
Paper—Malware Detection Using Ensemble N-gram Opcode Sequences

Malware Detection Using Ensemble N-gram
Opcode Sequences

https://doi.org/10.3991/ijim.v15i24.25401

Paul Ntim Yeboah1(*), Stephen Kweku Amuquandoh2, Haruna Balle Baz Musah1

1Ghana-India Kofi Annan Centre of Excellence in ICT, Accra, Ghana
2Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

paul.y.ntim@gmail.com

Abstract—Conventional approaches to tackling malware attacks have proven
to be futile at detecting never-before-seen (zero-day) malware. Research however
has shown that zero-day malicious files are mostly semantic-preserving variants
of already existing malware, which are generated via obfuscation methods. In
this paper we propose and evaluate a machine learning based malware detection
model using ensemble approach. We employ a strategy of ensemble where mul-
tiple feature sets generated from different n-gram sizes of opcode sequences are
trained using a single classifier. Model predictions on the trained multi feature
sets are weighted and combined on average to make a final verdict on whether a
binary file is malicious or benign. To obtain optimal weight combination for the
ensemble feature sets, we applied a grid search on a set of pre-defined weights in
the range 0 to 1. With a balanced dataset of 2000 samples, an ensemble of n-gram
opcode sequences of n sizes 1 and 2 with respective weight pair 0.3 and 0.7
yielded the best detection accuracy of 98.1% using random forest (RF) classifier.
Ensemble n-gram sizes 2 and 3 obtained 99.7% as best precision using weight
0.5 for both models.

Keywords—malware detection, N-gram, opcode, machine learning, ensemble,
grid search

1 Introduction

The surge in malware attacks has become a major threat to internet security. Prolif-
eration in malware attacks could be attributed to the high profit incentives derived from
these illicit breaches [1, 2]. A cyber threat report by SonicWall [3] shows that out of the
millions of detection engines deployed worldwide, a total of 9.9 billion malware attacks
were recorded in 2019 with over 440,000 malware variants. In 2020 SonicWall reported
a total of 5.6 billion malware attacks, which is obviously a decline from the previous
year. This emerging threat calls for a more sophisticated solution. The signature based
method has been the conventional approach for malware detection. With this approach,
malware footprint including byte sequences, hashes or anomalies are precomputed and
used as a repository for future queries for suspicious files.

iJIM ‒ Vol. 15, No. 24, 2021 19

https://doi.org/10.3991/ijim.v15i24.25401
mailto:paul.y.ntim@gmail.com

Paper—Malware Detection Using Ensemble N-gram Opcode Sequences

Signature-based detection methods face two major drawbacks; first, manual exam-
ination of executables and the requirement for regular update of detection engines
has become unrealistic due to the volumes of malware released each day. Secondly,
malware creators employ obfuscation techniques to generate semantic-preserving
malware variants which easily circumvent detection [4, 5]. As described by authors
in [5, 6], obfuscation by metamorphism inhibit detection on traditional anti-malware
with strategies including variable renaming; changing names of variables, dead-code
insertion; inserting sequences like no operation (NOP) instructions, code transposition;
rearranging the order of instructions, etc.

Recent breakthroughs in machine learning (ML) in areas such as natural language
processing and computer vision have inspired researchers to explore data-driven
approach in malware detection. Reports have shown that machine learning based mal-
ware detection models could be a better alternative to the traditional methods considering
promising results reported in literature including [7, 8, 9, 10]. Such machine learning
techniques mostly employ static and dynamic analysis to obtain useful discriminative
features to build models to detect malware. In the static analysis, binary file compo-
nents like raw hexadecimal bytes, operation codes (opcodes), text strings and control
flow graph are extracted without the binary being executed [7, 8, 10, 11, 12]. On the
other hand, the dynamic approach executes the binary in a controlled environment to
collect features like API call traces, network-related information, memory and register
usage, etc. [13, 14, 15]. While static analysis could be undermined by obfuscation,
dynamic analysis is proven to be resilient against heavily packed malware but could be
time consuming.

Various machine learning models with static opcode as input features for malware
detection have been proposed [7, 8, 16]. Santos et al. [7] were one of the first to pro-
pose the use of opcode sequences for malware detection. In their approach they per-
formed feature selection with information gain and obtained top 1000 n-gram opcode
sequences and applied various machine learning classifiers to achieve a performance
of 95.9% accuracy with SVM on n-gram of size 2. Quite recently, Manavi et al. [16]
demonstrated an image processing method for malware detection using opcode graph
and ensemble of SVM and k-nearest neighbour (KNN) models.

In this research, we contribute to existing literature on malware detection with our
proposed weighted average ensemble model consisting of natural language processing
(NLP) techniques and classical machine learning algorithms. Our major contribution
is shown in how our ensemble strategy is implemented. Unlike other ensemble tech-
niques like [17, 18] where models of multiple machine learning classifiers are trained
on the same feature set, our proposed ensemble strategy instead trains a single classifier
on multiple feature sets obtained from different n-gram sizes of opcode sequences.
We employ n-gram a NLP [19] technique to reinforce contextual meaning in opcode
sequences. The main contributions of this research are:

•	 To propose machine learning based malware detection model consisting ensemble
of n-gram opcode sequences.

•	 To evaluate the proposed model and find the optimal n sizes of ensemble n-gram
opcode sequences that produce the best detection accuracy.

20 http://www.i-jim.org

Paper—Malware Detection Using Ensemble N-gram Opcode Sequences

2 Related work

For decades, anti-malware creators have relied on signature based methods which
quite recently has been proven ineffective against zero-day malware. Breakthroughs in
machine learning however have inspired researchers to explore data driven approaches
for the task of malware detection and classification [7, 8, 9, 10]. Applying ML for
malware detection requires optimal discriminative and representative features to be
obtained from binary files. Static and dynamic analysis has become the de facto methods
for generating representations for executables. The former extracts without executing
the binary file components including opcodes, text strings and control flow graph [8,
10, 11, 20], whereas the latter executes the binary to extract representation features like
API call traces, network-related information, memory and register usage, etc. [13, 14,
20]. While both modes of feature generation are recommended, static analysis has the
limitation of been susceptible to obfuscation. Dynamic analysis on the other hand can
be time consuming but does better against obfuscation since the binary is executed for
behavioural analysis.

A malware detection and classification research by Fuyong et al. [11] employed
static features comprising of raw bytes of binary files and generated n-grams of the byte
code attributes which was used as the basis to compare similarity between a test sample
and malware or benign files. Vinayakumar et al. [13] proposed malware detection
frameworks using static and dynamic extracted features. In their work, different static
features including raw byte histogram, byte entropy histogram and strings were used to
train classical machine learning and deep neural network models. They obtained 97.0%
and 98.9% as best accuracies using random forest (RF) and deep neural network (DNN)
respectively. In addition they proposed a dynamic malware detection approach where
a Cuckoo sandbox was employed to collect machine activity data of executed binary
samples and further used the extracted features to train shallow and deep machine
learning models. A behavior-based malware detection model presented by Galal et al.
[14] employed API sequences invoked from executed binaries and trained classification
algorithms including RF, decision tree (DT) and support vector machine (SVM), which
resulted accuracies of 96.89%, 96.14% and 94.8% respectively.

There have been several proposals for malware detection with ML methods using
static instruction sequences representations [7, 8, 16, 21]. The work by Santos et al. [7]
have shown that machine learning-based malware detection models could be used as a
complement to signature-based engines. In their work, instruction codes were proposed
as representation for executable binaries for the detection of malware. Authors of [8]
also applied different classical ML models for malware categorization using n-gram
opcode sequences and recorded an f-measure of 98% as best results using SVM.
Similarly, Ni et al. [10] and Lu [21] have shown promising results of 99.26% and
97.87% accuracies respectively on malware classification with deep learning models
trained on opcode sequences.

3 Proposed methodology

The methodology to the proposed ensemble model is divided into three main parts:
feature extraction, feature selection and ensemble classification model. At the feature

iJIM ‒ Vol. 15, No. 24, 2021 21

Paper—Malware Detection Using Ensemble N-gram Opcode Sequences

extraction phase, we disassemble the binary file into assembly code (Bin2Asm) and
extract discriminative components of the disassembled portions which serve as an indi-
cator of maliciousness. We extract multiple sets of features using n-gram with different
n sizes. Afterwards, we reduce the dimensions of the extracted features by selecting
optimal n-gram features with most substantive information on the verdict on whether
a binary is malware or goodware. Finally, these selected features are used to model
an ensemble classification, where model predictions on the trained multi feature sets
are weighted and combined on average to detect malware. This procedure is shown in
Figure 1.

3.1 Feature extraction

Static and dynamic analyses are the major techniques that can be leveraged to extract
features to represent binary files. In this paper we represent binaries by static opcodes.
We obtain opcodes from executables by a disassembler. Each file sample is converted
into respective assembly versions using the Radare2 disassembler1 and all the opcodes
presented in the disassembled file are extracted as a single sequence. Further, we gener-
ate n-grams from the opcode sequences by sliding a window of size n across the opcode
sequences as shown in Figure 2.

Fig. 1. Proposed ensemble model for malware detection. ni and nj are used to generate n-gram
opcode sequences with different n sizes. LM is a single learning classifier (e.g., SVM). Weights

(W) are values within the range of 0 to 1 found using a grid search approach

Applying different n-gram sizes on static and dynamic feature representations of
binaries have yielded remarkable improvement in performance on ML-based malware
detection models [9, 22, 23]. Kang et al. [8] for example achieved an f-measure of 98%
on their android malware detection model using n-gram opcode of n size 4. Moskovitch
et al. [24] experimental results with n-gram of size 2 outperformed all other n sizes on
malware detection with opcode representation. This has been our inspiration for the

1 https://rada.re/n/.

22 http://www.i-jim.org

https://rada.re/n/

Paper—Malware Detection Using Ensemble N-gram Opcode Sequences

proposed malware detection model using ensemble n-gram opcode sequences. In this
research, we consider n-grams of sizes ranging from 1 to 4 and generate multiple fea-
ture sets of opcode sequences for the different n sizes.

Fig. 2. Example of n-gram opcode sequences generation

In Table 1, we show statistics on the number of unique n-gram opcodes obtained
from our dataset, which has a total of 2000 benign and malware samples. Our findings
attest to other research [7, 8, 25] that the number of unique n-grams increases propor-
tionally to the size of n.

Table 1. Statistics on unique n-gram opcodes for varying n values

N Benign Malware

1 327 503

2 7390 25496

3 35840 317853

4 93791 740787

5 183002 896491

6 297106 933565

7 427357 950387

8 563455 962821

Since machine learning classifiers only understand features in numerical repre-
sentations, we vectorize each sample’s n-gram opcode sequences using the term fre-
quency-inverse document frequency (TF-IDF) [26, 27]. TF-IDF works by creating a
dictionary of unique n-gram opcode sequences and then measures the frequency of
occurrence of each unique n-gram opcode within a given sample using the term fre-
quency (TF) and with inverse document frequency (IDF), measures the importance of
the unique n-gram opcode on the basis of frequency of occurrence across the entire
corpus. Let D = {d1, d2, d3,…, dn} be a set of documents for n number of disassembled
file samples, and let d = {t1, t2, t3,…, tm} be the output of a disassembled sample, where
m is the number of n-grams in d. The term frequency TF(t, d) as shown in equation (1),
computes the frequency of occurrence of t (i.e., n-gram opcode) in d:

iJIM ‒ Vol. 15, No. 24, 2021 23

Paper—Malware Detection Using Ensemble N-gram Opcode Sequences

TF t d count t

d
(,) ()

=

(1)

Using equation (2), the measure of importance of n-gram opcode t across the entire
documents D (in our case a corpus of binary samples) is derived using the inverse doc-
ument frequency IDF(t, d):

IDF t d

D
d D t d

(,) log
{ : }

=
+ ∈ ∈1

(2)

Finally, the true importance of n-gram opcode t to a disassembled output d in corpus
of samples D is obtained using TF-IDF which is the product of TF(t, d) and IDF(t, D).

3.2 Feature selection

From statistics on Table 1, we generated a huge number of unique n-gram opcodes
from our dataset especially from n-gram sizes 2 upwards. This huge vocabulary size
is expected to reflect in the final vector representations obtained from the TF-IDF
model. Training a machine learning model on the entire vocabulary may not be the
ideal approach since not all the n-gram opcodes may carry substantial information for
detection of malware. We therefore apply feature selection to reduce the dimensions of
the TF-IDF vector representations and remove less important n-gram opcode features.

To select optimal features, we leverage on information gain [28] to filter out less use-
ful features while we keep the top 1000 most informative features. However, for n = 1,
since the total unique n-gram opcodes is less than 1000, we skipped feature selection
for single opcode feature. We measure information gain for the n-gram opcode features
by entropy [29], which is the measure in the level of uncertainty in a random variable.
With entropy, we are able to ascertain the measure in reduction of uncertainty of a
class variable (in our case malware or goodware) given a feature variable (i.e., n-gram
opcodes).

Information gain (IG) as shown in equation (3) can be measured as the rate of re-
duction in entropy of a class variable N as a result of information provided by feature
variable M about N.

 () () ()IG N M H N H N M= −| | (3)

Here, H(N) is the entropy of the class variable N and ()H N M| is the entropy
of class variable N after observing variable M. For two given feature variables M
and Q, feature M is regarded as more useful indicator than feature Q for a class G if
IG N M IG N Q() ()| > | .

24 http://www.i-jim.org

Paper—Malware Detection Using Ensemble N-gram Opcode Sequences

4 Ensemble classification model

Research have shown that results of single classifier ML-based models could be
reinforced using a hybrid scheme [17, 18, 30]. This hybrid approach also known as
ensemble learning enhances results of a single model by fusion numerous classifiers.
Common ensemble strategies consist of multiple classifiers trained either on a single
or multiple feature sets. The benefit with multi feature sets is that, the ensemble model
has the advantage of building a more in-depth discriminative characteristic about the
samples. In this study, we employ the ensemble strategy where multiple feature sets
generated from different n-gram sizes of opcode sequences are trained using a single
classifier.

As shown in equation (4), individual predictions of the single classifier LM trained
on multi features ni-gram opcode and nj-gram opcode sequences are weighted and
merged on average to produce a final predicted class y .

y avg W y LM W y LMni nj= ⋅ ⋅argmax(((), ()))

 (4)

Here, each model LMni and LMnj predicts a vector of probabilities, with one proba-
bility for each class (i.e., malware or benignware). The predicted probabilities for each
model are weighted with weights W values obtained from grid search on a pre-defined
range between 0 to 1. Subsequently the argmax function [31] is applied to the weighted
average of the predictions to obtain the index of the highest vector value which is the
final predicted class (i.e., 0=benignware and 1=malware).

We trained and tested the proposed ensemble model using three different machine
learning classification algorithms including: support vector machine (SVM) [32], ran-
dom forest (RF) [33] and K-nearest neighbour (KNN) [34]. We leveraged the scikit-
learn [35] implementation of these classifiers.

5 Dataset generation

Our dataset consists of a balance of 2000 malware and benign windows portable
executable (PE) files obtained from a research project by Tuan et al. [36]. The orig-
inal dataset contains 1000 goodware and 8970 malware, where the malware dataset
comprises 5 different malware categories. All the malware samples were collected
from a combination of virusshare [37] and malicia-project [38] and the benign binaries
downloaded from [39]. Dataset was duly verified with VirusTotal [40]. To generate
a balanced dataset, the malware dataset was downsampled by a random selection of
200 samples from each malware category to compose the 1000 malware, however, no
sampling was applied to the benign samples.

iJIM ‒ Vol. 15, No. 24, 2021 25

Paper—Malware Detection Using Ensemble N-gram Opcode Sequences

6 Evaluation metrics

The efficacy of our proposed ensemble malware detection model was measured on
the basis of total accuracy (shown in equation (5)), which is the number of correct pre-
dictions divided by all predictions made and precision (shown in equation (6)), which
is the proportion of positive predictions correctly identified.

Accuracy TP TN

TP TN FP FN
=

+
+ + +

(5)

Precision TP

TP FP
=

+
(6)

Where, true positive (TP) is the number of malware samples correctly identified, true
negative (TN) is the total benign samples correctly classified, false positive (FP) is the
number of benign binaries wrongly identified as malware and false negative (FN) is the
number of malware misclassified as legitimate.

7 Experimental results and discussion

For our ensemble model, we trained a single classifier using two separate feature
sets obtained from different n-gram sizes (ni-gram and nj-gram) of opcode sequences,
where ni and nj could be any combination pair in the range 1 to 4. In order to derive
optimal weight combination Wni and Wnj for the ensemble n-gram opcode feature sets,
we applied a grid search on a set of pre-defined weights in the range 0 to 1.

To evaluate performance of the proposed ensemble model, we adopted the K-fold
cross validation which allows partitioning our dataset into K subsets and preforming K
different rounds of learning and testing. We performed cross-validation with K= 5 for
all ensemble models. Accuracy (acc) and precision (precc) scores for each round was
averaged to obtain the global performance for each tested ensemble model.

As shown on Table 2, the overall best results in terms of accuracy was obtained
by RF trained with gini criteria, which yielded an accuracy of 98.1% using ensemble
n-gram opcode sizes 1 and 2 with weight pair 0.3 and 0.7 respectively. The overall
precision best score was 99.7%, which was obtained with RF-gini using n-gram sizes
2 and 3. The other classifiers also obtained accuracies greater than 95%. SVM trained
on rbf kernel yielded 97% as the best accuracy for models trained with SVM using
ensemble n-gram sizes 1 and 3 with weight pair 0.6 and 0.4 respectively, and the best
precision score of 96.7% using n-grams 1 and 2 with respective weights 0.6 and 0.4.
Similarly, ensemble models trained with KNN with k neighbors=5 recorded best accu-
racy of 98% and precision of 98.4% using n-gram sizes 1 and 2 with respective weights
0.4 and 0.6. Generally, our model recorded higher precision scores as compared to
accuracy. The higher precision score is an indication that our model performed better
at classifying malware samples correctly, thus, the model has a minimal false positive
alarm rate. On the other hand, the relatively lower accuracy scores can be attributed to
the false negatives (i.e., the number of malicious samples misclassified as legitimate).

26 http://www.i-jim.org

Paper—Malware Detection Using Ensemble N-gram Opcode Sequences

Finally, in Figure 3, we show that the overall best performing model in terms of accu-
racy obtained a mean area under curve (AUC) score of 1.

Table 2. Results for different ensemble n-gram opcode sequences
with different combinations of n sizes

Classifier Wni Wnj Metric ni=1,
nj=2

ni=1,
nj=3

ni=1,
nj=4

ni=2,
nj=3

ni=2,
nj=4

ni=3,
nj=4

SVM
(RBF)

0.1 0.9 Acc
Precc

0.965
0.961

0.966
0.960

0.955
0.948

0.967
0.963

0.955
0.949

0.954
0.948

0.2 0.8 Acc
Precc

0.965
0.959

0.967
0.960

0.956
0.950

0.965
0.959

0.957
0.952

0.957
0.950

0.3 0.7 Acc
Precc

0.965
0.961

0.967
0.961

0.958
0.951

0.964
0.954

0.959
0.955

0.958
0.952

0.4 0.6 Acc
Precc

0.966
0.961

0.968
0.963

0.958
0.949

0.962
0.947

0.959
0.955

0.959
0.953

0.5 0.5 Acc
Precc

0.966
0.965

0.969
0.961

0.960
0.953

0.960
0.941

0.965
0.962

0.962
0.957

0.6 0.4 Acc
Precc

0.967
0.967

0.970
0.966

0.963
0.958

0.615
0.610

0.964
0.960

0.965
0.959

0.7 0.3 Acc
Precc

0.965
0.963

0.965
0.963

0.960
0.956

0.528
0.528

0.964
0.960

0.965
0.960

0.8 0.2 Acc
Precc

0.960
0.957

0.960
0.955

0.957
0.950

0.528
0.528

0.964
0.961

0.965
0.961

0.9 0.1 Acc
Precc

0.959
0.953

0.959
0.953

0.958
0.952

0.528
0.528

0.964
0.960

0.966
0.963

KNN
(K=5)

0.1 0.9 Acc
Precc

0.978
0.983

0.947
0.929

0.920
0.989

0.947
0.929

0.920
0.894

0.920
0.894

0.2 0.8 Acc
Precc

0.978
0.983

0.952
0.938

0.935
0.909

0.938
0.914

0.935
0.911

0.920
0.894

0.3 0.7 Acc
Precc

0.979
0.984

0.958
0.945

0.936
0.911

0.932
0.900

0.938
0.913

0.915
0.884

0.4 0.6 Acc
Precc

0.980
0.984

0.962
0.952

0.950
0.934

0.926
0.889

0.949
0.932

0.915
0.884

0.5 0.5 Acc
Precc

0.980
0.983

0.969
0.965

0.958
0.952

0.927
0.893

0.954
0.947

0.917
0.892

0.6 0.4 Acc
Precc

0.980
0.982

0.967
0.962

0.958
0.947

0.766
0.745

0.954
0.942

0.908
0.875

0.7 0.3 Acc
Precc

0.979
0.982

0.964
0.961

0.960
0.954

0.613
0.613

0.954
0.946

0.758
0.750

0.8 0.2 Acc
Precc

0.980
0.982

0.959
0.961

0.958
0.956

0.611
0.621

0.956
0.954

0.754
0.765

0.9 0.1 Acc
Precc

0.979
0.982

0.956
0.956

0.956
0.956

0.519
0.424

0.955
0.955

0.497
0.313

(Continued)

iJIM ‒ Vol. 15, No. 24, 2021 27

Paper—Malware Detection Using Ensemble N-gram Opcode Sequences

Classifier Wni Wnj Metric ni=1,
nj=2

ni=1,
nj=3

ni=1,
nj=4

ni=2,
nj=3

ni=2,
nj=4

ni=3,
nj=4

RF(Gini)

0.1 0.9 Acc
Precc

0.980
0.984

0.977
0.983

0.973
0.973

0.974
0.980

0.973
0.975

0.973
0.976

0.2 0.8 Acc
Precc

0.980
0.984

0.978
0.983

0.974
0.975

0.977
0.987

0.974
0.976

0.973
0.976

0.3 0.7 Acc
Precc

0.981
0.984

0.979
0.983

0.976
0.979

0.975
0.992

0.978
0.981

0.977
0.982

0.4 0.6 Acc
Precc

0.980
0.983

0.979
0.984

0.977
0.983

0.969
0.994

0.978
0.984

0.978
0.986

0.5 0.5 Acc
Precc

0.981
0.983

0.979
0.984

0.977
0.983

0.958
0.997

0.978
0.983

0.977
0.985

0.6 0.4 Acc
Precc

0.980
0.982

0.979
0.984

0.979
0.983

0.739
0.589

0.979
0.984

0.978
0.984

0.7 0.3 Acc
Precc

0.980
0.982

0.979
0.982

0.979
0.983

0.626
0.400

0.979
0.984

0.979
0.984

0.8 0.2 Acc
Precc

0.980
0.982

0.978
0.982

0.980
0.983

0.471
0.00

0.979
0.984

0.978
0.984

0.9 0.1 Acc
Precc

0.979
0.982

0.978
0.982

0.978
0.982

0.471
0.00

0.979
0.984

0.978
0.984

Fig. 3. Receiver operating characteristic (ROC) curve for the overall best performing ensemble
model in terms of accuracy, which is RF with Wni = 0.3 and Wnj = 0.7

To measure the true performance of the ensemble models, we compare results to clas-
sifiers trained on individual n-gram feature sets. We found that, the ensemble models
outperformed models trained on individual n-gram opcode sequences. The best results

Table 2. Results for different ensemble n-gram opcode sequences with different combinations
of n sizes (Continued)

28 http://www.i-jim.org

Paper—Malware Detection Using Ensemble N-gram Opcode Sequences

in terms of accuracy for the models trained on single feature set as shown in Table 3 was
obtained with RF, which yielded an accuracy of 97.6% and a corresponding precision
of 98.1% using n-gram of size 2. Though individual models achieved promising results,
the ensemble models as evaluated and shown (see bold RF, SVM and KNN results
on Table 2) earlier produced slightly higher detection accuracies compared to models
trained on individual n-gram opcode sequences.

Table 3. Results for individual n-gram opcode sequences

Classifier Metrics 1-gram 2-gram 3-gram 4-gram

SVM Acc
Precc

0.935
 0.907

0.964
0.959

0.961
0.960

0.938
0.961

KNN
(K=5)

Acc
Precc

0.958
0.962

0.960
0.960

0.943
0.936

0.943
0.936

RF
(Gini)

Acc
Precc

0.974
0.982

0.976
0.981

0.971
0.977

0.971
0.977

8 Conclusion

In this paper, we evaluated ensemble of n-gram opcode sequences for malware detec-
tion. From our experiments, we found that ensemble of multiple feature sets of n-gram
opcode sequences yielded higher detection results compared to classification models
trained on individual n-gram opcode sequences. The best ensemble models were able to
detect malware with an accuracy of 98.1% and 99.7% in terms of precision.

For future work, we will wish to explore other representation learning methods for
malware detection. We would want to particularly concentrate on deep learning mod-
els for automation of feature extraction and learning of raw static representations of
binaries.

9 References

 [1] FitchRatings. https://www.fitchratings.com/research/insurance/ransomware-attacks-grow-
ing-global-security-financial- threat-17-05-2021 [online; accessed 07-June-2021].

 [2] Convware. https://www.coveware.com/blog/ransomware-attack-vectors-shift-as-new-soft-
ware-vulnerability-exploits-abound [online; accessed 11-June-2021].

 [3] SonicWall. https://www.sonicwall.com/news/2020-sonicwall-cyber-threat-report/ [onlne;
accessed 11-June-2021].

 [4] M. Chouchane, A. Lakhotia. Using engine signature to detect metamorphic malware. ACM
workshop on Recurring malcode, ACM New York, NY, USA, 2006, pp. 73–78. https://doi.
org/10.1145/1179542.1179558

 [5] Q. Zhang, D. Reeves. MetaAware: Identifying metamorphic malware. Annual computer
security applications conference (ACSAC), 2007, pp. 411–420. https://doi.org/10.1109/
ACSAC.2007.9

 [6] P. Szor. The art of computer virus research and defense, 2005, pp. 244–265.

iJIM ‒ Vol. 15, No. 24, 2021 29

https://www.fitchratings.com/research/insurance/ransomware-attacks-growing-global-security-financial- threat-17-05-2021
https://www.fitchratings.com/research/insurance/ransomware-attacks-growing-global-security-financial- threat-17-05-2021
https://www.coveware.com/blog/ransomware-attack-vectors-shift-as-new-software-vulnerability-exploits-abound
https://www.coveware.com/blog/ransomware-attack-vectors-shift-as-new-software-vulnerability-exploits-abound
https://www.sonicwall.com/news/2020-sonicwall-cyber-threat-report/
https://doi.org/10.1145/1179542.1179558
https://doi.org/10.1145/1179542.1179558
https://doi.org/10.1109/ACSAC.2007.9
https://doi.org/10.1109/ACSAC.2007.9

Paper—Malware Detection Using Ensemble N-gram Opcode Sequences

 [7] I. Santos, F. Brezo, X. Ugarte-Pedrero, P. G. Bringas. Opcode Sequences as Representation
of Executables for Data-mining-based Unknown Malware Detection. Information Science,
231, 2011, pp. 1–32. https://doi.org/10.1016/j.ins.2011.08.020

 [8] B. Kang, S. Y. Yerima, S. Sezer, K. McLaughlin. N-gram Opcode Analysis for Android Mal-
ware Detection. International Journal on Cyber Situational Awareness, 1(1), 2016, pp. 1–19.
https://doi.org/10.22619/IJCSA.2016.100111

 [9] E. B. Karbab, M. Debbabi. MalDy: Portable, data-driven malware detection using natural lan-
guage processing and machine learning techniques on behavioral analysis reports. DFRWS.
Digital investigation, 28, 2019, pp. S77–S86. https://doi.org/10.1016/j.diin.2019.01.017

 [10] S. Ni, Q. Qian, R. Zhang. Malware identification using visualization images and deep
learning. Computers and security, 77, 2018, pp. 871–885. https://doi.org/10.1016/j.
cose.2018.04.005

 [11] Z. Fuyong, Z. Tiezhu. Malware detection and classification based on n-grams attribute sim-
ilarity. IEEE International Conference on Computational Science and Engineering (CSE),
2017, pp. 793–796. https://doi.org/10.1109/CSE-EUC.2017.157

 [12] D. Yuxin, Z. Siyi. alware detection based on deep learning algorithm. Neural Comput. Appl,
31 (2), 2019, pp. 461–472. https://doi.org/10.1007/s00521-017-3077-6

 [13] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, S. Venkatraman. Robust intel-
ligent malware detection using deep learning, 7, 2019, p. 46720. https://doi.org/10.1109/
ACCESS.2019.2906934

 [14] H. S. Galal, Y. B. Mahdy, M. A. Atiea. Behavior-based features model for malware detection.
Journal of Computer Virology and Hacking Techniques, 12 (2), 2016, pp. 59–67. https://doi.
org/10.1007/s11416-015-0244-0

 [15] R. Agrawal, J. W. Stokes, M. Marinescu, K. Selvaraj. Robust neural malware detec-
tion models for emulation sequence learning, 2018, pp. 1–13. https://doi.org/10.1109/
MILCOM.2018.8599785

 [16] F. Manavi, A. Hamzeh. A method for malware detection using opcode visualization. Arti-
ficial Intelligence and Signal Processing Conference (AISP), 2017. https://doi.org/10.1109/
AISP.2017.8324117

 [17] E. A. Amer, I. Zelinka. An ensemble-based malware detection model using minimum feature
set. Mendel, 25(2), 2019, p. 4. https://doi.org/10.13164/mendel.2019.2.001

 [18] A. O. Christiana, B. A. Gyunka. Optimizing android malware via ensemble learning. i-JIM,
14(9), 2020, pp. 61–74. https://doi.org/10.3991/ijim.v14i09.11548

 [19] D. Jurafsky, J. H. Martin. Speech and Language Processing: An Introduction to Natural Lan-
guage Processing, Computational Linguistics, and Speech Recognition, 2000, pp. 189–231.

 [20] D. Gilbert, C. Mateu, J. Planes. The rise of machine learning for detection and classification
of malware: Research developments, trends and challenges. Journal of Network and Appli-
cations, 153, 2020, pp. 2–20. https://doi.org/10.1016/j.jnca.2019.102526

 [21] R. Lu. Malware detection with LSTM using Opcode language. ArXiv, 2019.
 [22] Y. M. Kwon, J. J. An, M. J. Lim, S. Cho, W. M. Gal. Malware Classification Using Simhash

Encoding and PCA (MCSP). Symmetry, 12(830), 2020, pp. 1–12. https://doi.org/10.3390/
sym12050830

 [23] M. Z. Mas’ud, S. Sahib, M. F. Abdollah, S. R. Selamat , R. Yusof. An evaluation of n-gram
system call sequence in mobile malware detection. ARPN Journal of Engineering and
Applied Sciences, 11(5), 2016, pp. 3122–3126.

 [24] R. Moskovitch, C. Feher, N. Tzachar, E. Berger, M. Gitelman. Unknown malcode detection
using opcode representation. European Conference on Intelligence and Security Informatics,
EuroIsI 2008, pp. 204–215. https://doi.org/10.1007/978-3-540-89900-6_21

30 http://www.i-jim.org

https://doi.org/10.1016/j.ins.2011.08.020
https://doi.org/10.22619/IJCSA.2016.100111
https://doi.org/10.1016/j.diin.2019.01.017
https://doi.org/10.1016/j.cose.2018.04.005
https://doi.org/10.1016/j.cose.2018.04.005
https://doi.org/10.1109/CSE-EUC.2017.157
https://doi.org/10.1007/s00521-017-3077-6
https://doi.org/10.1109/ACCESS.2019.2906934
https://doi.org/10.1109/ACCESS.2019.2906934
https://doi.org/10.1007/s11416-015-0244-0
https://doi.org/10.1007/s11416-015-0244-0
https://doi.org/10.1109/MILCOM.2018.8599785
https://doi.org/10.1109/MILCOM.2018.8599785
https://doi.org/10.1109/AISP.2017.8324117
https://doi.org/10.1109/AISP.2017.8324117
https://doi.org/10.13164/mendel.2019.2.001
https://doi.org/10.3991/ijim.v14i09.11548
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.3390/sym12050830
https://doi.org/10.3390/sym12050830
https://doi.org/10.1007/978-3-540-89900-6_21

Paper—Malware Detection Using Ensemble N-gram Opcode Sequences

 [25] R. K. Shahzad, N. Lavesson, H. Johnson. Accurate Adware Detection using Opcode
Sequence Extraction. Sixth International Conference on Availability, Reliability and
Security, 2011, pp. 189–195. https://doi.org/10.1109/ARES.2011.35

 [26] C. Sammut, G. I. Webb. Encyclopedia of Machine Learning. Springer, Boston, MA, 2011.
https://doi.org/10.1007/978-0-387-30164-8

 [27] M. McGill, G. Salton, Introduction to modern information retrieval, McGraw-Hill, 1983.
 [28] J. R. Quinlan. C4.5: Programs for machine learning. Morgan Kaufmann. 1993.
 [29] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal,

27(4), 1948, pp. 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
 [30] A. M. Garcia, R. Lara-Cabrera, D. Camacho. Android malware detection through hybrid

features fusion and ensemble classifiers: the AndroPyTool framework and the OmniDroid
dataset. Information fusion, 52, 2018. https://doi.org/10.1016/j.inffus.2018.12.006

 [31] SciPy.org. https://docs.scipy.org/doc/numpy-1.9.1/reference/generated/numpy.ma.Masked
Array.argmax.html. [online; accessed 05-July-2021].

 [32] V. N. Vapnik, An Overview of Statistical Learning Theory. IEEE transactions on neural
network, 10(5),1999, pp. 988–999. https://doi.org/10.1109/72.788640

 [33] L. Breiman, Random forests, Machine learning, 45, 2001, pp. 5–32. https://doi.
org/10.1023/A:1010933404324

 [34] B. Clarke, E. Fokoue, H. H. Zhang. Principles and theory for data mining and machine
learning. 2009. https://doi.org/10.1007/978-0-387-98135-2

 [35] Scikit-learn. Machine Learning in Python. https://scikit-learn.org/stable/. [online; accessed
05-July-2021].

 [36] A. P. Tuan, A. T. H. Phuong, N. V. Thanh, T. N. Van. Malware Detection PE-Based Analysis
Using Deep Learning Algorithm Dataset. Figshare, 2018.

 [37] VirusShare. https://virusshare.com/
 [38] Malicia Project. Malware in Cybercrime. http://malicia-project.com/dataset.html
 [39] CNET. https://download.cnet.com/windows/
 [40] Virustotal. https://www.virustotal.com/

10 Authors

Paul Ntim Yeboah graduated with a B.Sc. degree in Communication Network and
Security from the University of Information Science and Technology, “St. Paul the
Apostle”, Ohrid, North Macedonia, in 2014 and received an M.Sc. degree in Telemat-
ics (Information Security) from the Norwegian University of Science and Technology
(NTNU), Trondheim, Norway, in 2017. He is currently a Lecturer in Cybersecurity at
the Ghana-India Kofi Annan Centre of Excellence in ICT (AITI-KACE).

Stephen Kweku Amuquandoh holds a B.Sc. degree in Mathematics and Computer
Science from the University of Ghana, and an M.Sc. degree in Information Technology
from the Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

Haruna Balle Baz Musah obtained a B.Sc. degree from the University of Ghana in
1999, and M.Sc. degree from Norfolk State University, USA, in 2012. He is currently a
researcher and a faculty member at the AITI-KACE.

Article submitted 2021-07-10. Resubmitted 2021-09-20. Final acceptance 2021-09-20. Final version
published as submitted by the authors.

iJIM ‒ Vol. 15, No. 24, 2021 31

https://doi.org/10.1109/ARES.2011.35
https://doi.org/10.1007/978-0-387-30164-8
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1016/j.inffus.2018.12.006
https://docs.scipy.org/doc/numpy-1.9.1/reference/generated/numpy.ma.MaskedArray.argmax.html
https://docs.scipy.org/doc/numpy-1.9.1/reference/generated/numpy.ma.MaskedArray.argmax.html
https://doi.org/10.1109/72.788640
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-0-387-98135-2
https://scikit-learn.org/stable/
https://virusshare.com/
http://malicia-project.com/dataset.html
https://download.cnet.com/windows/
https://www.virustotal.com/

