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Abstract—Smart industry systems are based on integrating historical and cur-
rent data from sensors with physical and digital systems to control product states. 
For example, Digital Twin (DT) system predicts the future state of physical assets 
using live simulation and controls the current state through real-time feedback. 
These systems rely on the ability to process big data stream to provide real-time 
responses. For, example it is estimated that one autonomous vehicle (AV) could 
produce 30 terabytes of data per day. AV will not be on the road before using 
an effective way to managing its big data and solve latency challenges. Cloud 
computing failed in the latency challenge, while Fog computing addresses it by 
moving parts of the computations from the Cloud to the edge of the network near 
the asset to reduce the latency. This work studies the challenges in data stream 
processing for DT in a fog environment. The challenges include fog architec-
ture, the necessity of loosely-coupling design, the used virtual machine versus 
container, the stateful versus stateless operations, the stream processing tools, 
and live migration between fog nodes. The work also proposes a fog computing 
architecture and provides a vision of the prerequisites to meet the challenges.
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1 Introduction

Smart industry (or Industry 4.0) integrates the Internet of Things (IoT) with manu-
facturing techniques to create an interconnected manufacturing enterprise that analyzes 
the information to make intelligent action in the physical world [1]. An example of such 
integration is the digital twin (DT), which has gained extensive attention from research-
ers in the industry. DT contains three main components; the physical asset in real space 
and its virtual representation in virtual space, in addition to the data and information 
that integrate the real and virtual components [2].

Unlike the traditional simulation, the virtual representation in DT is continually 
updated with the state of maintenance and performance throughout the physical asset’s 
life cycle [3]. For example, in car racing, the data stream from sensors on the car 
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transmitted to the pit wall to simulate car performance and enable real-time remote 
adjustment [4]. The virtual representation model may be predefined or learned from the 
data streams, which is a complex process that may require machine learning and iden-
tification techniques to specify the parameters for each specific class of model [5][6]. 
Thus, DT’s productivity is based on efficiently and securely transferring and analyzing 
real-time streaming data between physical assets and data processing systems [7]. Such 
a process requires a massive computing capability to manage data [8]. Cloud comput-
ing allows meeting such requirements for computing infrastructure [9].

Cloud computing enables dynamic resource sharing and provisioning by lever-
aging virtualization technologies at hardware and application levels [10]. The chal-
lenge is that cloud computing hardly meets the requirements of location-aware and 
delay-sensitive systems such as DT due to high latency [11], which is the motivation 
toward fog computing. Fog Computing is a virtualized platform that provides storage, 
compute and networking between the end physical asset and data center in the public 
cloud [12]. While the industrial data is often unstructured, it can be refined and pre-
processed locally at the fog level before being sent to the cloud level for further pro-
cessing [13]. The complexity of managing these challenges is the increase in DT, where 
there are multiple stateful streams.

Statefulness means that the system should always identify each data source and 
determine what other data produced by the same source over a time scale [14]. For 
example, the sequence of events so far encountered should be stored when the sys-
tem searches for specific patterns over the data stream. The complexity of developing 
stateful systems such as DT is affected by the used processing tools to manage the 
state and the computing infrastructure’s capabilities to keep the state of the process. 
These multiple challenges make finding appropriate solutions to handle data streams 
in a fog environment a critical issue, especially when building complex systems such 
as the DT.

This work provides an analytical review of the challenges of data stream processing 
in a fog environment to support DT implementation. The work also provides a vision 
of the prerequisites and proposes a conceptual fog architecture to meet the studied 
challenges. Section 2 explains the concept of DT, and section 3 provides an overview 
of the data stream processing and its requirements. Section 4 provides a study on the 
role of fog computing and its challenges in DT implementation. Based on the studied 
challenges, section 5 provide the required prerequisites and proposes a conceptual fog 
architecture. Conclusions are presented in section 6.

2 Digital twin

The wide availability of IoT sensors and the fast evolution of data gathering and 
processing tools allow the DT to become a reality in the market. In 2019 DT market size 
exceeded 4 billion USD and is estimated to grow at a CAGR of over 30% from 2020 
to 2026 [15]. Figure 1 shows the result of Google trends analysis of worldwide search 
interest, which reflects the preference of “Digital Twin” versus “Industrial IoT” and  
IoT “Platform” for the past seven years from 2014 till 2021, where a value of 100 is the 
peak popularity and value of 0 means there was not enough data [16].
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In 2002 Dr. Michael Grieves presented the first concept of DT at the University of 
Michigan to establish a Product Lifecycle Management center (PLM) [8]. The idea was 
that digital information constructed from the physical asset would be a “twin” of the 
information embedded in the physical asset itself and together are linked through the 
system’s entire life cycle. DT is an integrated multiscale, multiphysics, probabilistic 
simulation of a product that uses the best available physical models, sensor updates, 
system history to mirror the life of its physical twin [17].

Fig. 1. Google trends analysis of worldwide search interest in “Digital Twin” 
versus “Industrial IoT” and “IoT Platform” for the period from 2014 till 2021

3 The role of the data stream

3.1 Stream definitions

The stream of data is a countably infinite sequence of elements that represent data 
elements that are made available over time scale, for example, readings from sensors, 
stock quotes in financial applications [18]. Stream processing means to perform various 
analysis tasks on the stream rather than batch fashion [19]. These tasks may consist of 
building models to create a predictor or discover frequent patterns. Other examples are 
credit card fraud detection in online transactions [20], and anonymity methods to mask-
ing the message meta content that identifies the senders and receivers [21].

According to [22], stream processing algorithms operate sequentially over unbounded 
input streams and produce output streams as an answer over the event observed so far 
or a sliding window of recent data to answer continuous queries. Stream processing 
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algorithms can be categorized according to (1) the type of output which the algorithm 
computes (e.g., is the answer approximate or exact), (2) how the algorithm computes 
the output (e.g., hashing, sampling).

3.2 Stateless and stateful operations

The operations in the stream processing algorithm can be classified into stateless and 
stateful. A stateless operation transforms each input data point one at a time and outputs 
the result based solely on that last input. In contrast, a stateful operation maintains the 
value of data points processed so far. It updates the value with each new input, such that 
the output reflects results that take into account both the new and historical inputs [23]. 
The stateful operation has many challenges, for example, scalability limitations and the 
need for additional storage and computing service to support state management [24]. 
For example, when multiple instances of the same operation at the same time trying to 
process the same input that required the same historical state, in this case, there are no 
guarantees for the correctness of execution; thus, the state must be processed by one 
instance [5]. Managing the state are addressed by different methods in the set of avail-
able data stream platforms as in the following:

1. Kafka streaming platform [25] provides so-called state stores within the applications 
to manage the state; for example, the application developed using Kafka Streams 
DSL API automatically creates and manages state stores when stateful operations 
are called. Kafka Streams provide automatic recovery for local state stores by syn-
chronizing the local state with the Kafka messaging middleware itself, which was 
the source of input data and the destination of output result.

2. Flink, which is a distributed processing engine for stateful computations over data 
streams, manages the state by creating local persisted states inside the application, 
but for fault tolerance, Flink provides snapshotting mechanism with an external 
resource such as HDFS and S3 [26].

3. Spark [27] is an analytics engine for large-scale data processing. Spark also provides 
a stateful capability where the data stream persisted in memory when a stateful oper-
ation is in use, such as a window-based operation, but for fault-tolerant spark needs 
to checkpoint information to a fault-tolerant storage system such as HDFS.

There are architectural differences between Kafka Stream API on the one hand 
and Flink [28] and Spark on the other hand. Table 1. shows the interesting differences 
between Kafka Stream API, Spark, and Flink based on the literature analysis.

3.3 Toward data stream in digital twin

The complexity is increasing dramatically in complex systems such as DT, where 
there are multiple stateful streams between real-world objects, fog nodes, and the 
cloud. Thus, managing data stream processing in the smart industry system such as 
DT gained extensive attention from researchers. Authors in [29] developed a method-
ology to capture real-time sensor data from cyber-physical systems communicating the 
factory’s physical assets’ current status to the real-time DT model. The authors in [30] 
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presented a proof of concept for DT where the DT components connected through 
a broker-client-architecture followed the publish-subscribe model implemented using 
the MQTT protocol. The authors of [31] propose developing DT using the APIs medi-
ation layer, Inner APIs connected directly to the DT, and Outer APIs are exposed 
through mediation which can be composite endpoints by joining two or more inner 
APIs. The mediation layer allows maintaining the experience of integration through 
an additional layer of management. The authors of [32] propose a microservice-based 
middleware that offers an API gateway for managing DT. The DT, where the platform 
implements a microservice architecture, supports the distributed publication of simula-
tion models and manages data stream coming from the shop-floor for physical-digital 
synchronization.

Table 1. Comparison between stateful stream processing frameworks: 
Kafka Stream API, Flink, and Spark based on the literature analysis

Criteria Kafka Streams API Flink and Spark

Deployment API that can be embedded in the  
application and did not impose a  
specific deployment method

The framework deploying  
the application, either in  
standalone clusters, or using  
YARN, Mesos, or containers

Stateful and fault- 
tolerant

State store locally and  
synchronized with the native  
Kafka message queue

State locally but for fault- 
tolerant can be configured with  
external storage such as HDFS

Source of streaming data Only from Kafka messages queue  
that supports the Connect API,  
producer API, and Consumer API  
in Kafka to address the problem  
of data in/out from another system

Kafka, File Systems, other  
message queues

Sink for results Kafka, application state, database,  
or any external system

Kafka, other message queues,  
file system, and other external 
systems

Bounded and unbounded 
data streams

Unbounded Unbounded and Bounded

4 The role of fog computing

One of the contemporary revolutionary products in the smart industry; is the auton-
omous vehicle (AV). The global market of AV is expected to reach 52.4 billion USD in 
2027 at an impressive 14.5% CAGR during the forecast period from 2021 to 2027 [33]. 
While Twitter, with 270 million users in 2018, produces about 100 GB of data per day, 
but it was estimated that a single AV vehicle could produce 30 terabytes of data in a 
single day of driving [34]. Without an effective way to managing all this data, AV will 
not be on the road before encountering bandwidth and latency challenges. Another 
example is the real-time electrocardiogram systems (ECG) that extract features from 
the patients ECG signals, where avoiding high latency is essential to rescue human 
life [35]. High latency is the challenge that makes Cloud computing fail in meeting the 
delay-sensitive and location-aware systems [11]. That was the motivation toward Fog 
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computing, a virtualization platform that provides compute, storage, and networking 
services between the end physical asset and Cloud data center [12].

4.1 Virtualization and statefulness challenge

Further complexity is faced in fog computing when the live migration of storage and 
processing tasks between fog nodes is required. For example, the Hyper-V feature in 
Windows Server can transparently migrate running Virtual Machines (VM) from one host 
to another without perceived downtime [36]. But, using VM is not adaptable to fog com-
puting aims; for example, the boot-up time of a VM is several minutes, which is too long 
for real-time applications; also, the physical nodes’ performance is degraded when the 
number of VMs increased [11]. Nevertheless, large overheads associated with the use of 
VMs can limit the efficiency of computational resources, especially at the fog level where 
there is limited computational power in the edge devices, and the bandwidth is typically 
limited in the edge of the network. Container-based virtualization can address this problem.

The container-based virtualization does not aim to emulate the entire hardware envi-
ronment as it in hypervisor-based virtualization. Instead, it enables the OS kernel to 
isolate the applications where multiple isolated OS systems (containers) run on a host 
and sharing a single kernel instance [37]. Container-based virtualization makes it easy 
to package the application with its dependencies into a small container with lower over-
head than VM [38]. Nevertheless, another challenge arises in containers where it is 
challenging to containerize a stateful operation due to limited support for state portabil-
ity in containers. Docker, for example, using the commit [39] command, can snapshot 
a running container; however, this operation only saves the container file changes and 
settings into a new docker image regardless of the state of the running processes.

To tackle the challenge of container live migration, the authors of [40] proposed the 
Voyager framework to migrate the container state across three different data stores: 
in-memory, local filesystem, and network filesystem. Local filesystem migration in 
Voyager starts with the data federation step in which the container data at the source 
host become accessible on the target host using the NFS server. When the container 
in the source host resumed access to its data using data federation, Voyager launches 
a lazy replicator to copy and transfer the data from the source to the target source. 
For any network-attached file storage and host access authorization Voyager performs 
unmounting and mounting through the NAS share server. For in-memory state migra-
tion Voyager used the CRIU project. However, the CRIU project [41] is still based on 
Docker’s experimental mode until the writing time. Also, checkpointing and restoring 
the container state using CRIU still does not support all storage drivers for container file 
system management in Docker [42]. Thus, it essential to develop efficient solutions for 
the challenges of Statefulness in the used underline virtualization techniques, especially 
when live migration is required.

4.2 Fog architecture and computing infrastructure

The authors of [43] introduced a hierarchical 4-layers fog architecture for big data 
analysis in smart cities to support quick response at neighborhood-wide, community-wide, 
and city-wide levels. The hierarchical 4-layers fog architecture proposed by authors 
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contains three levels; infrastructure level (physical assets), fog level, and cloud level. The 
fog level contains three layers: 1) The layer of fiber optic sensing networks responsible for 
the tasks that may require a millisecond, 2) the layer of edge computing nodes to perform 
further tasks that may require seconds, and it aims to reduce the load between the edge 
devices and the upper layer, 3) the layer of intermediate computing nodes responsible for 
the tasks that may require minutes or hours. Finally, at the cloud level, the cloud data cen-
ter layer is existing and is responsible for tasks that may require days or years. The authors 
in [44] proposed an SDN-based architecture where the SDN is placed in the middle of 
the fog node and the cloud to improve communication efficiency between the fog node 
and the cloud. They also proposed a service architecture that includes two layers: the user 
layer and the application layer. The users private VM is deployed at the user layer, where 
the user data processed and sent to the service VM at the application layer.

Based on the open-source Kura gateway, the authors of [45] implemented a fog- 
oriented framework to run IoT applications delivering containerized applications. The 
authors used resource-limited Fog Node, like Raspberry Pi, and conducted the tests to 
evaluate the existing solutions, e.g., Kubernetes, Apache Mesos, and Docker Swarm; 
they decided to use Docker Swarm as they find it more lightweight than others. The 
authors of [11] proposed container-based fog computing architecture to reduce the ser-
vice delay and improve fog nodes resource utilization. The authors proposed that a fog 
node consists of three tiers; 1) infrastructure tier, 2) the control tier, and 3) the access 
tier. The request received by the fog node will be validated and resolved into the service 
catalog at the access tier and transferred to the control tier. According to the service 
type, the control tier dispatches the services to the corresponding manager, either long-
term or temporary. Finally, the manager calls the API provided by the infrastructure tier 
to create the container.

5 The proposed architecture and prerequisites

Based on the analytic study which carried on state of the art in the area of stream pro-
cessing, fog computing, and DT in the smart industry, the current work in the following 
subsections can provide vision on the required architecture and the prerequisites for the 
implementation of DT in the smart industry within fog environment.

5.1 Loosely coupled architecture

The system should be refactored as a set of loosely coupled components. Each 
component can perform a specific task built around a specific business logic and can 
respond to events independently. This design provides the ability to migrate parts of 
the processing to different nodes as required in the fog paradigm and provide a faster 
response to events separately. This design also provides independent deployments for 
each system component according to each component’s specific needs.

5.2 Stateful virtualization infrastructure

The complexity of designing the stateful system is affected by the capabilities of 
the underlying computing infrastructure. According to [5], stateful virtualization 
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infrastructure is defined as the infrastructure that allows storing and managing the data 
internally over a time scale and under a variety of influential factors and use cases. 
When the infrastructure is suffering from less Statefulness capability, additional efforts 
are required to manage stateful components in the specific circumstances when the data 
loss problem can arise, such as in live migration.

5.3 Processing and data portability

When the physical asset is moving across different geographic locations, there is 
a need to access the nearest data center for high performance and low latency. Also, 
when a data center disaster, the failing computing units can use a different data center, 
which includes a replication of the original data. Another scenario, when data need 
to be aggregated from different data centers which may in different locations. These 
scenarios demand the need to provide the portability of both data repositories and pro-
cessing to be available in the required geographical location and access them easily. 
Processing portability and data portability have different characteristics.

Processing portability means the distance between the processing service and 
physical assets affects latency and performance; thus, it is imperative to provide por-
tability for the relevant processing service to be in the required location that may 
change over time. There are several challenges in processing portability. Two classes of 
these challenges can be provided here: the re-installation challenge and the re-setting 
challenge:

1. In the re-installation challenge, installing an application on one host and then rein-
stalling it again at another host, with all its dependencies and configurations, does 
not provide enough flexibility to be considered portable. Even with some applica-
tions that do not need to be installed, they also face challenges when changing the 
host, such as OS incompatibility. Containerization arises as a lightweight solution 
to this problem. For example, in Docker, the application with all its dependencies 
packaged in a container and commit the changes to an image. The Docker image 
can be downloaded in any host with Docker, then rerun the pre-configured container 
regardless of the host OS.

2. The re-settings challenge appears, for example, when the host is changed, which 
means that some settings may need to update, such as the new IP. In this case, from 
the development stage, the environmental parameters that are subject to change 
should be as variables that can be re-setting without changing the application. Many 
deployment methods support solutions for this problem; for example, in Docker, 
when the new container is launched, the new settings can be passed as parameters 
in the running time.

Data portability means there is a need to manage data in data layers isolated from 
processing layers that contain the processing services. Data layers should provide 
straightforward data access and delivery for each processing service in processing 
layers and replicate data across different nodes in different locations. For example, 
to provide fault-tolerant, Spark and Flink use external storage such as HDFS, while 
Kafka Stream DSL API synchronizes the application state with Kafka message queue. 
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Separate data layers allow avoiding data loss in many scenarios, for example, when a 
processing service fails caused by a disaster in the computing node. Another example, 
when physical asset moves to a different location, a replication or migration of data for 
the nearest data node can provide a solution for a high latency challenge.

In the fog environment, the computing is distributed as independent components 
across different implementation platforms, there is always a data stream from the main 
sources, stream input to components, intermediate status data for each component, and 
stream output from each component. In this case, the streaming middleware as a data 
layer can take the role of nervous systems for the data sources and the independent 
processing services. Figure 2 shows the proposed fog computing architecture with data 
layers and processing layers to support the implementation of DT.

Fig. 2. The proposed fog computing architecture to support the implementation of DT

5.4 Computing stages

Big industrial IoT data is often unstructured; it can be preprocessed, refined, and 
monitored locally or in a fog node before being sent to the cloud for further processing. 
However, we can define four sequential computing stages regardless of the implemen-
tation place. There are many visions of applying these 4-stage depending on the dis-
tributing approach and the computing design. Each stage may be applied separately in 
different computing components or one component containing more than one stage, 
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or even all the stages applied in one component designed around the specific business 
logic. The 4-stage as in the following:

1. Stage 1: connected with the data source and contains the initial steps applied to the 
raw data such as data extraction, validation, cleaning, etc.

2. Stage 2: which applied to the refined data and it may include data integrating, aggre-
gating, windowing, etc.

3. Stage 3: includes applying the required business logic and analytics to the incom-
ing data from Stage 2. The schema and behavior of the result of this stage are often 
different from the incoming data. For example, the input may be a lot of aggregated 
messages, including a timestamp and other information, while the result may only 
be a message with true or false.

4. Stage 4: it includes archiving or publishing the results for further processing.

5.5 Data and processing integration

When both data layers and the processing layers are isolated and distributed over 
various implementation platforms at different levels, there is a need for an integration 
mechanism that maps data between these layers. Integration can be illustrated on two 
levels as follows:

1. Integration at the data level: In a complex system such as DT, there are many 
data sources. For example, a heterogeneous group of sensors or even the processing 
services themselves produce data as well. Each specific group of these sources may 
generate data from different physical locations. Therefore, in such a highly distrib-
uted environment, data that often being processed together based on the required 
business logic, or data from similar sources, it is better to be organized in a unified 
structure and accessed through similar interfaces.

2. Integration at the processing level: When the tight links between the different pro-
cessing components are decoupled, there is a need for an integration mechanism that 
allows maps the result from one processing component to another that needs those 
results. Also, the processing components that are assumed to be cooperated to solve 
a specific problem should have the same ability to access the same data interface.

6 Conclusions

Fog computing is emerging to solve the high latency problem when using cloud 
computing alone to implement real-time systems such as DT. In fog computing, a 
set of the processing services moving to be near the physical assets. Thus, the work 
identifies the need to refactor the system as a set of loosely coupled components; 
each performs a specific task built around a specific business logic and can respond to 
events independently. Each component can be migrated to different nodes as required 
in the fog paradigm and provide a faster response to events separately and independent 
deployments for each component. However, going towards fog computing puts many 
challenges and requirements at the fore.
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According to the study that was conducted in this work, many of the challenges were 
listed along with the solutions that were proposed. For example, container technology 
appears as a solution to high costs when using VM. However, we face losing the appli-
cation state in containers due to less data portability than VM. The problem increased 
when live migration of computation is required between fog nodes. Yet, this problem is 
not completely solved and needs further research and experiments to provide stateful-
ness capability for containers. In terms of stateful streams processing frameworks such 
as Kafka, Flink, and Spark can provide a facility for stateful computation. However, 
each comes with different capabilities that should be taken into account when deployed 
stateful operations.

The need for data layers isolated from processing layers also identified by the current 
work. Data layers should provide data access and delivery for processing layers and 
replicate data across different nodes in different locations. The study also proposes the 
need for data portability and the need for processing portability in Fog environments 
by means of providing stateful computing and data in any location where it is needed. 
However, the study also identifies the need for integration mechanisms at the data level 
and computing level to ensure the correctness of data and processing workflows when 
the system is highly distributed. The work also proposes a conceptual fog architecture 
to meet the studied challenges and requirements.

However, many experiments must be conducted to address the studied challenges 
to provide a fog environment suitable to implement DT and an efficient stateful stream 
processing based on the prerequisites presented in this work.
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