed as a similarity function while KNN 
is based on the Euclidean distance function [42, 43]. Table 2 shows the parameters of 
KNN and K* as deployed in this study.

Table 2. Parameter setting of selected instance-based learning classification algorithms

Algorithms Parameter Setting

K Nearest Neighbour (KNN) K=1; distanceWeighting= False; nearestNeigh 
bourSearch= LinearNNSearch

KStar (K*) globalBlend=20; missingMode= AverageColumnEntropyCurves; 
entropicAutoBelnd=False

Linear-based classification algorithms. Linear-based classification algorithms are 
based on the value of a linear combination of the features. Linear-based classifiers in 
form of a predictor function combine a set of weights with these feature vectors. The 
SVM and LR are typical examples of linear-based classifiers [19]. Both algorithms 
(SVM and LR) are investigated in this study. In SVM, classification tasks are done by 
determining hyper-plane that distinguishes class labels. LR in its case fits a logistic 
function (sigmoid function) for the classification process. Table 3 shows a description 
of the parameters of SVM and LR as used in this study.

Table 3. Parameter setting of selected linear-based classification algorithms

Algorithms Parameter Setting

Support Vector Machine (SVM) kernelType=RBF; eps=0.001;loss=0.1;  
nu=0.5; shrinking= true; cost=1.0

Logistic Regression (LR) Maxlts= -1;ridge= 1.0E-8; useConjugateGradientDescent=False

Rule-based classification algorithms. Rule-based classification algorithms make 
use of the if-then construct for predicting class labels. Due to the simplicity and ease 
of understanding of these rules, these classifiers are commonly deployed to develop 
descriptive models. In this study, the CR and DTab are deployed as instances of rule-
based classifiers. The CR method employs a unique rule learner capable of predicting 

iJIM ‒ Vol. 16, No. 10, 2022 145



Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

class labels by utilizing the “AND” operator to connect data features (antecedents and 
consequents). DTab on the other hand is made up of two parts: a schema, which is 
a collection of attributes that are included in the table, and a body, which is made up 
of labelled instances from the space defined by the schema’s attributes [44]. Table 4 
presents the parameter setting of the selected rule-based learners.

Table 4. Parameter setting of selected rule-based classification algorithms

Algorithms Parameter Setting

Conjunctive Rule (CR) Exclusive=False; minNo=2.0; numAntds=-1; 

Decision Table (DTab) evaluationMeasure=Accuracy, RMSE; Search=BestFirst; useIBK=False; 

Tree-based classification algorithms. Tree-based algorithms are widely regarded 
as one of the best and most often used ML algorithms. Due to their sophistication, three 
(3) tree-based classifiers are used in this study. Specifically, RT, DT as well as CART 
are investigated. RT employs a gripping concept to generate a collection of random 
data to construct a tree. Nearly every node in the parent tree is divided using the best 
split across all features. Each node in the RT is split using a best among the group 
of predictors randomly picked at that node. Similarly, DT is based on a deviation of 
information gain (IG), which is commonly used to evaluate the outcome of biasness. 
DT partitions data into subsets to map the training dataset into the smallest tree. As a 
splitting attribute, an attribute with the highest gain ratio is nominated in the direction of 
shaping a tree. The CART is a tree-based algorithm that is used to construct a decision 
tree based on Gini’s impurity index as its splitting criterion. It is a simple machine 
learning method with a wide range of applications. CART as a binary tree is built on 
the iterative splitting of its node into two child nodes. Table 5 shows the parameters of 
RT, DT and CART as deployed in this study.

Table 5. Parameter setting of selected rule-based classification algorithms

Algorithms Parameter Setting

Random Tree (RT) KValue=0; minNum=1.0; minVarianceProp=0.001;  
maxDepth=0; breakTiesRandomly=False 

Decision Tree (DT) confidenceFactor=0.25; minNumObj=2; subTreeraising=True; 
useMDLcorrection= True

Classification and 
Regression Tree (CART)

Heuristic= True; minObjNum=2.0; numFoldsPruning=5; SizePer=1.0; 
usePrune=True; UseOneSE=False

3.2 Android malware datasets

During the experimental section of this research, two Android malware datasets were 
employed. These datasets are widely available and often utilized in current research 
[6, 32, 45–47]. The first dataset (Drebin) consists of 15,036 instances (5,560 malware 
and 9476 benign). Drebin has 215 independent features that describe the dataset. The 
second dataset (Malgenome) has 3.799 instances divided into 1,260 malware and 2.539 
benign instances. Similar to Drebin, Malgenome has 215 features extracted from the 

146 http://www.i-jim.org



Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

Android malware genome project [3]. For more information on the malware datasets, 
refer to [3, 48]. Table 6 displays features of the experimented (Drebin and Malgenome) 
datasets.

Table 6. Details of Android malware datasets

Algorithms Number of 
Features

Number of 
Instances

Number of  
Benign

Number of 
Malware

Drebin 215 15,036 9,476 5,560

Malgenome 215 3.799 2,539 1,260

3.3 Performance evaluation metrics

In this study, Accuracy, F-measure, and Area under the Curve (AUC) are used to 
assess the detection performances of experimented Android malware models. The 
selection of these assessment measures is based on current research that shows wide-
spread and regular use of these evaluation metrics for Android malware detection.

3.4 Experimental procedure

Fig. 1. Experimental procedure

iJIM ‒ Vol. 16, No. 10, 2022 147



Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

This section discusses the experimental procedure presented in Figure 1 as followed 
in this research. The experimental procedure is structured to empirically test and ver-
ify the efficacy of the selected ML methods (See Section 3.1) for Android malware 
detection. Specifically, the selected ML methods are deployed on the original Android 
malware datasets. Findings from these experiments will empirically validate the per-
formance of the selected ML methods for Android malware detection. Furthermore, 
to investigate the effect of class imbalance in Android malware detection, the inherent 
class imbalance in the Android malware datasets will be resolved using data sampling 
methods. In other words, a data over-sampling method (SMOTE) and under-sampling 
(RUS) methods are deployed used to balance the studied malware datasets. SMOTE and 
RUS are prominent data sampling methods that are used to address the class imbalance 
problem [19, 20, 49]. Thereafter, the selected ML methods are used on the balanced 
datasets. Experimental observations from these experiments will illustrate the effect 
of data sampling methods on ML methods in Android malware detection. For train-
ing and evaluating selected ML methods, the K-fold (where k = 10) cross-validation 
(CV) approach is used for the creation and evaluation of the malware detection models. 
The 10-fold CV option is based on its ability to create malware detection models with 
the low impact of the issue of class imbalance [20, 50–53]. Moreover, the K-fold CV 
approach ensures that each instance can be used iteratively for both training and testing 
[54–56]. The Waikato Environment for Knowledge Analysis (WEKA) machine learn-
ing library [57] and R programming language [58] are used for the experimentation on 
an Intel(R) Core™ machine equipped with i7-6700, running at speed 3.4 GHz CPU 
with 16 GB RAM.

4 Experimental results

This section presents the analysis of experimental results of the eleven (11) ML 
methods selected from five families (Bayesian, Linear-based, Rule-based, Tree-based 
and Instance-based methods) for Android malware detection. A total of 66 experimental 
scenarios with each experiment repeated 10 times (660 experiments) were conducted 
to derive the results. The experiments were performed in the order as explained in 
Section 3.4. Initially, the selected ML methods were applied on the original Malgenome 
and Drebin datasets to evaluate their respective detection performances in the presence 
of a class imbalance problem. Subsequently, the inherent class imbalance present in 
the original datasets were resolved using SMOTE and RUS methods. That is, instances 
(minority and majority) present in both Malgenome and Drebin are balanced using 
SMOTE and RUS methods. Consequently, each of the selected ML methods was 
deployed on the newly generated (balanced) Android malware datasets. The essence of 
this procedure is to empirically ascertain the suitability of sampling methods in Android 
malware detection. Table 7 and Table 8 presents the results of the experimented ML 
methods on the original Malgenome and Drebin datasets respectively.

148 http://www.i-jim.org



Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

Table 7. The detection performance of experimented ML methods on the Malgenome dataset

Accuracy AUC F-Measure
NB 92.58 0.926 0.926

BN 92.73 0.927 0.927

SVM 97.81 0.969 0.969

LR 96.87 0.969 0.969

CR 75.44 0.754 0.754

DTab 91.81 0.911 0.911

RT 96.24 0.950 0.950

DT 97.21 0.941 0.941

CART 97.21 0.967 0.967

KNN 98.24 0.955 0.955

K* 97.16 0.944 0.944

Table 8. The detection performance of experimented ML methods on the Drebin dataset

Accuracy AUC F-Measure

NB 82.42 0.824 0.824

BN 82.78 0.828 0.828

SVM 96.00 0.964 0.964

LR 96.81 0.978 0.978

CR 75.55 0.756 0.758

DTab 90.20 0.922 0.922

RT 95.30 0.952 0.952

DT 95.33 0.975 0.973

CART 95.28 0.973 0.973

KNN 96.76 0.988 0.988

K* 96.80 0.988 0.988

As shown in Table 7, it can be observed that the duo of KNN and SVM had the 
best performance on the Malgenome dataset. In particular, KNN and SVM had detec-
tion accuracy values of 98.24% and 97.81% respectively. Between the Bayesian-based 
classifiers, both BN and NB performed comparably with detection accuracy values 
of 92.78% and 92.58% respectively. In the case of linear-based classifiers, SVM and 
LR recorded 97.81% and 96.87% accuracy values accordingly. CR and DTab, which 
are rule-based classifiers performed relatively well. Specifically, DTab (91.81%) had 
a better detection accuracy as compared with CR (75.44%). The poor performance of 
CR can be linked to the high number of cycles needed to attain minimum requirements. 
Also, the tree-based classifiers (RT, CART, and DT) performed well with a detec-
tion accuracy value of 97.21% (DT), 97.21% (CART), and 96.24% (RT). On aver-
age, the instance-based methods (KNN and K*) recorded the best performance on the 
Malgenome dataset compared to ML methods. This feat can be due to their ability to 

iJIM ‒ Vol. 16, No. 10, 2022 149



Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

withstand redundant and noisy features [41, 42]. Table 8 presents the detection perfor-
mances of experimented ML methods on the Drebin dataset. Similar to observations 
on the Malgenome dataset, the instance-based classifiers had the best Android malware 
detection performance on the Drebin dataset. The duo of KNN and K* classifiers had 
detection accuracy values of 96.76% and 96.80% respectively. Also, the linear-based 
classifiers (SVM and LR) performed comparably to the instance-based classifiers (KNN 
and K*). The tree-based classifiers equal performed well with a minimum detection 
accuracy of 95.28% by CART. NB and BN as Bayesian-based classifiers performed 
relatively well as compared with instance and linear-based classifiers. However, the 
performance of the rule-based classifiers is somewhat indifferent. CR still maintains its 
poor detection performance with 75.55% Android malware detection accuracy while 
DTab had a 90.20% accuracy value. 

The respective performances of the experimented ML methods on the Malgenome 
and Drebin datasets showed positive outcomes. Specifically, aside from CR classifiers, 
all experimented ML methods had detection accuracy and AUC values greater than 
80% and 90% respectively. This observation indicates that the experimented ML meth-
ods can perform well in Android malware detection. However, knowing the adverse 
effect of the cost of misclassification or misdetection of Android malware, it is perti-
nent to develop a highly sophisticated ML model. Reported findings from existing ML 
studies have shown that the quality of the dataset used in an ML task has a direct effect 
on the performance of selected ML methods. As such, the class imbalance problem 
has been established as an inherent data quality problem present in Android malware 
datasets. Based on this premise, data sampling methods (SMOTE and RUS) are used 
to resolve the inherent imbalance in studied Android malware datasets. Table 9 and 
Table 10 shows the performance of experimented ML methods on balanced (SMOTE) 
Malgenome and Drebin datasets respectively. The essence of these analyses is to inves-
tigate the effect of the studied data sampling methods (SMOTE and RUS) on ML 
methods in Android malware detection.

Table 9. The detection performance of experimented ML methods on balanced (SMOTE) 
Malgenome dataset

Accuracy AUC F-Measure

NB 95.26 0.994 0.953

BN 94.50 0.994 0.945

SVM 98.24 0.982 0.982

LR 99.33 0.998 0.993

CR 81.42 0.809 0.809

DTab 93.64 0.986 0.936

RT 97.90 0.979 0.979

DT 98.06 0.983 0.981

CART 98.63 0.980 0.976

KNN 99.49 0.998 0.995

K* 98.83 0.997 0.988

150 http://www.i-jim.org



Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

Table 10. The detection performance of experimented ML methods on balanced (SMOTE) 
Drebin dataset

Accuracy AUC F-Measure

NB 85.61 0.945 0.945

BN 85.58 0.942 0.942

SVM 97.24 0.972 0.972

LR 98.1 0.996 0.981

CR 80.1 0.84 0.84

DTab 92.41 0.976 0.976

RT 97.74 0.978 0.977

DT 97.77 0.982 0.982

CART 97.65 0.984 0.984

KNN 99.09 0.997 0.997

K* 98.61 0.998 0.998

As with the Malganome dataset, it can be observed from Table 9 that consider-
ing the performance within ML methods, LR, DTab, and KNN outperformed other 
experimented ML methods in Accuracy, AUC, and F-measure values. NB performed 
better than BN in accuracy and F-measure while both performed the same on AUC 
values. Concerning tree-based classifiers, DT outperformed CART and RT in AUC 
and F-measure values, although CART outperformed both RT and DT on detection 
accuracy values. Overall, KNN had the best performance while CR had the least per-
formance. On the Drebin dataset balanced with SMOTE data over-sampling method, 
Table 10 shows that NB, LR, and DTab outperformed other experimented ML methods. 
KNN did better than K* in terms of Accuracy, although K* had slightly better AUC 
and F-measure values. Like the balanced Malgenome dataset, KNN recorded the best 
performance while CR had the least Android malware detection performance. 

Furthermore, concerning the enhancement in detection performance of the experi-
mented ML methods with the application of SMOTE data balancing method, Figure 2 
and Figure 3 presented the variation (percentage increase) in Android malware detec-
tion performance measures recorded on Malganome and Debrin datasets respectively.

With the Malgenome dataset, generally, there are considerable improvements in the 
performance of approximately all the experimented ML methods in all performance 
measures after balancing with SMOTE oversampling method. In terms of Accuracy, 
CR which was the worst-performing ML method in the presence of class imbalance 
recorded the highest percentage increase achieving approximately +8% improve-
ment in accuracy value. This shows the extent to which data balancing can enhance 
the performance of poor performing models by alleviating class imbalance present in 
the Android malware dataset. NB and LR recorded approximately a +3% increase in 
detection accuracy while other experimented ML methods were able to achieve less 
than +2% increase in malware detection accuracy values. 

iJIM ‒ Vol. 16, No. 10, 2022 151



Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

0

1

2

3

4

5

6

7

8

9

NB BN SVM LR CR DTab RT DT CART KNN K*

% increase ACC % increase AUC % increase F-M

Fig. 2. Malware detection performance variation of experimented ML method on 
SMOTE-balanced Malgenome dataset

0

2

4

6

8

10

12

14

16

NB BN SVM LR CR DTab RT DT CART KNN K*

% increase ACC % increase AUC % increase F-M

Fig. 3. Malware detection performance variation of experimented ML method on 
SMOTE-balanced Drebin dataset

Specifically, the effect of SMOTE balancing method is comparably negligible on the 
performance of SVM as it achieved only a +0.44% increase in detection accuracy value. 
In terms of AUC, DTab produced the highest performance improvement recording more 
than +8% increment and followed slightly by CR, NB and BN with a recorded increase 
greater than 7%. DT, KNN, and K* achieved more than 4% increment while LR and 
RT achieved a +3% increase. SVM and CART showed very little improvement in AUC 
value as both recorded a +1.34% increase. In terms of F-Measure, CR also recorded the 
highest percentage increase in performance achieving a +7.3% increase. Following CR 
in improvement are K*, KNN and DT with more than +4% increase in F-Measure. RT, 

152 http://www.i-jim.org



Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

DTab, NB and LR achieved more than a +2% increase in F-Measure. CART and SVM 
recorded the smallest percentage increase in F-Measure recording as low as +0.93% 
and +1.24% increase respectively. It is also observed that the rule-based approaches 
improved the most across all performance measures followed by the Bayesian-based 
and instance-based approaches. Linear-based and Tree-based classifiers showed a lit-
tle improvement except for DT which achieved more than +4% increase in AUC and 
F-Measure values.

On the Drebin dataset, SMOTE oversampling method also showed a positive 
enhancement in the detection performance of experimented ML methods. In terms of 
AUC and F-Measure values, NB achieved the highest performance increase recording 
over +14% increment in both measures. BN followed closely in percentage increase 
in AUC and F-Measure with over +13% increase in both measures. Similarly, CR 
and DTab showed a significant improvement in AUC and F-measure values. In terms 
of Accuracy, CR produced a better increase in performance than other ML methods 
achieving a +6% increment. NB and BN also achieved a good performance increment 
in accuracy value (more than +3% increment). As observed with the Malgenome data-
set, SVM had the least increment in performance based on detection accuracy and 
AUC values while LR had the least performance based on F-measure. Among the 
experimented ML methods, the Bayesian-based classifiers had the highest increment in 
detection performance followed by the rule-based classifiers. 

Table 11. The detection performance of experimented ML methods on balanced (RUS) 
Malgenome dataset

Accuracy AUC F-Measure

NB 95.52 0.994 0.955

BN 94.33 0.993 0.943

SVM 97.74 0.977 0.977

LR 98.77 0.997 0.988

CR 80.83 0.808 0.804

DTab 94.64 0.98 0.946

RT 96.83 0.968 0.968

DT 96.79 0.974 0.968

CART 98.71 0.972 0.967

KNN 99.13 0.996 0.991

K* 99.09 0.999 0.991

iJIM ‒ Vol. 16, No. 10, 2022 153



Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

Table 12. The detection performance of experimented ML methods on balanced (RUS)  
Drebin dataset

Accuracy AUC F-Measure

NB 85.66 0.95 0.856

BN 85.45 0.929 0.853

SVM 96.93 0.969 0.969

LR 97.59 0.994 0.976

CR 80.06 0.803 0.795

DTab 93.71 0.98 0.937

RT 96.56 0.966 0.966

DT 96.99 0.976 0.97

CART 96.64 0.978 0.966

KNN 98.38 0.994 0.984

K* 98.48 0.998 0.985

Similar to the SMOTE method, the RUS method was also deployed to balance the 
Malgenome and Drebin datasets. Table 11 and Table 12 show the results of experi-
mented ML methods on the balanced (RUS) Android malware datasets. From Table 11, 
the experimental results showed that NB, LR, DTab had the best malware detection per-
formance on the newly generated RUS-based Malgenome dataset. Specifically, Among 
the tree-based classifiers, CART had the highest malware detection accuracy value, 
DT recorded the most superior AUC and F-measure values. Also, Table 12 showed 
the detection performance of experimented ML methods on the RUS-balanced Drebin 
dataset. NB, LR, DTab, K*, and DT performed better than other ML methods. K* and 
CR had the overall best and worst Android malware detection performance respectively 
among the experimented ML methods. 

–1

0

1

2

3

4

5

6

7

8

NB BN SVM LR CR DTab RT DT CART KNN K*

% increase ACC % increase AUC % increase F-M

Fig. 4. Malware detection performance variation of experimented ML method on 
RUS-balanced Malgenome dataset

154 http://www.i-jim.org



Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

Also, concerning the effect of the RUS method on the Android malware detection 
performances of the experimented ML methods, Figure 4 and Figure 5 present the 
variation in detection performance measures recorded on the Malgenome and Drebin 
datasets respectively.

As presented in Figure 4, due to the alleviated class imbalance problem by deploying 
the RUS method on the Malgenome dataset, there were enhancements (positive incre-
ment) in performance measures of the experimented ML methods. The positive incre-
ment in performance metric values occurred for the experimented ML methods except 
in the case of SVM and DT classifiers whose detection accuracy values decreased by 
0.07% and 0.43% respectively.

–2

0

2

4

6

8

10

12

14

16

18

NB BN SVM LR CR DTab RT DT CART KNN K*

% increase ACC % increase AUC % increase F-M

Fig. 5. Malware detection performance variation of experimented ML method on 
RUS-balanced Drebin dataset

Specifically, the CR classifier had the highest positive variation in detection accu-
racy and F-Measure values achieving +7.14% and +6.63% increment respectively. NB 
and KNN classifiers recorded high positive performance variations in detection accu-
racy and f-measure values respectively. In terms of AUC value, DTab recorded the 
highest percentage increase (+7.57%) followed closely by NB (+7.34%), CR (+7.16%) 
and BN (+7.12%) classifiers respectively. CART and SVM had the least variations (less 
than +1%) in AUC values. Similar to the findings observed with the SMOTE-based 
Malgenome dataset, it can be observed that the detection performances of experimented 
ML methods improved significantly with the deployment of the RUS method. The rule-
based classifiers improved the most in Android malware detection performance followed 
by Bayesian-based classifiers and instance-based classifiers. The least improvement in 
Android malware detection performance is observed in the linear-based and tree-based 
classifiers. In the case of the RUS method on the Drebin dataset, Figure 5 illustrates 
the Android malware detection performance variation of experimented ML method on 
the RUS-balanced Drebin dataset. Positive variations (increment) were observed in 
detection accuracy and AUC values of all experimented ML methods. Although, there 
was a decrease in the F-measure values of some experimented ML methods (LR, DT, 
CRT, KNN and K*), this can be attributed to the information loss often caused by the 

iJIM ‒ Vol. 16, No. 10, 2022 155



Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

RUS method. More specifically, NB (+15.29%) and BN (+12.20%) classifiers achieved 
the highest percentage increase in AUC values respectively while the CR (+5.97%) 
classifier achieved the highest percentage increment in detection accuracy value. The 
F-Measure result is poor with the RUS-based Drebin dataset, nevertheless, the CR clas-
sifier still recorded the highest percentage achieving approximately a +5% increment.

Lastly, the overall effects of deploying an oversampling method (SMOTE) and 
undersampling method (RUS) on the performance of the experimented ML methods 
was observed. The AUC metric is selected for the evaluation as it is considered the 
most informative measure for classification tasks. Figure 6 and Figure 7 presents the 
experimental results comparison of ML models based on SMOTE and RUS-based 
Malgenome and Drebin Android malware datasets respectively. 

7
.3

4

7
.1

2

0
.8

3

2
.8

9

7
.1

6

7
.5

7

1
.8

9

3
.5

1

0
.5

2

4
.2

9

5
.8

3

7
.3

4

7
.2

3

1
.3

4

2
.9

9

7
.2

9 8
.2

3

3
.0

5 4
.4

6

1
.3

4

4
.5

5
.6

1

NB BN SVM LR CR DTab RT DT CART KNN K*

RUS SMOTE

Fig. 6. ML methods malware detection performance enhancement comparison of RUS and 
SMOTE-based Malgenome dataset

1
5
.2

9

1
2
.2

0
.5

2 1
.6

4

6
.2

2

6
.2

9

1
.4

7

0
.1 0
.5

1

0
.6

1

1
.0

1

1
4
.6

8

1
3
.7

7

0
.8

3 1
.8

4

1
1
.1

1

5
.8

6

2
.7

3

0
.7

2

1
.1

3

0
.9

1

1
.0

1

NB BN SVM LR CR DTab RT DT CART KNN K*

RUS SMOTE

Fig. 7. ML methods malware detection performance enhancement comparison of RUS and 
SMOTE-based on Drebin dataset

From Figure 6, it can be observed that SMOTE had superior positive effects on 
the detection performances of the experimented ML methods than RUS except in NB 
where they have comparable effects. This superior performance is most significant in 

156 http://www.i-jim.org



Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

CR classifier. A similar finding can be observed from Figure 7 as SMOTE performs 
better than RUS in all cases except in NB where RUS supersedes SMOTE. Hence, 
comparatively, it can be concluded that the oversampling method (SMOTE) is superior 
to the under-sampling method (RUS) for addressing the class imbalance problem and 
enhancing the detection performance of ML methods in android malware detection.

5 Conclusions and future works

This work conducted an extensive comparative analysis on the performance of 
eleven (11) ML methods - selected from five different families with diverse and dis-
tinct computational characteristics - in the presence of the class imbalance problem 
for Android malware detection. Specifically, NB, BN, SVM, LR, CR, DTab, DT, RT, 
CART, KNN and K* classification algorithms are deployed on original (imbalanced) 
and balanced Android malware datasets. The SMOTE and RUS methods were used as 
data sampling methods to resolve (balance) the class imbalance nature of the Android 
malware datasets. Drebin and Malgenome Android malware datasets were employed 
to test the performance of the experimented ML methods. Findings from the empirical 
results and analyses indicated that the instance-based methods (KNN and K*) have 
inculpable resistance to the class imbalance problem that may exist in Android malware 
datasets. Also, it was observed that studied data sampling methods (SMOTE and RUS) 
positively enhanced the detection performances of the experimented ML methods. 
Lastly, this study confirmed the superiority of SMOTE method over the RUS method 
in addressing the class imbalance problem and improving the detection performance of 
ML methods in Android malware detection tasks. As a limitation for this study, more 
real-life datasets would be considered in future works. Also, the high dimensionality of 
Android malware datasets is another issue that needs to be addressed. The combination 
of data sampling and feature selection methods as solutions to class imbalance and high 
dimensionality problems in Android malware detection will be investigated.

6 References

 [1] M. E. Khoda, J. Kamruzzaman, I. Gondal, T. Imam, and A. Rahman, “Malware detection in 
edge devices with fuzzy oversampling and dynamic class weighting,” Applied Soft Comput-
ing, vol. 112, p. 107783, 2021. https://doi.org/10.1016/j.asoc.2021.107783

 [2] A. Alsarhan, A.-R. Al-Ghuwairi, E. Alshdaifat, and H. Idhaim, “A novel scheme for mali-
cious nodes detection in cloud markets based on fuzzy logic technique,” International Jour-
nal of Interactive Mobile Technologies, vol. 16, no. 3, 2022. https://doi.org/10.3991/ijim.
v16i03.27933

 [3] S. Y. Yerima and S. Sezer, “Droidfusion: A novel multilevel classifier fusion approach for 
android malware detection,” IEEE transactions on cybernetics, vol. 49, no. 2, pp. 453–466, 
2018. https://doi.org/10.1109/TCYB.2017.2777960

 [4] A. Abozeid, A. A. AlHabshy, and K. ElDahshan, “A Software Security Optimization 
Architecture (SoSOA) and its adaptation for mobile applications,” International Journal 
of Interactive Mobile Technologies, vol. 15, no. 11, 2021. https://doi.org/10.3991/ijim.
v15i11.20133

iJIM ‒ Vol. 16, No. 10, 2022 157

https://doi.org/10.1016/j.asoc.2021.107783
https://doi.org/10.3991/ijim.v16i03.27933
https://doi.org/10.3991/ijim.v16i03.27933
https://doi.org/10.1109/TCYB.2017.2777960
https://doi.org/10.3991/ijim.v15i11.20133
https://doi.org/10.3991/ijim.v15i11.20133


Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

 [5] F. Alswaina and K. Elleithy, “Android malware family classification and analysis: Current 
status and future directions,” Electronics, vol. 9, no. 6, p. 942, 2020. https://doi.org/10.3390/
electronics9060942

 [6] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “MalDozer: Automatic framework 
for android malware detection using deep learning,” Digital Investigation, vol. 24, pp. S48–
S59, 2018. https://doi.org/10.1016/j.diin.2018.01.007

 [7] A. G. Oladepo, A. O. Bajeh, A. O. Balogun, H. A. Mojeed, A. A. Salman, and A. I. Bako, 
“Heterogeneous ensemble with combined dimensionality reduction for social spam detec-
tion,” International Journal of Interactive Mobile Technologies, vol. 15, no. 17, 2021. 
https://doi.org/10.3991/ijim.v15i17.19915

 [8] Kaspersky. (2021, 21/12/2021). Mobile malware evolution 2020. Available: https://secure-
list.com/mobile-malware-evolution-2020/101029/ 

 [9] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A review of android malware detec-
tion approaches based on machine learning,” IEEE Access, vol. 8, pp. 124579–124607, 
2020. https://doi.org/10.1109/ACCESS.2020.3006143

 [10] I. Almomani et al., “Android ransomware detection based on a hybrid evolutionary approach 
in the context of highly imbalanced data,” IEEE Access, vol. 9, pp. 57674–57691, 2021. 
https://doi.org/10.1109/ACCESS.2021.3071450

 [11] R. Almohaini, I. Almomani, and A. AlKhayer, “Hybrid-based analysis impact on ransom-
ware detection for Android systems,” Applied Sciences, vol. 11, no. 22, p. 10976, 2021. 
https://doi.org/10.3390/app112210976

 [12] M. Dhalaria and E. Gandotra, “Android malware detection using chi-square feature selec-
tion and ensemble learning method,” in 2020 Sixth International Conference on Parallel, 
Distributed and Grid Computing (PDGC), 2020, pp. 36–41: IEEE. https://doi.org/10.1109/
PDGC50313.2020.9315818

 [13] M. Dhalaria and E. Gandotra, “A framework for detection of Android malware using static 
features,” in 2020 IEEE 17th India Council International Conference (INDICON), 2020, 
pp. 1–7: IEEE. https://doi.org/10.1109/INDICON49873.2020.9342511

 [14] P. Agrawal and B. Trivedi, “Machine learning classifiers for Android malware detection,” 
in Data Management, Analytics and Innovation: Springer, 2021, pp. 311–322. https://doi.
org/10.1007/978-981-15-5616-6_22

 [15] A. Amouri, V. T. Alaparthy, and S. D. Morgera, “A machine learning based intrusion detec-
tion system for mobile internet of things,” Sensors, vol. 20, no. 2, p. 461, 2020. https://doi.
org/10.3390/s20020461

 [16] M. S. Hussain and K. U. R. Khan, “A survey of ids techniques in manets using 
machine-learning,” in Third International Conference on Computational Intelligence and 
Informatics. Springer, 2020, pp. 743–751. https://doi.org/10.1007/978-981-15-1480-7_68

 [17] Y. A. Alsariera, V. E. Adeyemo, A. O. Balogun, and A. K. Alazzawi, “Ai meta-learners 
and extra-trees algorithm for the detection of phishing websites,” IEEE Access, vol. 8, 
pp. 142532–142542, 2020. https://doi.org/10.1109/ACCESS.2020.3013699

 [18] A. O. Balogun, S. Basri, S. J. Abdulkadir, and A. S. Hashim, “Performance analysis of fea-
ture selection methods in software defect prediction: a search method approach,” Applied 
Sciences, vol. 9, no. 13, p. 2764, 2019. https://doi.org/10.3390/app9132764

 [19] A. O. Balogun, S. Basri, S. J. Abdulkadir, V. E. Adeyemo, A. A. Imam, and A. O. Bajeh, 
“Software defect prediction: Analysis of class imbalance and performance stability,” Journal 
of Engineering Science and Technology, vol. 14, no. 6, pp. 3294–3308, 2019. 

 [20] A. O. Balogun et al., “SMOTE-based homogeneous ensemble methods for software defect 
prediction,” in International Conference on Computational Science and Its Applications, 
2020, pp. 615–631: Springer. https://doi.org/10.1007/978-3-030-58817-5_45

158 http://www.i-jim.org

https://doi.org/10.3390/electronics9060942
https://doi.org/10.3390/electronics9060942
https://doi.org/10.1016/j.diin.2018.01.007
https://doi.org/10.3991/ijim.v15i17.19915
https://securelist.com/mobile-malware-evolution-2020/101029/
https://securelist.com/mobile-malware-evolution-2020/101029/
https://doi.org/10.1109/ACCESS.2020.3006143
https://doi.org/10.1109/ACCESS.2021.3071450
https://doi.org/10.3390/app112210976
https://doi.org/10.1109/PDGC50313.2020.9315818
https://doi.org/10.1109/PDGC50313.2020.9315818
https://doi.org/10.1109/INDICON49873.2020.9342511
https://doi.org/10.1007/978-981-15-5616-6_22
https://doi.org/10.1007/978-981-15-5616-6_22
https://doi.org/10.3390/s20020461
https://doi.org/10.3390/s20020461
https://doi.org/10.1007/978-981-15-1480-7_68
https://doi.org/10.1109/ACCESS.2020.3013699
https://doi.org/10.3390/app9132764
https://doi.org/10.1007/978-3-030-58817-5_45


Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

 [21] J. L. Leevy, T. M. Khoshgoftaar, R. A. Bauder, and N. Seliya, “A survey on addressing high-
class imbalance in big data,” Journal of Big Data, vol. 5, no. 1, pp. 1–30, 2018. https://doi.
org/10.1186/s40537-018-0151-6

 [22] S. Sen, A. I. Aysan, and J. A. Clark, “SAFEDroid: using structural features for detecting 
android malwares,” in International Conference on Security and Privacy in Communication 
Systems, 2017, pp. 255–270: Springer. https://doi.org/10.1007/978-3-319-78816-6_18

 [23] L. Cen, C. S. Gates, L. Si, and N. Li, “A probabilistic discriminative model for android mal-
ware detection with decompiled source code,” IEEE Transactions on Dependable and Secure 
Computing, vol. 12, no. 4, pp. 400–412, 2014. https://doi.org/10.1109/TDSC.2014.2355839

 [24] H. Fereidooni, M. Conti, D. Yao, and A. Sperduti, “ANASTASIA: ANdroid mAlware 
detection using STatic analySIs of Applications,” in 2016 8th IFIP international confer-
ence on new technologies, mobility and security (NTMS), 2016, pp. 1–5: IEEE. https://doi.
org/10.1109/NTMS.2016.7792435

 [25] H. Rathore, S. K. Sahay, P. Chaturvedi, and M. Sewak, “Android malicious application clas-
sification using clustering,” in International Conference on Intelligent Systems Design and 
Applications, 2018, pp. 659–667: Springer. https://doi.org/10.1007/978-3-030-16660-1_64

 [26] J. Sahs and L. Khan, “A machine learning approach to android malware detection,” in 2012 
European Intelligence and Security Informatics Conference, 2012, pp. 141–147: IEEE. 
https://doi.org/10.1109/EISIC.2012.34

 [27] X. Su, M. Chuah, and G. Tan, “Smartphone dual defense protection framework: Detecting 
malicious applications in android markets,” in 2012 8th International Conference on Mobile 
Ad-hoc and Sensor Networks (MSN), 2012, pp. 153–160: IEEE. https://doi.org/10.1109/
MSN.2012.43

 [28] S. Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik, “A new android malware detection 
approach using Bayesian classification,” in 2013 IEEE 27th international conference on 
advanced information networking and applications (AINA), 2013, pp. 121–128: IEEE. 
https://doi.org/10.1109/AINA.2013.88

 [29] Y. A. Alsariera, A. O. Balogun, V. E. Adeyemo, O. H. Tarawneh, and H. A. Mojeed, 
“Intelligent tree-based ensemble approaches for phishing website detection,” Journal of 
Engineering Science and Technology, vol. 17, no. 1, pp. 0563–0582, 2022. 

 [30] S. S. M. M. Rahman and S. K. Saha, “StackDroid: Evaluation of a multi-level approach for 
detecting the malware on android using stacked generalization,” in International Confer-
ence on Recent Trends in Image Processing and Pattern Recognition, 2018, pp. 611–623: 
Springer. https://doi.org/10.1007/978-981-13-9181-1_53

 [31] M. Dhalaria and E. Gandotra, “CSForest: An approach for imbalanced family classifica-
tion of android malicious applications,” International Journal of Information Technology, 
vol. 13, no. 3, pp. 1059–1071, 2021. https://doi.org/10.1007/s41870-021-00661-7

 [32] M. S. Rana and A. H. Sung, “Malware analysis on Android using supervised machine 
learning techniques,” International Journal of Computer and Communication Engineering, 
vol. 7, no. 4, p. 178, 2018. https://doi.org/10.17706/IJCCE.2018.7.4.178–188

 [33] S. A. Salihu, S. Quadri, and O. C. Abikoye, “Performance evaluation of selected machine 
learning techniques for malware detection in Android devices,” Ilorin Journal of Computer 
Science and Information Technology, vol. 3, no. 1, pp. 52–61, 2020. 

 [34] L. K. Shar, B. F. Demissie, M. Ceccato, and W. Minn, “Experimental comparison of features 
and classifiers for android malware detection,” in Proceedings of the IEEE/ACM 7th Inter-
national Conference on Mobile Software Engineering and Systems, 2020, pp. 50–60. https://
doi.org/10.1145/3387905.3388596

 [35] B. A. Gyunka, O. C. Abikoye, and A. S. Adekunle, “Anomaly Android malware detection: 
A comparative analysis of six classifiers,” in International Conference on Information and 
Communication Technology and Applications, 2020, pp. 145–157: Springer. https://doi.
org/10.1007/978-3-030-69143-1_12

iJIM ‒ Vol. 16, No. 10, 2022 159

https://doi.org/10.1186/s40537-018-0151-6
https://doi.org/10.1186/s40537-018-0151-6
https://doi.org/10.1007/978-3-319-78816-6_18
https://doi.org/10.1109/TDSC.2014.2355839
https://doi.org/10.1109/NTMS.2016.7792435
https://doi.org/10.1109/NTMS.2016.7792435
https://doi.org/10.1007/978-3-030-16660-1_64
https://doi.org/10.1109/EISIC.2012.34
https://doi.org/10.1109/MSN.2012.43
https://doi.org/10.1109/MSN.2012.43
https://doi.org/10.1109/AINA.2013.88
https://doi.org/10.1007/978-981-13-9181-1_53
https://doi.org/10.1007/s41870-021-00661-7
https://doi.org/10.17706/IJCCE.2018.7.4.178-188
https://doi.org/10.1145/3387905.3388596
https://doi.org/10.1145/3387905.3388596
https://doi.org/10.1007/978-3-030-69143-1_12
https://doi.org/10.1007/978-3-030-69143-1_12


Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

 [36] P. Agrawal and B. Trivedi, “Evaluating machine learning classifiers to detect android mal-
ware,” in 2020 IEEE International Conference for Innovation in Technology (INOCON), 
2020, pp. 1–6: IEEE. https://doi.org/10.1109/INOCON50539.2020.9298290

 [37] A. O. Balogun et al., “Optimized decision forest for website phishing detection,” in Proceed-
ings of the Computational Methods in Systems and Software, 2021, pp. 568–582: Springer. 
https://doi.org/10.1007/978-3-030-90321-3_47

 [38] A. Tsymbal, S. Puuronen, and D. W. Patterson, “Ensemble feature selection with the simple 
Bayesian classification,” Information fusion, vol. 4, no. 2, pp. 87–100, 2003. https://doi.
org/10.1016/S1566-2535(03)00004-6

 [39] G. D’Angelo, S. Rampone, and F. Palmieri, “Developing a trust model for pervasive com-
puting based on Apriori association rules learning and Bayesian classification,” Soft Com-
puting, vol. 21, no. 21, pp. 6297–6315, 2017. https://doi.org/10.1007/s00500-016-2183-1

 [40] A. O. Balogun et al., “A novel rank aggregation-based hybrid multifilter wrapper feature 
selection method in software defect prediction,” Computational Intelligence and Neurosci-
ence, vol. 2021, 2021. https://doi.org/10.1155/2021/5069016

 [41] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning algorithms,” Machine 
learning, vol. 6, no. 1, pp. 37–66, 1991. https://doi.org/10.1007/BF00153759

 [42] M. A. Mabayoje, A. O. Balogun, H. A. Jibril, J. O. Atoyebi, H. A. Mojeed, and V. E. 
Adeyemo, “Parameter tuning in KNN for software defect prediction: An empirical analy-
sis,” Jurnal Teknologi dan Sistem Komputer, vol. 7, no. 4, pp. 121–126, 2019. https://doi.
org/10.14710/jtsiskom.7.4.2019.121-126

 [43] D. Y. Mahmood and M. A. Hussein, “Intrusion detection system based on K-star classi-
fier and feature set reduction,” International Organization of Scientific Research Journal 
of Computer Engineering (IOSR-JCE) Vol, vol. 15, no. 5, pp. 107–112, 2013. https://doi.
org/10.9790/0661-155107112

 [44] A. O. Balogun et al., “Rank aggregation based multi-filter feature selection method for soft-
ware defect prediction,” in International Conference on Advances in Cyber Security, 2020, 
pp. 371–383: Springer. https://doi.org/10.1007/978-981-33-6835-4_25

 [45] M. S. Rana, C. Gudla, and A. H. Sung, “Evaluating machine learning models for Android 
malware detection: A comparison study,” in Proceedings of the 2018 VII International 
Conference on Network, Communication and Computing, 2018, pp. 17–21. https://doi.
org/10.1145/3301326.3301390

 [46] M. S. Rana, S. S. M. M. Rahman, and A. H. Sung, “Evaluation of tree based machine 
learning classifiers for android malware detection,” in International Conference on 
Computational Collective Intelligence, 2018, pp. 377–385: Springer. https://doi.
org/10.1007/978-3-319-98446-9_35

 [47] M. S. Rana and A. H. Sung, “Evaluation of advanced ensemble learning techniques for 
Android malware detection,” Vietnam Journal of Computer Science, vol. 7, no. 02, 
pp. 145–159, 2020. https://doi.org/10.1142/S2196888820500086

 [48] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens, “Drebin: 
Effective and explainable detection of android malware in your pocket,” in Ndss, 2014, 
vol. 14, pp. 23–26. https://doi.org/10.14722/ndss.2014.23247

 [49] A. O. Balogun, K. S. Adewole, A. O. Bajeh, and R. G. Jimoh, “Cascade generalization based 
functional tree for website phishing detection,” in International Conference on Advances in 
Cyber Security, 2021, pp. 288–306: Springer. https://doi.org/10.1007/978-981-16-8059-5_17

 [50] A. O. Balogun, A. O. Bajeh, V. A. Orie, and W. A. Yusuf-Asaju, “Software defect predic-
tion using ensemble learning: An ANP based evaluation method,” FUOYE Journal of Engi-
neering and Technology, vol. 3, no. 2, pp. 50–55, 2018. https://doi.org/10.46792/fuoyejet.
v3i2.200

160 http://www.i-jim.org

https://doi.org/10.1109/INOCON50539.2020.9298290
https://doi.org/10.1007/978-3-030-90321-3_47
https://doi.org/10.1016/S1566-2535(03)00004-6
https://doi.org/10.1016/S1566-2535(03)00004-6
https://doi.org/10.1007/s00500-016-2183-1
https://doi.org/10.1155/2021/5069016
https://doi.org/10.1007/BF00153759
https://doi.org/10.14710/jtsiskom.7.4.2019.121-126
https://doi.org/10.14710/jtsiskom.7.4.2019.121-126
https://doi.org/10.9790/0661-155107112
https://doi.org/10.9790/0661-155107112
https://doi.org/10.1007/978-981-33-6835-4_25
https://doi.org/10.1145/3301326.3301390
https://doi.org/10.1145/3301326.3301390
https://doi.org/10.1007/978-3-319-98446-9_35
https://doi.org/10.1007/978-3-319-98446-9_35
https://doi.org/10.1142/S2196888820500086
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.1007/978-981-16-8059-5_17
https://doi.org/10.46792/fuoyejet.v3i2.200
https://doi.org/10.46792/fuoyejet.v3i2.200


Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

 [51] R. Jimoh, A. Balogun, A. Bajeh, and S. Ajayi, “A PROMETHEE based evaluation of soft-
ware defect predictors,” Journal of Computer Science and Its Application, vol. 25, no. 1, 
pp. 106–119, 2018. 

 [52] Z. Xu, J. Liu, Z. Yang, G. An, and X. Jia, “The impact of feature selection on defect predic-
tion performance: An empirical comparison,” presented at the 2016 IEEE 27th International 
Symposium on Software Reliability Engineering (ISSRE), 2016. https://doi.org/10.1109/
ISSRE.2016.13

 [53] Q. Yu, S. Jiang, and Y. Zhang, “The performance stability of defect prediction models with 
class imbalance: An empirical study,” IEICE TRANSACTIONS on Information and Systems, 
vol. 100, no. 2, pp. 265–272, 2017. https://doi.org/10.1587/transinf.2016EDP7204

 [54] S. Yadav and S. Shukla, “Analysis of k-fold cross-validation over hold-out validation on 
colossal datasets for quality classification,” presented at the 2016 IEEE 6th International 
conference on advanced computing (IACC), 2016. https://doi.org/10.1109/IACC.2016.25

 [55] S. Arlot and M. Lerasle, “Choice of V for V-fold cross-validation in least-squares density 
estimation,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 7256–7305, 
2016. 

 [56] A. O. Balogun et al., “Search-based wrapper feature selection methods in software defect 
prediction: An empirical analysis,” in Computer Science On-line Conference, 2020, 
pp. 492–503: Springer. https://doi.org/10.1007/978-3-030-51965-0_43

 [57] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The WEKA 
data mining software: An update,” ACM SIGKDD explorations newsletter, vol. 11, no. 1, 
pp. 10–18, 2009. https://doi.org/10.1145/1656274.1656278

 [58] M. J. Crawley, The R book. John Wiley & Sons, 2012. https://doi.org/10.1002/9781118448908

7 Authors

Abimbola Ganiyat Akintola is a Lecturer in the Department of Computer Science, 
University of Ilorin, Ilorin Nigeria. She received M.Sc. and Ph.D. in Computer Science 
from University of Ilorin, Ilorin, Nigeria. She can be reached via her email address 
(akintola.ag@unilorin.edu.ng).

Abdullateef Oluwagbemiga Balogun received his B.Sc. and M.Sc degrees in 
Computer Science from University of Ilorin, Nigeria. He had his Ph.D. in Information 
Technology at the Universiti Teknologi PETRONAS, Perak, Malaysia. His research 
interests include Search-Based Software Engineering, Software Quality Assurance, 
Machine Learning, Data Science. He can be reached via his email address (balogun.
ao1@unilorin.edu.ng; abdullateef_16005851@utp.edu.my).

Hammed Adeleye Mojeed is a Lecturer in the Department of Computer Science, 
University of Ilorin, Ilorin Nigeria. He received Master of Science and Bachelor of 
Science in Computer science from University of Ilorin, Ilorin, Nigeria. He is currently 
doing his PhD studies at the Institute of Technical Informatics and Telecommunication 
(ITiT), Gdansk University of Technology (GUT), Poland. His research interests fall 
in the field of Empirical Search-Based Software Engineering, Software Project Plan-
ning and Management and Machine Learning. He can be reached via his email address 
(mojeed.ha@unilorin.edu.ng).

iJIM ‒ Vol. 16, No. 10, 2022 161

https://doi.org/10.1109/ISSRE.2016.13
https://doi.org/10.1109/ISSRE.2016.13
https://doi.org/10.1587/transinf.2016EDP7204
https://doi.org/10.1109/IACC.2016.25
https://doi.org/10.1007/978-3-030-51965-0_43
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1002/9781118448908
mailto:akintola.ag@unilorin.edu.ng
https://www.researchgate.net/deref/http%3A%2F%2FB.Sc
https://www.researchgate.net/deref/http%3A%2F%2FM.Sc
mailto:balogun.ao1@unilorin.edu.ng
mailto:balogun.ao1@unilorin.edu.ng
mailto:abdullateef_16005851@utp.edu.my
mailto:mojeed.ha@unilorin.edu.ng


Paper—Performance Analysis of Machine Learning Methods with Class Imbalance Problem in Android…

Fatima Enehezei Usman-Hamza is a Lecturer in the Department of Computer Sci-
ence, University of Ilorin, Ilorin Nigeria. She received M.Sc. and Ph.D. in Computer 
Science from University of Ilorin, Ilorin, Nigeria. She can be reached via her email 
address (usman-hamza.fe@unilorin.edu.ng).

Shakirat Aderonke Salihu is a Lecturer in the Department of Computer Science, 
University of Ilorin, Ilorin Nigeria. She received M.Sc. and Ph.D. in Computer Science 
from University of Ilorin, Ilorin, Nigeria. She can be reached via her email address 
(salihu.sa@unilorin.edu.ng).

Kayode Sakariyau Adewole is a Senior Lecturer in the Department of Computer 
Science, University of Ilorin, Ilorin Nigeria. He can be reached via his email address 
(adewole.ks@unilorin.edu.ng).

Ghaniyyat Bolanle Balogun is a Lecturer in the Department of Computer Science, 
University of Ilorin, Ilorin Nigeria. She received M.Sc. and Ph.D. in Computer Science 
from University of Ilorin, Ilorin, Nigeria. She can be reached via her email address 
(balogun.gb@unilorin.edu.ng).

Peter Ogirima Sadiku is a Lecturer in the Department of Computer Science, Uni-
versity of Ilorin, Ilorin Nigeria. He received M.Sc. in Computer Science from Univer-
sity of Ilorin, Ilorin, Nigeria. He can be reached via his email address (sadiku.po@
unilorin.edu.ng).

Article submitted 2022-01-23. Resubmitted 2022-03-12. Final acceptance 2022-04-12. Final version 
published as submitted by the authors.

162 http://www.i-jim.org

mailto:usman-hamza.fe@unilorin.edu.ng
mailto:salihu.sa@unilorin.edu.ng
mailto:adewole.ks@unilorin.edu.ng
mailto:balogun.gb@unilorin.edu.ng
mailto:sadiku.po@unilorin.edu.ng
mailto:sadiku.po@unilorin.edu.ng

