
Paper—Android Malware Detection with Deep Learning using RNN from Opcode Sequences

Android Malware Detection with Deep Learning
using RNN from Opcode Sequences

https://doi.org/10.3991/ijim.v16i01.26433

A. Lakshmanarao1(*), M. Shashi2

1Aditya Engineering College, Surampalem, India
2AU College of Engineering, Andhra University, Visakhapatnam, India

laxman1216@gmail.com

Abstract—Android is the most widely used operating system in smartphones.
Mobile users can download and access apps easily from the play store. Due to
lack of security awareness and risk associated with mobile apps, malware apps
would be downloaded by normal users in general. The consequences after install-
ing a malware app are unpredictable. Malware apps can gather user personal
data, browsing history, user profiles, user sensitive data like passwords. Hence,
android malware detection is essential for providing security to mobile users.
Android malware detection using machine learning is done either by extracting
static features (opcodes, permissions, intents, system commands) or by extract-
ing dynamic features (log behavior, system calls, dataflow). In this paper, opcode
sequences are extracted from malware and benign apps, and Recurrent Neural
Networks are proposed on extracted sequences. Benign apps are collected from
the play store, apkpure.com and malware apps are collected from the virus share
website. The proposed Recurrent Neural Network model could achieve 96%
accuracy for android malware detection.

Keywords—android, malware, opcodes, recurrent neural networks

1	 Introduction

Around 85% of the smartphones in the world are using the android platform [1].
The number and variety of applications in the play store are increasing drastically.
Since most of the apps are made available free of cost in the play store, they are get-
ting installed into mobiles without any risk assessment. The attackers are exploiting
this vulnerability by creating malware for android devices. The Android framework
provides some security mechanisms to mitigate malicious app activities. Especially
permission mechanism controls the installation of malicious apps. Before installing a
specific mobile app, it prompts the user for permissions. But the normal user doesn’t
have much knowledge about all the details for identifying malware apps. Hence, the
Permission mechanism may not always control the malware applications. If a malware
app was installed by a naïve mobile user, malicious activities can happen. Due to the

iJIM ‒ Vol. 16, No. 01, 2022 145

https://doi.org/10.3991/ijim.v16i01.26433
mailto:laxman1216@gmail.com
http://apkpure.com

Paper—Android Malware Detection with Deep Learning using RNN from Opcode Sequences

wide spread use of smart phones among naïve people, there is a drastic increase in
the proportion of malware apps over the years. Hence, android malware detection has
become more and more important aspect of cybersecurity.

Android framework is based on a Linux environment. The bottom layer of the
android architecture is the Linux kernel. On top of the kernel, it has a set of libraries
(like WebKit, SQ Lite, SSL libraries) and android runtime. Android runtime contains
Core java libraries. Mobile applications are built based on the java programming lan-
guage. Every mobile application requires permissions to run on the android platform.
If a classifier is developed to identify malware from the given mobile apps, the permis-
sion mechanism can be strengthened to automatically avoid malware being installed in
the android devices. Since every mobile app is defined as a sequence of instructions/
opcodes, the basic nature of the app would be captured by the sequence of opcodes
and hence provides the essential information for discriminating a malware app from
the benign app. In this paper, a sequence of Dalvik opcodes is extracted from each
android mobile app and a collection of such sequences with known labels are used for
building a binary classifier to classify an unknown android app into either malware or
benign apps. Sequential data is a type of data where the order of items plays a major
role. Sequential data is also useful for solving classification problems. First, a model
is trained with known sequences. Later, the trained model predicts the class label for
the new input sequence. Sequential data can be a numerical sequence or text sequence.
In this paper, sequential text patterns of opcodes are used for malware detection. The
selection of datasets plays an important role in achieving good results in the case of
machine learning and deep learning. The dataset was prepared from the raw apk files
directly. This paper proposed a deep learning framework with Recurrent Neural Net-
works for android malware detection. The performance of the model is evaluated based
on the classification accuracy. The remaining sections of the paper are organized as
follows: Section-2 discusses related work in android malware detection, section-3 pres-
ents the proposed methodology, Section-4 presents Experimentation details with results
and Section-5 has a conclusion and future scope.

2	 Literature review

Applying machine learning techniques in the field of mobile technologies is not
new [2]. Several authors applied machine learning and deep learning methods for mal-
ware detection. Android malware detection can be done in three different ways namely
static analysis, dynamic analysis, hybrid analysis. In static analysis, static features like
permissions, opcodes, API calls information are used for the detection of malware.
Dynamic analysis involves running the android application in a virtual environment
and extracting dynamic features. In hybrid analysis, apps can be converted to image
representation and detection techniques are developed on images. Daniel Arp [3]
et al. proposed a lightweight android malware detection model with machine learn-
ing algorithms. Static features like user permissions, Suspicious API calls, network
addresses, intents are extracted from apk files and mapped to a vector space. Sup-
port Vector Machine applied on joint vector space and achieved an accuracy of 94%.

146 http://www.i-jim.org

Paper—Android Malware Detection with Deep Learning using RNN from Opcode Sequences

R. Hemanth [4] et al. proposed an android malware detection model with a classifica-
tion and clustering algorithm. Feature Vector space is segregated using clustering and
later random forest applied and achieved good results. Y. Zhang [5] proposed a Graph
Convolutional Network for android malware detection. A tool named “SOOT” was
used for analyzing and getting data flow chains. Similar nodes in the data flow chains
are combined to form a graph and on top of it GCN applied and achieved an accuracy
of 95%. A. Lakshmanrao [6] et al. proposed convolutional neural networks for android
malware classification. Two different grayscale image datasets were generated from
whole Android apps and only dex files in apks. Convolutional Neural Networks were
applied on two image datasets and achieved an accuracy of better accuracy rate with
dex images. Wei Wang [7] et al. proposed a hybrid model based on Deep Auto Encoder
and Convolutional Neural Networks for malware detection. The authors used Autoen-
coder as a pre-training model to extract the best features and later CNN applied and
achieved good results. The authors also concluded that the training time with DAE &
CNN model was reduced by 83% compared to only the CNN model. Mahindru. A [8]
et al. extracted a set of 123 permissions from android apps and applied various machine
learning classifiers and achieved good accuracy with logistic regression classifier.
Y. Yang [9] et al. proposed a deep graph Convolutional Network for malware detection.
The call graph is generated from decompiled android app and then the function sub-
graph containing sensitive APIs extracted. The proposed network achieved an accuracy
of 98%. Xiang Li [10] et al. applied the Naïve Bayes classifier after extraction of the
android manifest file and achieved an accuracy of 85%. Abikoye Oluwakemi Christi-
ana [11] et al. applied ensemble learning techniques for android malware detection and
achieved good accuracy rate.

Dan Li [12] et al. proposed convolutional neural networks for malware detection.
Apk files are decompiled using APK tool and smali files are extracted. From the smali
files, Dalvik opcode sequence information was collected for malware detection and
achieved a good accuracy rate. Unver. H [13] converted the android apps into grayscale
images. Local and Global features are extracted from grayscale images. Later several
classification algorithms were applied and achieved a good accuracy. A. Roy [14] et al.
proposed a malware detection model using feature aggregation. The frequency-based
feature vector is created from the API calls extracted from smali files. Random For-
est is used with all extracted features (209) and achieved an accuracy of 93.77% and
an f1-score of 91.73%. NMF (Non-negative matrix factorization) has been applied to
reduce the size of the feature set from 209 to 50. Support Vector Machine applied on
reduced set and achieved an accuracy of 88.7% and f-score of 85%. P. Agrawal [15]
et al. discussed the pros and cons of android malware detection with machine learn-
ing. Detection techniques that uses dynamic analysis were resource consuming and the
techniques that use static analysis suffers from tracking runtime behavior. H. Zhu [16]
et al. proposed a stacking ensemble model for malware detection. Static features are
extracted from android apps and a feature vector is generated. Principal Component
Analysis applied on feature vector and Multilayer Perceptions used as base classifiers.
Support Vector Machine employed as final fusion classifier and achieved an accuracy
of 89%.

Oluwakemi Christiana Abikoye [17] et al. discussed different machine learning
approaches applied for android malware detection.

iJIM ‒ Vol. 16, No. 01, 2022 147

Paper—Android Malware Detection with Deep Learning using RNN from Opcode Sequences

All the previous works are based on either static or dynamic features. Extracting a
large set of static and dynamic features is a complex task. The feature extraction (either
static or dynamic features) requires special tools. So, in this paper authors extracted the
most relevant static feature named “opcode sequences” for android malware detection.
As opcode sequences of malware and benign apks are having lots of variation, we
selected opcode sequences for android malware detection. The complexity of the fea-
ture extraction process is reduced to one specific tool. For extracting opcode sequences
a python tool named “androguard” was used. Later RNN proposed on obtained fea-
tures. Authors achieved good accuracy rate with only opcode sequences. The authors
proposed a light weight malware detection model with good detection rate.

3	 Proposed methodology

The proposed model aims at the recognition of static feature sequences. Android
applications are developed in java. The android application is available in compressed
form as zip file with apk extension. Extraction of a zip file results in several files that
include meta-inf, res, android manifest XML file, dex file, assets. A dex file can be
decompiled to produce a smali file. opcodes information is extracted from smali files.
The authors used a python tool named “Androguard” to extract the features [18].
Androguard provides several commands to operate with android apks. The command
“androguard decompile” creates control flow graphs for the given android app. It also
generates .ag files (smali like format) for all the methods in the decompiled classes
(.java file). The .ag files are used for extracting opcode sequences. After obtaining
Dalvik opcode sequences, the Recurrent Neural Network model is applied for deep
learning from these sequences. The proposed architecture for Android Malware Detec-
tion using RNN from opcode sequence is shown in Figure 1.

3.1	 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) were introduced as a variant of ANNs by [19]
in the year 1986. RNNs overcome the limitations of Feed Forward Neural Networks to
extract sequential patterns. In feed-forward neural networks, inputs and the activation
produced are passed in the forward direction only. The neurons in each layer function
independently by receiving inputs from the same set of sources to produce different
activations based on the weights of the incoming edges at various hidden layers to
extract different features of an entity and finally the activation produced at the output
layer predicts the class label. Then, a cost function is used to calculate the error, and
this error information is passed backward to update the weights in the network. Back-
propagation and gradient descent algorithms are used to update the weights and train
the feed forward network for classification efficiently. Feed forward networks are not
designed to handle sequentially ordered inputs to extract sequential features. Alterna-
tive architecture is the Recurrent Neural Networks wherein the hidden neurons captures
the sequence of states as they have recurrent connections to the previous hidden states.
These recurrent connections help handle sequential information. It has memory to store

148 http://www.i-jim.org

Paper—Android Malware Detection with Deep Learning using RNN from Opcode Sequences

previous data and based on previous information, it can predict the future. As RNNs
have the property of remembering information through time, they are widely used to
extract sequential patterns from sequence datasets like time series data and textual data.
“Backpropagation Through Time (BPTT)” algorithm is developed to train the RNNs
on sequential training dataset. When the recurrent network is trained to perform a task
that requires predicting the future based on the past, the network typically learns to use
the state information, s(t) as a kind of lossy summary of the task-relevant aspects of the
past sequence of inputs up to t. This summary might selectively keep some aspects of
the past sequence with more precision/attention than others.

Fig. 1. Proposed framework

iJIM ‒ Vol. 16, No. 01, 2022 149

Paper—Android Malware Detection with Deep Learning using RNN from Opcode Sequences

3.2	 Long Short Term Memory (LSTM)

RNNs work with the principle of “current information is dependent on previous
information in previous time steps”. If the length of the sequence is very long, then
RNN suffers from a problem known as the “Vanishing gradient problem”. In such
cases, RNN may take a long time or it may not work. If the sequences in the datasets
are long, then RNNs leave out some important information in before time steps. In
the vanishing gradient problem, the gradients (weights) become too small and do not
contribute much to learning thus model performance is reduced. The vanishing gradient
problem can be solved by Long Short-term memory. LSTM was introduced by [20]
in 1997. LSTM block contains input, output, forget gates for controlling memorizing
operation. Forget gate can be used to decide whether information can be stored or dis-
carded. Input gate used to pass the relevant information from the present state, Output
gate decides the next hidden state. LSTMs are a type of RNNs for handling longer
dependencies. LSTMs are useful for sequential problems with longer sequences. In this
paper, the authors used LSTM for malware detection. The architectures of ANN, RNN,
LSTM are shown in Figure 2.

Fig. 2. a) architecture of ANN, b) architecture of RNN and c) architecture of LSTM

150 http://www.i-jim.org

Paper—Android Malware Detection with Deep Learning using RNN from Opcode Sequences

4	 Experimentation and results

4.1	 Dataset details

Malware apks are collected from virusshare.com website. Benign (non malware)
apks are collected from CICAndMal2017 [21], Google play store, apkpure.com. The
details of the dataset are shown in Table 1.

Table 1. Details of dataset

Number of Malware Apks Number of Benign Apks

750 750

4.2	 Extraction of opcodes from apks (creation of dataset)

Android apk is a zip file.Apk produces several files like classes.dex, manifest file,
assets, ref file.classes.dex files contain the code part of the android application. So,
classes.dex files contain important information for differentiating malware, benign
apps. Dex files are decompiled to generate Smali files. One android appl contains sev-
eral java programs. To generate opcodes from a single app, all these java programs can
be analyzed. The number of opcode sequences differs from one app to another app. A
tool named “Androguard” is used to decompile the app. After decompilation, an app
produces several Control Flow Graphs (CFGs).

Fig. 3. Control flow graph

iJIM ‒ Vol. 16, No. 01, 2022 151

http://virusshare.com
http://apkpure.com

Paper—Android Malware Detection with Deep Learning using RNN from Opcode Sequences

In addition, to control flow graphs, it also generates a .ag file(smali like format)
for every method class used in the application. The single app can generate n number
of .ag files. Each .ag file represents one java method. These .ag files are used for the
extraction of opcode sequences. The sample CFG and .ag file for one method are shown
in Figures 3 and 4. The opcode sequence “iget-object, const-string, invoke-virtual,
move-result, if-eqz, iget-object, const-string, invoke-virtual, move-result, if-eqz,
const/4, return, const/4, goto” is generated from Figure 4. The procedure for extract-
ing all opcode sequences from android apk is shown in algorithm-1. The apk file was
decompiled with androguard tool. It produces one output folder with different subfold-
ers with several CFGs and .ag files. The extraction process of opcodes from all .ag files
is as follows: Initially, two lists are created. One list is empty (for adding opcodes) and
another list is a list of Dalvik opcodes [22].

Fig. 4. .ag file format

If the .ag file contains a string that matches with the opcode string, then it is added
to the opcode sequence list (empty). The opcode sequences with lengths less than 10
are discarded. The number of .ag files are also restricted as 3 to reduce the complexity

152 http://www.i-jim.org

Paper—Android Malware Detection with Deep Learning using RNN from Opcode Sequences

of the model. This process is repeated for all .ag files to produce the final list of lists
with all opcode sequences of that apk.

As the android app uses several java methods (say k), k number of sequences are
generated from single apk. If the class label of an apk with opcode sequences: S1, S2,
S3, S4……Sk (Here each Si represents one opcode sequence) is ‘malware/benign’,
then all Si’s are assigned with the same class label (‘malware/benign’). Algorithm-1 is
applied on malware and benign apps separately. The algorithm-1 is applied n number
of times (n is number of apps). After applying algorithm n times, n number of output
files are created. These output files produces m number of sequences (m can be any
number). All the sequences with attached class labels are combined and the final dataset
is generated.

Algorithm-1: Generation of opcode sequences from apk:

Input: One apk, Two lists: dalvik opcode list, opcode
sequence list (Initially it is empty list).
Output: List of lists with opcode sequences.

Step 1: Apply androguard (with decompile command) on
android apk to generate output folder (contains
several cfgs, .ag files)

Step 2: for all files in output folders

Step 2.1: if file ends with .ag

Step 2.1.1: read each line of String (text) from the
.ag File

Step 2.1.2: If the string (text) in .ag file matches
with dalvik opcode list, add the text (op
code) to opcode sequence list.

Step 2.1.3: Discard the sequence if its length less
than 10.

4.3	 Applying RNN/LSTM

The total number of opcode sequences created are 2, 39, 650. The opcode sequences
generated from benign apps are more than the sequences generated by malware apps.
To balance the dataset, Stratified K-Fold cross validation technique applied for exper-
imentation. LSTM is applied to the dataset. All experiments are conducted on the
Google Colab-Keras GPU environment. The deep learning architecture (LSTM) for
android malware detection is shown in Figure 5.

iJIM ‒ Vol. 16, No. 01, 2022 153

Paper—Android Malware Detection with Deep Learning using RNN from Opcode Sequences

Fig. 5. Deep learning architecture for malware detection

The opcode sequences are in text format. So, before applying LSTM, text process-
ing techniques should be applied. But algorithm-1 generates clean opcode sequences.
So, there is no need to apply text preprocessing techniques (like removing stop words,
stemming, removing unnecessary symbols). Keras Tokenizer API applied for convert-
ing the list of opcodes into a list of integers. Later Keras Embedding layer was applied.
The embedding layer converts the integer representation of opcodes into word embed-
ding. The maximum length of the sequence is set to 200. After that, an LSTM layer
is added. ‘Adam’ optimizer is used for balancing binary cross-entropy. The model is
trained with 100 epochs. The accuracy obtained after applying LSTM is 96%.

4.4	 Comparison with previous work

Table 2 shows the accuracy comparison of proposed framework with the previous
work. In [24], the authors applied LSTM for system call sequences for malware detec-
tion and achieved an accuracy of 93.10%.

Table 2. Accuracy comparison with previous work

Method Accuracy

LSTM with system call sequences [24] 93.10%

CNN+LSTM [23] 91.42%

Proposed method 96%

In [23], the authors applied CNN+LSTM model on features collected from control
flow graphs and achieved an accuracy of 91.42%. In this paper, the authors applied
Recurrent Neural Networks with LSTM framework on extracted opcode sequences in
byte code files (.ag files) and achieved an accuracy of 96% (Figure 6).

154 http://www.i-jim.org

Paper—Android Malware Detection with Deep Learning using RNN from Opcode Sequences

0.86% 0.88% 0.90% 0.92% 0.94% 0.96% 0.98%

LSTM with system call sequences [24]

CNN+LSTM [23]

Proposed method

Accuracy Comparison

Fig. 6. Accuracy comparison with previous work

5	 Conclusion & future scope

In this paper, a deep learning Recurrent Neural Networks model was proposed for
android malware detection. Dalvik opcode sequences are extracted from raw byte code
files and trained Recurrent Neural Networks with Long Short-Term Memory. The
opcode sequences are extracted from malware and benign samples and a feature vector
is created. Finally, RNN with LSTM framework applied on the feature vector sequences
and achieved an accuracy of 96%. Experimental results have shown that Recurrent
Neural Networks outperform traditional Machine Learning models for android mal-
ware detection. Although the proposed model achieved good accuracy compared to
previous works, malware apps with similar code as benign apps may be detected as
benign apks. So, there is a need to add some more features to differentiate malware and
benign apps. But adding more features introduces complexity in the malware detec-
tion model. In this work, the authors applied the proposed methodology to 1500 apks
(750 malware apps and 750 benign apps). The performance of the proposed model may
vary if the number of samples in the dataset increases. In future, We intend to work with
more android features. It is also planned to apply the proposed methodology to larger
datasets.

6	 References

	 [1]	https://www.statista.com/statistics/272307/market-share-forecast-for-smartphone-operat-
ing-systems/

	 [2]	Dr. S. V. Manikanthan, Dr. T. Padmapriya, “Artificial Intelligence Techniques for Enhanc-
ing Smartphone Application Development on Mobile Computing”, International Journal of
Interactive Mobile Technologies (iJIM), vol. 4, no. 17, 2020. https://doi.org/10.3991/ijim.
v14i17.16569

	 [3]	A. George Daniel, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, “DREBIN: Effec-
tive and Explainable Detection of Android Malware in Your Pocket”, NDSS (Network and
Distributed System Security Symposium), 3–26 February 2014, 10.14722/ndss.2014.23247

iJIM ‒ Vol. 16, No. 01, 2022 155

https://www.statista.com/statistics/272307/market-share-forecast-for-smartphone-operating-systems/
https://www.statista.com/statistics/272307/market-share-forecast-for-smartphone-operating-systems/
https://doi.org/10.3991/ijim.v14i17.16569
https://doi.org/10.3991/ijim.v14i17.16569
https://doi.org/10.14722/ndss.2014.23247

Paper—Android Malware Detection with Deep Learning using RNN from Opcode Sequences

	 [4]	R. Hemant, Sanjay K Sahay, T. Shivin, S. Mohit, “Detection of Malicious Android Appli-
cations: Classical Machine Learning vs. Deep Neural Network Integrated with Clustering”,
In: Gao H., J. Durán Barroso R., Shanchen P., Li R. (eds) Broadband Communications,
Networks, and Systems. BROADNETS 2020. LNICSSITE, vol. 355, pp. 109–128. https://
doi.org/10.1007/978-3-030-68737-3_7

	 [5]	Y. Zhang, B. Li, “Malicious Code Detection Based on Code Semantic Features”, IEEE
Access, vol. 8, pp. 176728–176737, 2020, doi: https://doi.org/10.1109/ACCESS.2020.
3026052

	 [6]	A. Lakshmanarao, M. Shashi, “Android Malware Detection Using Convolutional Neu-
ral Networks”, In: Data Engineering and Intelligent Computing. Advances in Intelligent
Systems and Computing, volume 1. Springer, 2021, Singapore, pp. 151–162. https://doi.
org/10.1007/978-981-16-0171-2_15

	 [7]	W. Zoabi Wang, M. Zhao, J. Wang, “Effective android malware detection with a hybrid
model based on deep autoencoder and convolutional neural network”, Journal of Ambient
Intelligence and Humanized Computing, vol. 10, 3035–3043, 2019. https://doi.org/10.1007/
s12652-018-0803-6

	 [8]	A. Mahindru, P. Singh, “Dynamic Permissions Based Android Malware Detection Using
Machine Learning Techniques”, In Proceedings of the 10th Innovations in Software Engi-
neering Conference, February-2017, Association for Computing Machinery, pp. 202–210.
https://doi.org/10.1145/3021460.3021485

	 [9]	Y. Yang, X. Du, Z. Yang, X. Liu, “Android Malware Detection Based on Structural Fea-
tures of the Function Call Graph”, Electronics 2021, 10, 186. https://doi.org/10.3390/
electronics10020186

	[10]	X. Li, J. Liu, Y. Huo, R. Zhang and Y. Yao, “An Android malware detection method based on
Android Manifest file,” 2016 4th International Conference on Cloud Computing and Intelli-
gence Systems (CCIS), 2016, pp. 239–243, doi: https://doi.org/10.1109/CCIS.2016.7790261

	[11]	Abikoye Oluwakemi Christiana, Benjamin Aruwa Gyunka, “Optimizing Android Malware
Detection Via Ensemble Learning,” International Journal of Interactive Mobile Technolo-
gies (iJIM), vol. 14, no. 9, 2020. https://doi.org/10.3991/ijim.v14i09.11548

	[12]	D. Li, L. Zhao, Q. Cheng, N. Lu, W. Shi, Opcode Sequence Analysis of Android Malware
by a Convolutional Neural Network. Concurrency Computat Pract Exper. 2020; 32:e5308.
https://doi.org/10.1002/cpe.5308

	[13]	H.M. Unver, K. Bakour, “Android Malware Detection Based on Image-Based Features
and Machine Learning Techniques”, SN Appl. Sci. 2, 1299 (2020). https://doi.org/10.1007/
s42452-020-3132-2

	[14]	A. Roy, S.J. Divjeet, J. Gitanjali, S. Kapil, “Android Malware Detection based on Vulner-
able Feature Aggregation. Procedia Computer Science”, vol. 173, 2020, ISSN 1877-0509,
pp. 345–353. https://doi.org/10.1016/j.procs.2020.06.040

	[15]	P. Agrawal, B. Trivedi, “A Survey on Android Malware and their Detection Techniques”, In:
IEEE International Conference on Electrical, Computer and Communication Technologies
(ICECCT), 2019, pp. 1–6. https://doi.org/10.1109/ICECCT.2019.8868951

	[16]	H. Zhu, Y. Li, R. Li, J. You, H. Song, “SEDMDroid: An Enhanced Stacking Ensemble of
Deep Learning Framework for Android Malware Detection”, IEEE Transactions on Net-
work Science and Engineering, doi: 10.1109/TNSE.2020.2996379-2020

	[17]	Oluwakemi Christiana Abikoye, Benjamin Aruwa Gyunka, “Android Malware Detection
through Machine Learning Techniques: A Review”, International Journal of Online and Bio-
medical Engineering (iJOE), vol. 16, no. 2, 2020. https://doi.org/10.3991/ijoe.v16i02.11549

	[18]	https://github.com/androguard/androguard

156 http://www.i-jim.org

https://doi.org/10.1007/978-3-030-68737-3_7
https://doi.org/10.1007/978-3-030-68737-3_7
https://doi.org/10.1109/ACCESS.2020.3026052
https://doi.org/10.1109/ACCESS.2020.3026052
https://doi.org/10.1007/978-981-16-0171-2_15
https://doi.org/10.1007/978-981-16-0171-2_15
https://doi.org/10.1007/s12652-018-0803-6
https://doi.org/10.1007/s12652-018-0803-6
https://doi.org/10.1145/3021460.3021485
https://doi.org/10.3390/electronics10020186
https://doi.org/10.3390/electronics10020186
https://doi.org/10.1109/CCIS.2016.7790261
https://doi.org/10.3991/ijim.v14i09.11548
https://doi.org/10.1002/cpe.5308
https://doi.org/10.1007/s42452-020-3132-2
https://doi.org/10.1007/s42452-020-3132-2
https://doi.org/10.1016/j.procs.2020.06.040
https://doi.org/10.1109/ICECCT.2019.8868951
http://doi.org/10.1109/TNSE.2020.2996379-2020
https://doi.org/10.3991/ijoe.v16i02.11549
https://github.com/androguard/androguard

Paper—Android Malware Detection with Deep Learning using RNN from Opcode Sequences

	[19]	David E. Rumelhart, Geoffrey, E. Hintont, Ronald J. Williams, “Learning represen-
tations by back-propagating errors”, Nature, 1986, vol. 323, pp. 533–536. https://doi.
org/10.1038/323533a0

	[20]	S. Hochreiter, J. Schmidhuber, “Long Short-Term Memory. Neural Computation”, vol. 9,
no. 8, November 15, 1997, pp. 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

	[21]	online: unb.ca/cic/datasets/andmal2017.html
	[22]	https://developer.android.com/reference/dalvik/bytecode/Opcodes.html
	[23]	A. Pektaş, T. Acarman, “Learning to detect Android malware via opcode sequences.

Neurocomputing”, 396, 599–608, 2020, ELSEVIER. https://doi.org/10.1016/j.
neucom.2018.09.102

	[24]	S. Xiao, X., Zhang, S., Mercaldo, F. et al. Android malware detection based on system
call sequences and LSTM. Multimed Tools Appl., vol. 78, 3979–3999 (2019). https://doi.
org/10.1007/s11042-017-5104-0

7	 Authors

A. Lakshmanarao is currently working as Associate Professor in Aditya Engineer-
ing College, Surampalem.He completed his B. Tech in CSIT and M.Tech in Software
Engineering. He is pursuing Ph.D. in Andhra University, Visakhapatnam. His areas
of interest are Machine Learning, Cyber Security, Deep Learning. He is a member of
Computer Society of India (CSI).

Prof. M Shashi received her B.E in Electrical and Electronics Engineering and
M.E in Computer Science Engineering. She received her Ph.D. in 1994 from Andhra
University and obtained best PhD thesis award. She is currently working as a Professor
in the Department of Computer Science and Systems Engineering, Andhra University,
Visakhapatnam, Andhra Pradesh, India. Her areas of interest are Data Analytics, Data
Warehousing & Mining, AI, and Data Structures. She is a member of IEEE, ISTE, CSI
and Fellow of Institute of Engineers (India).

Article submitted 2021-08-23. Resubmitted 2021-10-07. Final acceptance 2021-10-18. Final version
published as submitted by the authors.

iJIM ‒ Vol. 16, No. 01, 2022 157

https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1162/neco.1997.9.8.1735
http://unb.ca/cic/datasets/andmal2017.html
https://developer.android.com/reference/dalvik/bytecode/Opcodes.html
https://doi.org/10.1016/j.neucom.2018.09.102
https://doi.org/10.1016/j.neucom.2018.09.102
https://doi.org/10.1007/s11042-017-5104-0
https://doi.org/10.1007/s11042-017-5104-0

