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Abstract—Conventional approaches to tackling malware attacks have proven 
to be futile at detecting never-before-seen (zero-day) malware. Research however 
has shown that zero-day malicious files are mostly semantic-preserving variants 
of already existing malware, which are generated via obfuscation methods. In 
this paper we propose and evaluate a machine learning based malware detection 
model using ensemble approach. We employ a strategy of ensemble where mul-
tiple feature sets generated from different n-gram sizes of opcode sequences are 
trained using a single classifier. Model predictions on the trained multi feature 
sets are weighted and combined on average to make a final verdict on whether a 
binary file is malicious or benign. To obtain optimal weight combination for the 
ensemble feature sets, we applied a grid search on a set of pre-defined weights in 
the range 0 to 1. With a balanced dataset of 2000 samples, an ensemble of n-gram 
opcode sequences of n sizes 1 and 2 with respective weight pair 0.3 and 0.7 
yielded the best detection accuracy of 98.1% using random forest (RF) classifier. 
Ensemble n-gram sizes 2 and 3 obtained 99.7% as best precision using weight 
0.5 for both models.

Keywords—malware detection, N-gram, opcode, machine learning, ensemble, 
grid search

1 Introduction

The surge in malware attacks has become a major threat to internet security. Prolif-
eration in malware attacks could be attributed to the high profit incentives derived from 
these illicit breaches [1, 2]. A cyber threat report by SonicWall [3] shows that out of the 
millions of detection engines deployed worldwide, a total of 9.9 billion malware attacks 
were recorded in 2019 with over 440,000 malware variants. In 2020 SonicWall reported 
a total of 5.6 billion malware attacks, which is obviously a decline from the previous 
year. This emerging threat calls for a more sophisticated solution. The signature based 
method has been the conventional approach for malware detection. With this approach, 
malware footprint including byte sequences, hashes or anomalies are precomputed and 
used as a repository for future queries for suspicious files.
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Signature-based detection methods face two major drawbacks; first, manual exam-
ination of executables and the requirement for regular update of detection engines 
has become unrealistic due to the volumes of malware released each day. Secondly, 
malware creators employ obfuscation techniques to generate semantic-preserving 
malware variants which easily circumvent detection [4, 5]. As described by authors 
in [5, 6], obfuscation by metamorphism inhibit detection on traditional anti-malware 
with strategies including variable renaming; changing names of variables, dead-code 
insertion; inserting sequences like no operation (NOP) instructions, code transposition; 
rearranging the order of instructions, etc.

Recent breakthroughs in machine learning (ML) in areas such as natural language 
processing and computer vision have inspired researchers to explore data-driven 
approach in malware detection. Reports have shown that machine learning based mal-
ware detection models could be a better alternative to the traditional methods considering 
promising results reported in literature including [7, 8, 9, 10]. Such machine learning 
techniques mostly employ static and dynamic analysis to obtain useful discriminative 
features to build models to detect malware. In the static analysis, binary file compo-
nents like raw hexadecimal bytes, operation codes (opcodes), text strings and control 
flow graph are extracted without the binary being executed [7, 8, 10, 11, 12]. On the 
other hand, the dynamic approach executes the binary in a controlled environment to 
collect features like API call traces, network-related information, memory and register 
usage, etc. [13, 14, 15]. While static analysis could be undermined by obfuscation, 
dynamic analysis is proven to be resilient against heavily packed malware but could be 
time consuming.

Various machine learning models with static opcode as input features for malware 
detection have been proposed [7, 8, 16]. Santos et al. [7] were one of the first to pro-
pose the use of opcode sequences for malware detection. In their approach they per-
formed feature selection with information gain and obtained top 1000 n-gram opcode 
sequences and applied various machine learning classifiers to achieve a performance 
of 95.9% accuracy with SVM on n-gram of size 2. Quite recently, Manavi et al. [16] 
demonstrated an image processing method for malware detection using opcode graph 
and ensemble of SVM and k-nearest neighbour (KNN) models.

In this research, we contribute to existing literature on malware detection with our 
proposed weighted average ensemble model consisting of natural language processing 
(NLP) techniques and classical machine learning algorithms. Our major contribution 
is shown in how our ensemble strategy is implemented. Unlike other ensemble tech-
niques like [17, 18] where models of multiple machine learning classifiers are trained 
on the same feature set, our proposed ensemble strategy instead trains a single classifier 
on multiple feature sets obtained from different n-gram sizes of opcode sequences. 
We employ n-gram a NLP [19] technique to reinforce contextual meaning in opcode 
sequences. The main contributions of this research are:

•	 To propose machine learning based malware detection model consisting ensemble 
of n-gram opcode sequences.

•	 To evaluate the proposed model and find the optimal n sizes of ensemble n-gram 
opcode sequences that produce the best detection accuracy.
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2 Related work

For decades, anti-malware creators have relied on signature based methods which 
quite recently has been proven ineffective against zero-day malware. Breakthroughs in 
machine learning however have inspired researchers to explore data driven approaches 
for the task of malware detection and classification [7, 8, 9, 10]. Applying ML for 
malware detection requires optimal discriminative and representative features to be 
obtained from binary files. Static and dynamic analysis has become the de facto methods 
for generating representations for executables. The former extracts without executing 
the binary file components including opcodes, text strings and control flow graph [8, 
10, 11, 20], whereas the latter executes the binary to extract representation features like 
API call traces, network-related information, memory and register usage, etc. [13, 14, 
20]. While both modes of feature generation are recommended, static analysis has the 
limitation of been susceptible to obfuscation. Dynamic analysis on the other hand can 
be time consuming but does better against obfuscation since the binary is executed for 
behavioural analysis.

A malware detection and classification research by Fuyong et al. [11] employed 
static features comprising of raw bytes of binary files and generated n-grams of the byte 
code attributes which was used as the basis to compare similarity between a test sample 
and malware or benign files. Vinayakumar et al. [13] proposed malware detection 
frameworks using static and dynamic extracted features. In their work, different static 
features including raw byte histogram, byte entropy histogram and strings were used to 
train classical machine learning and deep neural network models. They obtained 97.0% 
and 98.9% as best accuracies using random forest (RF) and deep neural network (DNN) 
respectively. In addition they proposed a dynamic malware detection approach where 
a Cuckoo sandbox was employed to collect machine activity data of executed binary 
samples and further used the extracted features to train shallow and deep machine 
learning models. A behavior-based malware detection model presented by Galal et al. 
[14] employed API sequences invoked from executed binaries and trained classification 
algorithms including RF, decision tree (DT) and support vector machine (SVM), which 
resulted accuracies of 96.89%, 96.14% and 94.8% respectively.

There have been several proposals for malware detection with ML methods using 
static instruction sequences representations [7, 8, 16, 21]. The work by Santos et al. [7] 
have shown that machine learning-based malware detection models could be used as a 
complement to signature-based engines. In their work, instruction codes were proposed 
as representation for executable binaries for the detection of malware. Authors of [8] 
also applied different classical ML models for malware categorization using n-gram 
opcode sequences and recorded an f-measure of 98% as best results using SVM. 
Similarly, Ni et al. [10] and Lu [21] have shown promising results of 99.26% and 
97.87% accuracies respectively on malware classification with deep learning models 
trained on opcode sequences.

3 Proposed methodology

The methodology to the proposed ensemble model is divided into three main parts: 
feature extraction, feature selection and ensemble classification model. At the feature 
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extraction phase, we disassemble the binary file into assembly code (Bin2Asm) and 
extract discriminative components of the disassembled portions which serve as an indi-
cator of maliciousness. We extract multiple sets of features using n-gram with different 
n sizes. Afterwards, we reduce the dimensions of the extracted features by selecting 
optimal n-gram features with most substantive information on the verdict on whether 
a binary is malware or goodware. Finally, these selected features are used to model 
an ensemble classification, where model predictions on the trained multi feature sets 
are weighted and combined on average to detect malware. This procedure is shown in 
Figure 1.

3.1 Feature extraction

Static and dynamic analyses are the major techniques that can be leveraged to extract 
features to represent binary files. In this paper we represent binaries by static opcodes. 
We obtain opcodes from executables by a disassembler. Each file sample is converted 
into respective assembly versions using the Radare2 disassembler1 and all the opcodes 
presented in the disassembled file are extracted as a single sequence. Further, we gener-
ate n-grams from the opcode sequences by sliding a window of size n across the opcode 
sequences as shown in Figure 2.

Fig. 1. Proposed ensemble model for malware detection. ni and nj are used to generate n-gram 
opcode sequences with different n sizes. LM is a single learning classifier (e.g., SVM). Weights 

(W) are values within the range of 0 to 1 found using a grid search approach

Applying different n-gram sizes on static and dynamic feature representations of 
binaries have yielded remarkable improvement in performance on ML-based malware 
detection models [9, 22, 23]. Kang et al. [8] for example achieved an f-measure of 98% 
on their android malware detection model using n-gram opcode of n size 4. Moskovitch 
et al. [24] experimental results with n-gram of size 2 outperformed all other n sizes on 
malware detection with opcode representation. This has been our inspiration for the 

1 https://rada.re/n/.
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proposed malware detection model using ensemble n-gram opcode sequences. In this 
research, we consider n-grams of sizes ranging from 1 to 4 and generate multiple fea-
ture sets of opcode sequences for the different n sizes.

Fig. 2. Example of n-gram opcode sequences generation

In Table 1, we show statistics on the number of unique n-gram opcodes obtained 
from our dataset, which has a total of 2000 benign and malware samples. Our findings 
attest to other research [7, 8, 25] that the number of unique n-grams increases propor-
tionally to the size of n.

Table 1. Statistics on unique n-gram opcodes for varying n values

N Benign Malware

1 327 503

2 7390 25496

3 35840 317853

4 93791 740787

5 183002 896491

6 297106 933565

7 427357 950387

8 563455 962821

Since machine learning classifiers only understand features in numerical repre-
sentations, we vectorize each sample’s n-gram opcode sequences using the term fre-
quency-inverse document frequency (TF-IDF) [26, 27]. TF-IDF works by creating a 
dictionary of unique n-gram opcode sequences and then measures the frequency of 
occurrence of each unique n-gram opcode within a given sample using the term fre-
quency (TF) and with inverse document frequency (IDF), measures the importance of 
the unique n-gram opcode on the basis of frequency of occurrence across the entire 
corpus. Let D = {d1, d2, d3,…, dn} be a set of documents for n number of disassembled 
file samples, and let d = {t1, t2, t3,…, tm} be the output of a disassembled sample, where 
m is the number of n-grams in d. The term frequency TF(t, d) as shown in equation (1), 
computes the frequency of occurrence of t (i.e., n-gram opcode) in d:
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Using equation (2), the measure of importance of n-gram opcode t across the entire 
documents D (in our case a corpus of binary samples) is derived using the inverse doc-
ument frequency IDF(t, d):

 
IDF t d

D
d D t d

( , ) log
{ : }

=
+ ∈ ∈1  

(2)

Finally, the true importance of n-gram opcode t to a disassembled output d in corpus 
of samples D is obtained using TF-IDF which is the product of TF(t, d) and IDF(t, D).

3.2 Feature selection

From statistics on Table 1, we generated a huge number of unique n-gram opcodes 
from our dataset especially from n-gram sizes 2 upwards. This huge vocabulary size 
is expected to reflect in the final vector representations obtained from the TF-IDF 
model. Training a machine learning model on the entire vocabulary may not be the 
ideal approach since not all the n-gram opcodes may carry substantial information for 
detection of malware. We therefore apply feature selection to reduce the dimensions of 
the TF-IDF vector representations and remove less important n-gram opcode features.

To select optimal features, we leverage on information gain [28] to filter out less use-
ful features while we keep the top 1000 most informative features. However, for n = 1, 
since the total unique n-gram opcodes is less than 1000, we skipped feature selection 
for single opcode feature. We measure information gain for the n-gram opcode features 
by entropy [29], which is the measure in the level of uncertainty in a random variable. 
With entropy, we are able to ascertain the measure in reduction of uncertainty of a 
class variable (in our case malware or goodware) given a feature variable (i.e., n-gram 
opcodes).

Information gain (IG) as shown in equation (3) can be measured as the rate of re-
duction in entropy of a class variable N as a result of information provided by feature 
variable M about N.

 ( ) ( ) ( )IG N M H N H N M= −| |  (3)

Here, H(N) is the entropy of the class variable N and ( )H N M|  is the entropy 
of class variable N after observing variable M. For two given feature variables M 
and Q, feature M is regarded as more useful indicator than feature Q for a class G if 
IG N M IG N Q( ) ( )| > | .
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4 Ensemble classification model

Research have shown that results of single classifier ML-based models could be 
reinforced using a hybrid scheme [17, 18, 30]. This hybrid approach also known as 
ensemble learning enhances results of a single model by fusion numerous classifiers. 
Common ensemble strategies consist of multiple classifiers trained either on a single 
or multiple feature sets. The benefit with multi feature sets is that, the ensemble model 
has the advantage of building a more in-depth discriminative characteristic about the 
samples. In this study, we employ the ensemble strategy where multiple feature sets 
generated from different n-gram sizes of opcode sequences are trained using a single 
classifier.

As shown in equation (4), individual predictions of the single classifier LM trained 
on multi features ni-gram opcode and nj-gram opcode sequences are weighted and 
merged on average to produce a final predicted class y .

 
y avg W y LM W y LMni nj= ⋅ ⋅argmax( ( ( ), ( )))

 (4)

Here, each model LMni and LMnj predicts a vector of probabilities, with one proba-
bility for each class (i.e., malware or benignware). The predicted probabilities for each 
model are weighted with weights W values obtained from grid search on a pre-defined 
range between 0 to 1. Subsequently the argmax function [31] is applied to the weighted 
average of the predictions to obtain the index of the highest vector value which is the 
final predicted class (i.e., 0=benignware and 1=malware).

We trained and tested the proposed ensemble model using three different machine 
learning classification algorithms including: support vector machine (SVM) [32], ran-
dom forest (RF) [33] and K-nearest neighbour (KNN) [34]. We leveraged the scikit-
learn [35] implementation of these classifiers.

5 Dataset generation

Our dataset consists of a balance of 2000 malware and benign windows portable 
executable (PE) files obtained from a research project by Tuan et al. [36]. The orig-
inal dataset contains 1000 goodware and 8970 malware, where the malware dataset 
comprises 5 different malware categories. All the malware samples were collected 
from a combination of virusshare [37] and malicia-project [38] and the benign binaries 
downloaded from [39]. Dataset was duly verified with VirusTotal [40]. To generate 
a balanced dataset, the malware dataset was downsampled by a random selection of 
200 samples from each malware category to compose the 1000 malware, however, no 
sampling was applied to the benign samples.

iJIM ‒ Vol. 15, No. 24, 2021 25



Paper—Malware Detection Using Ensemble N-gram Opcode Sequences

6 Evaluation metrics

The efficacy of our proposed ensemble malware detection model was measured on 
the basis of total accuracy (shown in equation (5)), which is the number of correct pre-
dictions divided by all predictions made and precision (shown in equation (6)), which 
is the proportion of positive predictions correctly identified.

 
Accuracy TP TN

TP TN FP FN
=

+
+ + +  

(5)

   
Precision TP

TP FP
=

+  
(6)

Where, true positive (TP) is the number of malware samples correctly identified, true 
negative (TN) is the total benign samples correctly classified, false positive (FP) is the 
number of benign binaries wrongly identified as malware and false negative (FN) is the 
number of malware misclassified as legitimate.

7 Experimental results and discussion

For our ensemble model, we trained a single classifier using two separate feature 
sets obtained from different n-gram sizes (ni-gram and nj-gram) of opcode sequences, 
where ni and nj could be any combination pair in the range 1 to 4. In order to derive 
optimal weight combination Wni and Wnj for the ensemble n-gram opcode feature sets, 
we applied a grid search on a set of pre-defined weights in the range 0 to 1.

To evaluate performance of the proposed ensemble model, we adopted the K-fold 
cross validation which allows partitioning our dataset into K subsets and preforming K 
different rounds of learning and testing. We performed cross-validation with K= 5 for 
all ensemble models. Accuracy (acc) and precision (precc) scores for each round was 
averaged to obtain the global performance for each tested ensemble model.

As shown on Table 2, the overall best results in terms of accuracy was obtained 
by RF trained with gini criteria, which yielded an accuracy of 98.1% using ensemble 
n-gram opcode sizes 1 and 2 with weight pair 0.3 and 0.7 respectively. The overall 
precision best score was 99.7%, which was obtained with RF-gini using n-gram sizes 
2 and 3. The other classifiers also obtained accuracies greater than 95%. SVM trained 
on rbf kernel yielded 97% as the best accuracy for models trained with SVM using 
ensemble n-gram sizes 1 and 3 with weight pair 0.6 and 0.4 respectively, and the best 
precision score of 96.7% using n-grams 1 and 2 with respective weights 0.6 and 0.4. 
Similarly, ensemble models trained with KNN with k neighbors=5 recorded best accu-
racy of 98% and precision of 98.4% using n-gram sizes 1 and 2 with respective weights 
0.4 and 0.6. Generally, our model recorded higher precision scores as compared to 
accuracy. The higher precision score is an indication that our model performed better 
at classifying malware samples correctly, thus, the model has a minimal false positive 
alarm rate. On the other hand, the relatively lower accuracy scores can be attributed to 
the false negatives (i.e., the number of malicious samples misclassified as legitimate). 
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Finally, in Figure 3, we show that the overall best performing model in terms of accu-
racy obtained a mean area under curve (AUC) score of 1.

Table 2. Results for different ensemble n-gram opcode sequences  
with different combinations of n sizes

Classifier Wni Wnj Metric ni=1,
nj=2

ni=1,
nj=3

ni=1,
nj=4

ni=2,
nj=3

ni=2,
nj=4

ni=3,
nj=4

SVM
(RBF) 

0.1 0.9 Acc
Precc

0.965
0.961

0.966
0.960

0.955
0.948

0.967
0.963

0.955
0.949

0.954
0.948

0.2 0.8 Acc
Precc

0.965
0.959

0.967
0.960

0.956
0.950

0.965
0.959

0.957
0.952

0.957
0.950

0.3 0.7 Acc
Precc

0.965
0.961

0.967
0.961

0.958
0.951

0.964
0.954

0.959
0.955

0.958
0.952

0.4 0.6 Acc
Precc

0.966
0.961

0.968
0.963

0.958
0.949

0.962
0.947

0.959
0.955

0.959
0.953

0.5 0.5 Acc
Precc

0.966
0.965

0.969
0.961

0.960
0.953

0.960
0.941

0.965
0.962

0.962
0.957

0.6 0.4 Acc
Precc

0.967
0.967

0.970
0.966

0.963
0.958

0.615
0.610

0.964
0.960

0.965
0.959

0.7 0.3 Acc
Precc

0.965
0.963

0.965
0.963

0.960
0.956

0.528
0.528

0.964
0.960

0.965
0.960

0.8 0.2 Acc
Precc

0.960
0.957

0.960
0.955

0.957
0.950

0.528
0.528

0.964
0.961

0.965
0.961

0.9 0.1 Acc
Precc

0.959
0.953

0.959
0.953

0.958
0.952

0.528
0.528

0.964
0.960

0.966
0.963

KNN
(K=5)

0.1 0.9 Acc
Precc

0.978
0.983

0.947
0.929

0.920
0.989

0.947
0.929

0.920
0.894

0.920
0.894

0.2 0.8 Acc
Precc

0.978
0.983

0.952
0.938

0.935
0.909

0.938
0.914

0.935
0.911

0.920
0.894

0.3 0.7 Acc
Precc

0.979
0.984

0.958
0.945

0.936
0.911

0.932
0.900

0.938
0.913

0.915
0.884

0.4 0.6 Acc
Precc

0.980
0.984

0.962
0.952

0.950
0.934

0.926
0.889

0.949
0.932

0.915
0.884

0.5 0.5 Acc
Precc

0.980
0.983

0.969
0.965

0.958
0.952

0.927
0.893

0.954
0.947

0.917
0.892

0.6 0.4 Acc
Precc

0.980
0.982

0.967
0.962

0.958
0.947

0.766
0.745

0.954
0.942

0.908
0.875

0.7 0.3 Acc
Precc

0.979
0.982

0.964
0.961

0.960
0.954

0.613
0.613

0.954
0.946

0.758
0.750

0.8 0.2 Acc
Precc

0.980
0.982

0.959
0.961

0.958
0.956

0.611
0.621

0.956
0.954

0.754
0.765

0.9 0.1 Acc
Precc

0.979
0.982

0.956
0.956

0.956
0.956

0.519
0.424

0.955
0.955

0.497
0.313

(Continued)
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Classifier Wni Wnj Metric ni=1,
nj=2

ni=1,
nj=3

ni=1,
nj=4

ni=2,
nj=3

ni=2,
nj=4

ni=3,
nj=4

RF(Gini)

0.1 0.9 Acc
Precc

0.980
0.984

0.977
0.983

0.973
0.973

0.974
0.980

0.973
0.975

0.973
0.976

0.2 0.8 Acc
Precc

0.980
0.984

0.978
0.983

0.974
0.975

0.977
0.987

0.974
0.976

0.973
0.976

0.3 0.7 Acc
Precc

0.981
0.984

0.979
0.983

0.976
0.979

0.975
0.992

0.978
0.981

0.977
0.982

0.4 0.6 Acc
Precc

0.980
0.983

0.979
0.984

0.977
0.983

0.969
0.994

0.978
0.984

0.978
0.986

0.5 0.5 Acc
Precc

0.981
0.983

0.979
0.984

0.977
0.983

0.958
0.997

0.978
0.983

0.977
0.985

0.6 0.4 Acc
Precc

0.980
0.982

0.979
0.984

0.979
0.983

0.739
0.589

0.979
0.984

0.978
0.984

0.7 0.3 Acc
Precc

0.980
0.982

0.979
0.982

0.979
0.983

0.626
0.400

0.979
0.984

0.979
0.984

0.8 0.2 Acc
Precc

0.980
0.982

0.978
0.982

0.980
0.983

0.471
0.00

0.979
0.984

0.978
0.984

0.9 0.1 Acc
Precc

0.979
0.982

0.978
0.982

0.978
0.982

0.471
0.00

0.979
0.984

0.978
0.984

Fig. 3. Receiver operating characteristic (ROC) curve for the overall best performing ensemble 
model in terms of accuracy, which is RF with Wni = 0.3 and Wnj = 0.7

To measure the true performance of the ensemble models, we compare results to clas-
sifiers trained on individual n-gram feature sets. We found that, the ensemble models 
outperformed models trained on individual n-gram opcode sequences. The best results 

Table 2. Results for different ensemble n-gram opcode sequences with different combinations 
of n sizes (Continued)
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in terms of accuracy for the models trained on single feature set as shown in Table 3 was 
obtained with RF, which yielded an accuracy of 97.6% and a corresponding precision 
of 98.1% using n-gram of size 2. Though individual models achieved promising results, 
the ensemble models as evaluated and shown (see bold RF, SVM and KNN results 
on Table 2) earlier produced slightly higher detection accuracies compared to models 
trained on individual n-gram opcode sequences.

Table 3. Results for individual n-gram opcode sequences

Classifier Metrics 1-gram 2-gram 3-gram 4-gram

SVM Acc
Precc

0.935
 0.907

0.964
0.959

0.961
0.960

0.938
0.961

KNN
(K=5)

Acc
Precc

0.958
0.962

0.960
0.960

0.943
0.936

0.943
0.936

RF
(Gini)

Acc
Precc

0.974
0.982

0.976
0.981

0.971
0.977

0.971
0.977

8 Conclusion

In this paper, we evaluated ensemble of n-gram opcode sequences for malware detec-
tion. From our experiments, we found that ensemble of multiple feature sets of n-gram 
opcode sequences yielded higher detection results compared to classification models 
trained on individual n-gram opcode sequences. The best ensemble models were able to 
detect malware with an accuracy of 98.1% and 99.7% in terms of precision.

For future work, we will wish to explore other representation learning methods for 
malware detection. We would want to particularly concentrate on deep learning mod-
els for automation of feature extraction and learning of raw static representations of 
binaries.
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