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Abstract—5G mobile communications introduce novel solutions to over-
come the frequency spectrum’s shortage. It broadens the spectrum band to mil-
limeter-waves, employs multiple numerologies to calculate subcarrier spacing, 
and supports various division duplex modes. Furthermore, the fifth generation 
of mobile networks intends to employ both frequency division duplex and time 
division duplex. This study focuses on Time Division Duplex (TDD) mode. 
Compared to the Frequency Division Duplex (FDD), the time duplex mode 
enhances flexibility and allows efficient frequency spectrum usage. However, 
the recent papers addressing resource scheduling issues for TDD duplex employ 
only the current classical schedulers, which were primarily designed for FDD 
mode, to accomplish radio resource allocation. In this paper, we compared the 
achievable throughput and data accumulated in the buffer of these schedulers to 
assess their suitability and compatibility with TDD specifications. The resulting 
performances show that an appropriate scheduler in line with TDD requirements 
should be implemented to exploit the available spectrum efficiently and reach the 
required throughput.

Keywords—time division duplex, scheduling, throughput, radio resource  
allocation, 5G NR

1 Introduction

Across the successive generations of mobile networks, radio resource management 
and optimal frequency spectrum utilization have always been the most crucial topics 
to tackle [1]. Considering that high spectrum availability is essential to accommodate 
the rising demand of bandwidth to fulfill the end-user needs, the fifth generation of 
mobile networks (5G) employs unlicensed, licensed, and shared spectrum. In addition, 
it expands the spectrum to low bands below 1 GHz and goes beyond 24 GHz by intro-
ducing the mmWaves [2]–[4].

Furthermore, 5G NR introduces numerologies µ = {0,1,2,3} for allowing flexi-
ble and efficient spectrum usage. The numerologies define the subcarrier spacing to 
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employ SCS = 2^µ*15 kHz, the number of slots of a subframe, and the number of 
resource blocks available for each bandwidth [5].

Moreover, 5G supports various use cases and scenarios that necessitate customized 
performance characteristics [6]–[8]. Many aspects must be considered to meet the 
quality-of-service (QoS) criteria established for 5G, such as the duplex mode, the sub-
carrier spacing (SCS), and the scheduling schemes. Therefore, using the proper divi-
sion duplex mode is critical for any communication system [9], [10].

According to the 3GPPP reports detailed in [11]–[13], the frequency spectrum 
adopted for 5G NR is divided into two frequency ranges, FR1 and FR2, named sub 6GHz 
and mm waves, respectively. The FR1 supports both duplex modes, FDD and TDD, by 
implementing three numerologies, namely 15khz, 30khz, and 60khz. However, the FR2 
operates only on TDD mode using 60khz and 120khz subcarrier spacing (SCS).

A literature analysis indicates that almost all studies addressing radio resource man-
agement and spectrum usage adopt frequency division duplex [14]–[18]. Besides, the 
works [19], [20] published recently and addressing the time division duplex employ 
the classical scheduler, the Proportional Fair (PF), to ensure resource allocation for 
the users. Based on these works, we decided to study the suitability of the classical 
schedulers, namely Round Robin (RR), Best CQI(BCQI), and Proportional Fair (PF), 
for the TDD mode.

In this research, we conducted a thorough investigation to compare and assess the 
performance of the scheduling algorithms mentioned previously on TDD. We opted 
for various types of traffic and different SCS values for the enhanced mobile broad-
band (eMBB) users to provide a clear overview of the algorithms under consideration. 
We analyzed the performances of three types of traffics, heavy download as the video 
streaming service, heavy uplink by storing data on the cloud, and a balanced traffic use 
case through a video conference scenario.

The remainder of this work is structured as follows: Section 2 describes and 
compares the duplex modes, Section 3 outlines the scenarios used to carry out this 
study, Section 4 gives the simulation findings and discusses the performance in terms 
of achievable throughput and the accumulated data in the buffer for each case, and 
Section 5 summarizes the article.

2 Duplex modes

The fifth generation of mobile networks supports both duplexing FDD and TDD 
since it introduces various use cases and services demanding different requirements. 
Moreover, it deploys the same frame structure for paired and unpaired modes, com-
pared to LTE networks which employ different frame structures, type 1 and type 2, to 
perform FDD and TDD duplexing, respectively [21].

2.1 FDD and TDD modes specifications

The Frequency Division Duplex (FDD) mode grants a simultaneous data trans-
fer over a paired spectrum by assigning different frequency bands to upstream and 
downstream traffics. It separates the two frequencies by a guard band to avoid the 
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interferences between transmission and reception signals. The sent and received packets 
are transmitted through and by the same antenna. Thus, using a duplexer remains essen-
tial to distinguish the traffic frequency. The frequency division duplex provides bal-
anced bandwidths to ensure packets transfer from and to the end-user. Therefore, the 
FDD mode allows symmetric and simultaneous communications [22].

 Though, the Time Division Duplex (TDD) transmits uplink and downlink packets 
via the unpaired spectrum. Furthermore, the TDD duplex mode sends each stream in 
separate time slots to prevent interferences since the uplink and downlink share the 
same frequency carrier. Hence, the sent and received packets are asynchronous. A split 
time is necessary for the unpaired mode to allow the communicating device to switch 
from the sending mode to receiving and vice versa. The switching time relies upon 
the distance separating the UE from the gNB. Besides, the time gap that separates the 
up and down streams should be insignificant to provide approximately synchronous 
bidirectional flow. Thus, the mmWaves band employed in small cells operates on TDD 
mode to prevent the QoS decrease due to extensive time guard. Moreover, the time- 
division duplex is suitable for asymmetric traffics since it dynamically allocates slots 
to each stream [23]. Table 1 summarizes and compares the duplexing modes supported 
by 5G NR.

Table 1. Comparative analysis between the FDD and TDD modes

Parameter FDD TDD

Spectrum usage Paired Unpaired

A continuous flow of data Yes No

Spectral efficiency Low due to large guard band High

Type of service Symmetric services Asymmetric services

Synchronization No need Timing synchronization is highly 
required

Coverage High Low

Type of cell Macrocell and microcell Small cells

Complexity High due to frequency filter Medium du synchronization issue

Cost High due to duplexer use Low

Frequency range FR1 FR1 and FR2

MIMO and Beamforming Not applicable Handled

Dynamic and flexible No Yes

2.2 The difference between LTE TDD and NR TDD

A TDD frame is 10 ms long and consists of either DL, UL, or Special (S) slot with 
a 1ms duration. In LTE, The S sub-frame performs switching from downstream to 
upstream. For 5G NR, the symbols of special slot (S) can be configured as a DL symbol, 
a UL symbol, or a flexible symbol denoted (F).

Besides, the LTE TDD supports only seven static patterns for DL-UL frame con-
figuration [24]. On the contrary, 5G NR TDD keeps changing the frame configuration 
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to meet the fluctuating uplink/downlink traffic needs. In addition, the 5G NR defines 
different DL-UL periodicities that vary depending on the SCS adopted. In other words, 
it enables dynamic frame size for each numerology.

Moreover, the 5G TDD enables more than 56 slot format patterns to configure the 
special slot (S) symbols to allow a very flexible configuration and improve overall 
throughput. The flexible symbols denoted F are instantaneously adjusted to UL or DL 
symbols depending on the volume and type of traffic.

In addition, the time duplexing in 5G NR supports symbol-based scheduling instead 
of slot-based scheduling used for LTE TDD and FDD. Symbol-based scheduling 
performs and updates the scheduling processes in every slot, which affords a short 
transmission duration spanning a few symbols in the slot. Hence 5G NR TDD using 
symbol-based scheduling improves spectral efficiency and frame flexibility [25], [26].

 Figure 1 demonstrates a 5G NR TDD radio frame. For numerology µ = 2 (SCS = 
60khz) the subframe is divided into 40 slots of 0.25ms as detailed in [25]. Every 5 slots 
represent a DL-UL periodicity of 1.25ms. In this example, symbols of the special slot 
(S) are configured conforming to the n27 slot format.

Fig. 1. Special slot configuration

3 Research method

This paper aims to compare schedulers’ performances for enhanced mobile broad-
band communications. Our simulations opted for an ultra-dense urban environment 
where 10 users transmit their traffics simultaneously and continuously through a micro-
cell [27]. In line with the 3GPP requirements, we employ a 400-meter-radius small cell 
[28], [29].

Furthermore, various parameters depending on traffic type, frequency range, and 
SCS must be defined to perform dynamic and flexible TDD scheduling.

Since the TDD mode is suitable for both 5G NR frequency ranges, we evaluated the 
performances of the schedulers using two frequency bands, namely n41 for the FR1 and 
n257 for the FR2 [30].

As explained above, the DL-UL periodicity, the number of slots per frame, and the 
number of resources blocks depend on the SCS adopted. In this study, we employed 
three different durations for the DL-UL periodicity, 5ms, 1.25ms, and 0.625ms consid-
ering 30kHz, 60kHz, and 120kHz SCS, respectively. As stated in section 38.213–11.1 
of [25], each combination of DL-UL periodicity and a subcarrier value provides the 
number of slots in the subframe. To achieve the best performances through the com-
pared algorithms, we choose, based on the 3GPP specifications, the highest number of 
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resource blocks for the numerologies studied 273 RB for 30kHz SCS and 264RB for 
both 60kHz and 120kHz [11], [12].

Besides, we configured the special slot (S), conforming to Table 11.1.1-1 in [25]. We 
opted for three-slot formats n27, n28, and n34 to address balanced load traffic (VoIP), 
Heavy DL traffic (Video streaming), and Heavy UL traffic (cloud storage, FTP), respec-
tively. Therefore, we set up the parameters of the different scenarios as recommended 
in section 11 of the technical report cited in [25] and summarized in Table 2.

Table 2. Simulation scenario [25]

Traffic 
Type Heavy DL Balanced Load Heavy UL

Frequency 
range

FR1 
(30khz)

FR2 
(60khz)

FR2 
(120khz)

FR1 
(30khz)

FR2 
(60khz)

FR2 
(120khz)

FR1 
(30khz)

FR2 
(60khz)

FR2 
(120khz)

Frequency 
band

n41 n257 n257 n41 n257 n257 n41 n257 n257

Bandwidth 100MHz 200MHz 400MHz 100MHz 200MHz 400MHz 100MHz 200MHz 400MHz

SCS 30KHz 60Khz 120KHz 30KHz 60Khz 120KHz 30KHz 60Khz 120KHz

RB 273 264 264 273 264 264 273 264 264

Periodicity 
(ms)

5 1.25 0.625 5 1.25 0.625 5 1.25 0.625

Number of 
slots

10 5 5 10 5 5 10 5 5

Number 
slots DL

6 2 2 4 2 2 2 1 1

Number 
slots UL

1 1 1 4 2 2 6 2 2

Number 
symbols DL

12 12 12 3 3 3 1 1 1

Number 
symbols UL

1 1 1 3 3 3 12 12 12

4 Simulation results and discussion

In this section, we analyze the simulation results of traditional scheduling techniques 
(Round Robin [31], best CQI [32], and proportional fair [33]). The simulation results 
are evaluated through their throughput and the size of the remaining data in the buffer.

4.1 Balanced load traffic: VoIP

As depicted in Figures 2 and 3, the peak data attains 316.75Mbps, 620Mbps, and 
1.24Gbps for 100MHz, 200MHz, and 400MHz, respectively. Furthermore, the Best CQI 
achieves the greatest downstream traffic throughput value of 288.98Mbps in FR2. Hence, 
the uplink and downlink throughput performed by the evaluated schedulers present only 
23% of the peak data rate that may be reached using the same simulation parameters.
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Fig. 2. Uplink throughput for VoIP traffic
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Fig. 3. Downlink throughput for VoIP traffic
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However, at the end of the simulation, the buffer size exceeds 9154KBs, as shown 
in Table 3.

Table 3. Remaining data in the buffer for UL and DL balanced traffic

Buffer DL (KBs) Buffer UL (KBs)

Scheduler FR1 30khz FR2 60khz FR2 120khz FR1 30khz FR2 60khz FR2 120khz

RR 9138.8 9132.54 9130.21 9143.51 9141.73 9136.39

BCQI 9154.3 9136.56 9124.34 9156.26 9126.05 9122.34

PF 9141.84 9135.68 9130.5 9143.46 9138.7 9134.02

4.2 Heavy downlink traffic: video streaming

In this scenario, we focus only on the Downlink performances. Figure 4 displays 
the data rates achieved by the three classical schedulers mainly developed to serve 
FDD traffics. We notice that the best CQI attains the highest value for the three band-
width sizes. The best CQI delivers a 151.8Mbps data rate compared to 465Mbps peak 
data rate using 100MHz bandwidth, for 200 MHz of bandwidth, it exceeds 218 Mbps 
compared to 750Mbps peak level, and we note 518.58Mbps achieved by the best CQI 
whereas the max data rate surpasses 1.5Gbps for 400 MHz bandwidth.
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Fig. 4. Downlink throughput for video streaming traffic

As a result, the ratio between the highest throughput value, provided by the 
best CQI, and the peak data rate achieved does not reach 35% for video streaming.  
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Meanwhile, Table 4 shows that the accumulated buffer data is around 9135 KBs for all 
the schedulers performing in three numerologies and bandwidths.

Table 4. Remaining data in the buffer for heavy DL traffic

Buffer DL (KBs)

Scheduler FR1 (30khz) FR2 (60khz) FR2 (120khz)

RR 9146.13 9139.56 9136.4

BCQI 9138.1 9125.69 9120.59

PF 9149.57 9136.84 9128.53

4.3 Heavy uplink traffic: cloud storage

By analyzing the uplink performances in Figure 5 and Table 5, we recognize that 
buffer data outpaces 9130KBs, yet the throughput is restricted to 600Mbps for the best 
CQI. In comparison, the Round Robin’s throughput fluctuates between 85Mbps and 
340Mbps. Aside from that, the PF rate level is bound to 450Mbps.

The peak data rate, on the other hand, exceeds 1500Mbps. Thus, none of the preced-
ing algorithms achieves 39% of the expected throughput for this use case.
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Fig. 5. Uplink throughput for cloud storage traffic
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Table 5. Remaining data in the buffer for heavy UL traffic

Buffer UL (KBs)

Scheduler FR1 (30khz) FR2 (60khz) FR2 (120khz)

RR 9141.77 9139.52 9121.34

BCQI 9130.24 9129.36 9109.36

PF 9132.75 9131.35 9119.09

As shown in Figures 2 and 3, the peak data rates for the three SCSs adopted are the 
same when comparing uplink and downlink, owing to the balanced load traffic and the 
fact that we configured the same number of slots and symbols for uplink and downlink. 
However, video streaming and cloud upload services experience greater peak data rates 
than VoIP since they transmit in just one way.

In all cases, we found out that in the best situations, the ratio between the peak data 
rate and the achieved throughput that we opted for evaluating the scheduling algorithms 
can barely reach 39%. Besides, the simulation results reveal that the accumulated data 
in the buffer range between 9120KBs and 9150KBs for the three scenarios, indicating 
that at the end of the simulations, there is still some data to transmit even though all of 
the RBs have been utilized. This implies that the RBs are not efficiently allocated to the 
users through the evaluated schedulers.

5 Conclusion

This work studied the duplex modes supported by 5G NR, namely frequency divi-
sion duplex and time division duplex. Furthermore, this work underlines the main dif-
ferences between LTE and 5G NR TDD modes.

In addition, we performed a comparative performance evaluation of the classical 
schedulers developed mainly for FDD to assess their applicability and compatibility 
with dynamic TDD criteria. Hence, we selected distinct types of traffic and SCS values 
for enhanced mobile broadband (eMBB) users to provide a comprehensive understand-
ing of the algorithms under consideration. Three types of traffic have been examined 
namely video streaming, data upload in the cloud, and a video conference scenario to 
evaluate balanced load traffic.

The results demonstrate that the scheduling algorithms used to perform resource 
allotting for time division duplex present only 39% of the peak data rate achieved in 
the same circumstances. Therefore, we conclude that these algorithms are unsuitable 
for flexible TDD scheduling.

As future work, we are working on a new scheduler considering the specifications 
of flexible TDD to meet the required throughput and reach the QoS requirements set 
by 5G.
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