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Abstract—Android is the most widely used operating system in smartphones. 
Mobile users can download and access apps easily from the play store. Due to 
lack of security awareness and risk associated with mobile apps, malware apps 
would be downloaded by normal users in general. The consequences after install-
ing a malware app are unpredictable. Malware apps can gather user personal 
data, browsing history, user profiles, user sensitive data like passwords. Hence, 
android malware detection is essential for providing security to mobile users. 
Android malware detection using machine learning is done either by extracting 
static features (opcodes, permissions, intents, system commands) or by extract-
ing dynamic features (log behavior, system calls, dataflow). In this paper, opcode 
sequences are extracted from malware and benign apps, and Recurrent Neural 
Networks are proposed on extracted sequences. Benign apps are collected from 
the play store, apkpure.com and malware apps are collected from the virus share 
website. The proposed Recurrent Neural Network model could achieve 96% 
accuracy for android malware detection.
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1	 Introduction

Around 85% of the smartphones in the world are using the android platform [1]. 
The number and variety of applications in the play store are increasing drastically. 
Since most of the apps are made available free of cost in the play store, they are get-
ting installed into mobiles without any risk assessment. The attackers are exploiting 
this vulnerability by creating malware for android devices. The Android framework 
provides some security mechanisms to mitigate malicious app activities. Especially 
permission mechanism controls the installation of malicious apps. Before installing a 
specific mobile app, it prompts the user for permissions. But the normal user doesn’t 
have much knowledge about all the details for identifying malware apps. Hence, the 
Permission mechanism may not always control the malware applications. If a malware 
app was installed by a naïve mobile user, malicious activities can happen. Due to the 
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wide spread use of smart phones among naïve people, there is a drastic increase in 
the proportion of malware apps over the years. Hence, android malware detection has 
become more and more important aspect of cybersecurity. 

Android framework is based on a Linux environment. The bottom layer of the 
android architecture is the Linux kernel. On top of the kernel, it has a set of libraries 
(like WebKit, SQ Lite, SSL libraries) and android runtime. Android runtime contains 
Core java libraries. Mobile applications are built based on the java programming lan-
guage. Every mobile application requires permissions to run on the android platform. 
If a classifier is developed to identify malware from the given mobile apps, the permis-
sion mechanism can be strengthened to automatically avoid malware being installed in 
the android devices. Since every mobile app is defined as a sequence of instructions/
opcodes, the basic nature of the app would be captured by the sequence of opcodes 
and hence provides the essential information for discriminating a malware app from 
the benign app. In this paper, a sequence of Dalvik opcodes is extracted from each 
android mobile app and a collection of such sequences with known labels are used for 
building a binary classifier to classify an unknown android app into either malware or 
benign apps. Sequential data is a type of data where the order of items plays a major 
role. Sequential data is also useful for solving classification problems. First, a model 
is trained with known sequences. Later, the trained model predicts the class label for 
the new input sequence. Sequential data can be a numerical sequence or text sequence. 
In this paper, sequential text patterns of opcodes are used for malware detection. The 
selection of datasets plays an important role in achieving good results in the case of 
machine learning and deep learning. The dataset was prepared from the raw apk files 
directly. This paper proposed a deep learning framework with Recurrent Neural Net-
works for android malware detection. The performance of the model is evaluated based 
on the classification accuracy. The remaining sections of the paper are organized as 
follows: Section-2 discusses related work in android malware detection, section-3 pres-
ents the proposed methodology, Section-4 presents Experimentation details with results 
and Section-5 has a conclusion and future scope.

2	 Literature review

Applying machine learning techniques in the field of mobile technologies is not 
new [2]. Several authors applied machine learning and deep learning methods for mal-
ware detection. Android malware detection can be done in three different ways namely 
static analysis, dynamic analysis, hybrid analysis. In static analysis, static features like 
permissions, opcodes, API calls information are used for the detection of malware. 
Dynamic analysis involves running the android application in a virtual environment 
and extracting dynamic features. In hybrid analysis, apps can be converted to image 
representation and detection techniques are developed on images. Daniel Arp [3] 
et al. proposed a lightweight android malware detection model with machine learn-
ing algorithms. Static features like user permissions, Suspicious API calls, network 
addresses, intents are extracted from apk files and mapped to a vector space. Sup-
port Vector Machine applied on joint vector space and achieved an accuracy of 94%. 
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R. Hemanth [4] et al. proposed an android malware detection model with a classifica-
tion and clustering algorithm. Feature Vector space is segregated using clustering and 
later random forest applied and achieved good results. Y. Zhang [5] proposed a Graph 
Convolutional Network for android malware detection. A tool named “SOOT” was 
used for analyzing and getting data flow chains. Similar nodes in the data flow chains 
are combined to form a graph and on top of it GCN applied and achieved an accuracy 
of 95%. A. Lakshmanrao [6] et al. proposed convolutional neural networks for android 
malware classification. Two different grayscale image datasets were generated from 
whole Android apps and only dex files in apks. Convolutional Neural Networks were 
applied on two image datasets and achieved an accuracy of better accuracy rate with 
dex images. Wei Wang [7] et al. proposed a hybrid model based on Deep Auto Encoder 
and Convolutional Neural Networks for malware detection. The authors used Autoen-
coder as a pre-training model to extract the best features and later CNN applied and 
achieved good results. The authors also concluded that the training time with DAE & 
CNN model was reduced by 83% compared to only the CNN model. Mahindru. A [8] 
et al. extracted a set of 123 permissions from android apps and applied various machine 
learning classifiers and achieved good accuracy with logistic regression classifier. 
Y. Yang [9] et al. proposed a deep graph Convolutional Network for malware detection. 
The call graph is generated from decompiled android app and then the function sub-
graph containing sensitive APIs extracted. The proposed network achieved an accuracy 
of 98%. Xiang Li [10] et al. applied the Naïve Bayes classifier after extraction of the 
android manifest file and achieved an accuracy of 85%. Abikoye Oluwakemi Christi-
ana [11] et al. applied ensemble learning techniques for android malware detection and 
achieved good accuracy rate.

Dan Li [12] et al. proposed convolutional neural networks for malware detection. 
Apk files are decompiled using APK tool and smali files are extracted. From the smali 
files, Dalvik opcode sequence information was collected for malware detection and 
achieved a good accuracy rate. Unver. H [13] converted the android apps into grayscale 
images. Local and Global features are extracted from grayscale images. Later several 
classification algorithms were applied and achieved a good accuracy. A. Roy [14] et al. 
proposed a malware detection model using feature aggregation. The frequency-based 
feature vector is created from the API calls extracted from smali files. Random For-
est is used with all extracted features (209) and achieved an accuracy of 93.77% and 
an f1-score of 91.73%. NMF (Non-negative matrix factorization) has been applied to 
reduce the size of the feature set from 209 to 50. Support Vector Machine applied on 
reduced set and achieved an accuracy of 88.7% and f-score of 85%. P. Agrawal [15] 
et al. discussed the pros and cons of android malware detection with machine learn-
ing. Detection techniques that uses dynamic analysis were resource consuming and the 
techniques that use static analysis suffers from tracking runtime behavior. H. Zhu [16] 
et al. proposed a stacking ensemble model for malware detection. Static features are 
extracted from android apps and a feature vector is generated. Principal Component 
Analysis applied on feature vector and Multilayer Perceptions used as base classifiers. 
Support Vector Machine employed as final fusion classifier and achieved an accuracy 
of 89%.

Oluwakemi Christiana Abikoye [17] et al. discussed different machine learning 
approaches applied for android malware detection.

iJIM ‒ Vol. 16, No. 01, 2022 147



Paper—Android Malware Detection with Deep Learning using RNN from Opcode Sequences

All the previous works are based on either static or dynamic features. Extracting a 
large set of static and dynamic features is a complex task. The feature extraction (either 
static or dynamic features) requires special tools. So, in this paper authors extracted the 
most relevant static feature named “opcode sequences” for android malware detection. 
As opcode sequences of malware and benign apks are having lots of variation, we 
selected opcode sequences for android malware detection. The complexity of the fea-
ture extraction process is reduced to one specific tool. For extracting opcode sequences 
a python tool named “androguard” was used. Later RNN proposed on obtained fea-
tures. Authors achieved good accuracy rate with only opcode sequences. The authors 
proposed a light weight malware detection model with good detection rate.

3	 Proposed methodology

The proposed model aims at the recognition of static feature sequences. Android 
applications are developed in java. The android application is available in compressed 
form as zip file with apk extension. Extraction of a zip file results in several files that 
include meta-inf, res, android manifest XML file, dex file, assets. A dex file can be 
decompiled to produce a smali file. opcodes information is extracted from smali files. 
The authors used a python tool named “Androguard” to extract the features [18]. 
Androguard provides several commands to operate with android apks. The command 
“androguard decompile” creates control flow graphs for the given android app. It also 
generates .ag files (smali like format) for all the methods in the decompiled classes 
(.java file). The .ag files are used for extracting opcode sequences. After obtaining 
Dalvik opcode sequences, the Recurrent Neural Network model is applied for deep 
learning from these sequences. The proposed architecture for Android Malware Detec-
tion using RNN from opcode sequence is shown in Figure 1.

3.1	 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) were introduced as a variant of ANNs by [19] 
in the year 1986. RNNs overcome the limitations of Feed Forward Neural Networks to 
extract sequential patterns. In feed-forward neural networks, inputs and the activation 
produced are passed in the forward direction only. The neurons in each layer function 
independently by receiving inputs from the same set of sources to produce different 
activations based on the weights of the incoming edges at various hidden layers to 
extract different features of an entity and finally the activation produced at the output 
layer predicts the class label. Then, a cost function is used to calculate the error, and 
this error information is passed backward to update the weights in the network. Back-
propagation and gradient descent algorithms are used to update the weights and train 
the feed forward network for classification efficiently. Feed forward networks are not 
designed to handle sequentially ordered inputs to extract sequential features. Alterna-
tive architecture is the Recurrent Neural Networks wherein the hidden neurons captures 
the sequence of states as they have recurrent connections to the previous hidden states. 
These recurrent connections help handle sequential information. It has memory to store 
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previous data and based on previous information, it can predict the future. As RNNs 
have the property of remembering information through time, they are widely used to 
extract sequential patterns from sequence datasets like time series data and textual data. 
“Backpropagation Through Time (BPTT)” algorithm is developed to train the RNNs 
on sequential training dataset. When the recurrent network is trained to perform a task 
that requires predicting the future based on the past, the network typically learns to use 
the state information, s(t) as a kind of lossy summary of the task-relevant aspects of the 
past sequence of inputs up to t. This summary might selectively keep some aspects of 
the past sequence with more precision/attention than others.

Fig. 1. Proposed framework
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3.2	 Long Short Term Memory (LSTM)

RNNs work with the principle of “current information is dependent on previous 
information in previous time steps”. If the length of the sequence is very long, then 
RNN suffers from a problem known as the “Vanishing gradient problem”. In such 
cases, RNN may take a long time or it may not work. If the sequences in the datasets 
are long, then RNNs leave out some important information in before time steps. In 
the vanishing gradient problem, the gradients (weights) become too small and do not 
contribute much to learning thus model performance is reduced. The vanishing gradient 
problem can be solved by Long Short-term memory. LSTM was introduced by [20] 
in 1997. LSTM block contains input, output, forget gates for controlling memorizing 
operation. Forget gate can be used to decide whether information can be stored or dis-
carded. Input gate used to pass the relevant information from the present state, Output 
gate decides the next hidden state. LSTMs are a type of RNNs for handling longer 
dependencies. LSTMs are useful for sequential problems with longer sequences. In this 
paper, the authors used LSTM for malware detection. The architectures of ANN, RNN, 
LSTM are shown in Figure 2.

Fig. 2. a) architecture of ANN, b) architecture of RNN and c) architecture of LSTM
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4	 Experimentation and results

4.1	 Dataset details

Malware apks are collected from virusshare.com website. Benign (non malware) 
apks are collected from CICAndMal2017 [21], Google play store, apkpure.com. The 
details of the dataset are shown in Table 1.

Table 1. Details of dataset

Number of Malware Apks Number of Benign Apks

750 750

4.2	 Extraction of opcodes from apks (creation of dataset)

Android apk is a zip file.Apk produces several files like classes.dex, manifest file, 
assets, ref file.classes.dex files contain the code part of the android application. So, 
classes.dex files contain important information for differentiating malware, benign 
apps. Dex files are decompiled to generate Smali files. One android appl contains sev-
eral java programs. To generate opcodes from a single app, all these java programs can 
be analyzed. The number of opcode sequences differs from one app to another app. A 
tool named “Androguard” is used to decompile the app. After decompilation, an app 
produces several Control Flow Graphs (CFGs). 

Fig. 3. Control flow graph 
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In addition, to control flow graphs, it also generates a .ag file(smali like format) 
for every method class used in the application. The single app can generate n number 
of .ag files. Each .ag file represents one java method. These .ag files are used for the 
extraction of opcode sequences. The sample CFG and .ag file for one method are shown 
in Figures 3 and 4. The opcode sequence “iget-object, const-string, invoke-virtual, 
move-result, if-eqz, iget-object, const-string, invoke-virtual, move-result, if-eqz, 
const/4, return, const/4, goto” is generated from Figure 4. The procedure for extract-
ing all opcode sequences from android apk is shown in algorithm-1. The apk file was 
decompiled with androguard tool. It produces one output folder with different subfold-
ers with several CFGs and .ag files. The extraction process of opcodes from all .ag files 
is as follows: Initially, two lists are created. One list is empty (for adding opcodes) and 
another list is a list of Dalvik opcodes [22]. 

Fig. 4. .ag file format

If the .ag file contains a string that matches with the opcode string, then it is added 
to the opcode sequence list (empty). The opcode sequences with lengths less than 10 
are discarded. The number of .ag files are also restricted as 3 to reduce the complexity 
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of the model. This process is repeated for all .ag files to produce the final list of lists 
with all opcode sequences of that apk.

As the android app uses several java methods (say k), k number of sequences are 
generated from single apk. If the class label of an apk with opcode sequences: S1, S2, 
S3, S4……Sk (Here each Si represents one opcode sequence) is ‘malware/benign’, 
then all Si’s are assigned with the same class label (‘malware/benign’). Algorithm-1 is 
applied on malware and benign apps separately. The algorithm-1 is applied n number 
of times (n is number of apps). After applying algorithm n times, n number of output 
files are created. These output files produces m number of sequences (m can be any 
number). All the sequences with attached class labels are combined and the final dataset 
is generated.

Algorithm-1: Generation of opcode sequences from apk:

Input: One apk, Two lists: dalvik opcode list, opcode
sequence list (Initially it is empty list).
Output: List of lists with opcode sequences.

Step 1: Apply androguard (with decompile command) on 
android apk to generate output folder (contains 
several cfgs, .ag files)

Step 2: for all files in output folders

Step 2.1: if file ends with .ag

Step 2.1.1: read each line of String (text) from the 
.ag File

Step 2.1.2: If the string (text) in .ag file matches 
with dalvik opcode list, add the text (op 
code) to opcode sequence list. 

Step 2.1.3: Discard the sequence if its length less 
than 10.

4.3	 Applying RNN/LSTM

The total number of opcode sequences created are 2, 39, 650. The opcode sequences 
generated from benign apps are more than the sequences generated by malware apps. 
To balance the dataset, Stratified K-Fold cross validation technique applied for exper-
imentation. LSTM is applied to the dataset. All experiments are conducted on the 
Google Colab-Keras GPU environment. The deep learning architecture (LSTM) for 
android malware detection is shown in Figure 5.
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Fig. 5. Deep learning architecture for malware detection

The opcode sequences are in text format. So, before applying LSTM, text process-
ing techniques should be applied. But algorithm-1 generates clean opcode sequences. 
So, there is no need to apply text preprocessing techniques (like removing stop words, 
stemming, removing unnecessary symbols). Keras Tokenizer API applied for convert-
ing the list of opcodes into a list of integers. Later Keras Embedding layer was applied. 
The embedding layer converts the integer representation of opcodes into word embed-
ding. The maximum length of the sequence is set to 200. After that, an LSTM layer 
is added. ‘Adam’ optimizer is used for balancing binary cross-entropy. The model is 
trained with 100 epochs. The accuracy obtained after applying LSTM is 96%.

4.4	 Comparison with previous work

Table 2 shows the accuracy comparison of proposed framework with the previous 
work. In [24], the authors applied LSTM for system call sequences for malware detec-
tion and achieved an accuracy of 93.10%.

Table 2. Accuracy comparison with previous work

Method Accuracy

LSTM with system call sequences [24] 93.10%

CNN+LSTM [23] 91.42%

Proposed method 96%

In [23], the authors applied CNN+LSTM model on features collected from control 
flow graphs and achieved an accuracy of 91.42%. In this paper, the authors applied 
Recurrent Neural Networks with LSTM framework on extracted opcode sequences in 
byte code files (.ag files) and achieved an accuracy of 96% (Figure 6).
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0.86% 0.88% 0.90% 0.92% 0.94% 0.96% 0.98%

LSTM with system call sequences [24]

CNN+LSTM [23]

Proposed method

Accuracy Comparison

Fig. 6. Accuracy comparison with previous work

5	 Conclusion & future scope

In this paper, a deep learning Recurrent Neural Networks model was proposed for 
android malware detection. Dalvik opcode sequences are extracted from raw byte code 
files and trained Recurrent Neural Networks with Long Short-Term Memory. The 
opcode sequences are extracted from malware and benign samples and a feature vector 
is created. Finally, RNN with LSTM framework applied on the feature vector sequences 
and achieved an accuracy of 96%. Experimental results have shown that Recurrent 
Neural Networks outperform traditional Machine Learning models for android mal-
ware detection. Although the proposed model achieved good accuracy compared to 
previous works, malware apps with similar code as benign apps may be detected as 
benign apks. So, there is a need to add some more features to differentiate malware and 
benign apps. But adding more features introduces complexity in the malware detec-
tion model. In this work, the authors applied the proposed methodology to 1500 apks 
(750 malware apps and 750 benign apps). The performance of the proposed model may 
vary if the number of samples in the dataset increases. In future, We intend to work with 
more android features. It is also planned to apply the proposed methodology to larger 
datasets.
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