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Abstract—This article presents a new comprehensive approach to realize a 
sufficient trade-off between the CAP properties (i.e., consistency, availability, and 
partition tolerance) in the large-scale pervasive information systems. To achieve 
these critical properties, the capabilities of both cloud computing and web ser-
vices were exploited in developing the components of the proposed approach. 
These components include a cloud-based replication architecture for ensuring 
high data availability and achieving partition tolerance, a web services-based 
middleware for maintaining the eventual consistency, and a data caching scheme 
to enable the mobile computing elements to conduct update transactions during 
the disconnection periods. The evaluation of the performance aspects revealed 
that the proposed approach is able to achieve a load balance, lower propagation 
delay, and higher cache hit ratio, as compared to other baseline approaches.
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1	 Introduction

The recent decade has witnessed a tremendous spread of large-scale distributed 
systems (LSDSs) in a wide variety of industries. The crucial factors behind this spread 
include the rapid advancements in the wide area network technologies and com-
putational resources, the intensive use of networks for running a broad diversity of 
applications, and the fast development of the modern industry [1–3]. Categories of 
these systems include large-scale distributed computing systems (e.g., grid and cloud 
computing systems), large-scale distributed information systems, and pervasive sys-
tems (e.g., mobile computing systems and sensor networks) [4,5].

The characteristics of LSDSs can be represented into several dimensions, including 
the size and heterogeneity. With respect to their size, LSDSs consist of a large number 
(usually millions) of highly geographically dispersed nodes. The heterogeneity character-
istic indicates that LSDSs are heterogeneous in nature at the levels of hardware, software, 
and network technologies [1]. In addition to these dimensions, data in LSDSs are shared 
extensively over wide areas and associated with intensive concurrent read/write operations.
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These characteristics make the data management in LSDSs more challenging than in 
the ordinary systems. An important aspect of this challenge is developing scalable data 
management solutions that enable reliable and fast access to massively distributed data 
over wide areas. One feasible solution to provide such access is through implementing 
the data replication. Substantially, data replication is a widely used data management 
technique for decades in many systems [6]. It is defined as the process of maintaining 
multiple copies of data objects, called replicas, on separate sites [7,8]. The mostly cited 
benefits of data replication include increasing data availability, enhancing reliability, 
and improving performance.

Despite of these benefits, there are many issues associated with the data replication. 
A major issue is the impossibility of achieving strong consistency along with other 
two desirable properties of replication systems, which are availability and partitioning 
tolerance. This impossibility was indicated by the CAP theorem, which states that it 
is not possible for a distributed system with data replication to guarantee more than 
two of these three properties (i.e., consistency, availability, and partition tolerance) at 
the same time [9]. In this theorem, consistency implies that all replicas of a data item 
should have the same value (i.e., state) at the end of each update operation. Availability 
indicates  that the read/update requests for data items can be processed successfully. 
Partition tolerance encompasses the ability of the system to continue operating even if 
a network fault resulting in several partitions occurs [9,10].

To respond to the impossibility consequence of this theorem, a sufficient trade-off 
between these properties is required. This involves finding weaker consistency guar-
antees that contribute to enabling both availability and high performance [11]. Many 
systems (e.g., Amazon’s Dynamo [12]) have implemented a relaxed consistency guar-
antee (i.e., other than strong consistency) called eventual consistency, which its idea 
encompasses performing local updates on each replica and afterward propagating 
these updates to other replicas asynchronously to reach an eventual convergence [13]. 
Accordingly, eventual consistency allows the replicas of a data item to temporarily 
diverge, as long as they eventually converge to a global consistent state (i.e., having the 
same value) [14–16].

However, there are several challenges should be addressed for eventual consistency, 
especially when the number of replicas increases. These include providing fast dissem-
ination (i.e., propagation) of updates between the data item’s replicas to eliminate their 
state divergences, resolving update conflicts consistently, and ensuring that updates are 
implemented in the same order at each replica.

This paper handles these issues in an important class of LSDSs, which is the Large-
scale Pervasive Information Systems (LSPISs). This class represents a hybrid of both 
large-scale distributed information systems and pervasive systems. It is identified here 
as a category of systems consisting of a large number of diverse pervasive comput-
ing elements, massive data, and heterogeneous networks that are distributed over wide 
areas. In addition to the general characteristics of LSDSs, LSPISs have specific traits, 
including the popularity of using mobile computing elements, sensors, and actuators 
for conducting a huge number of distributed transactions, the commonality of wireless 
communications, and the wide diffusion of computing elements in diverse environ-
ments to sense, manipulate, and store data [5,17,18]. Examples of these systems include 
the pervasive variants of the healthcare information systems [19,20], environmental 
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monitoring systems [21], warehousing and logistics management systems [17], traffic 
control systems [22,23], crimes recording systems, and financial transaction process-
ing systems. Despite their importance and commonality in vital industries, LSPISs are 
often overlooked in research studies devoted to handling replication issues in the infor-
mation systems area.

There are intrinsic limitations associated with the popularity of wireless networks 
and mobile computing elements in LSPISs, including poor bandwidth, communica-
tion latency, unreliability and unavailability of the wireless connectivity in many areas, 
frequent disconnections, and limited battery duration [24–27]. These limitations aggra-
vate the aforementioned replication issues by hindering the realization of a sufficient 
trade-off between the CAP properties and the achievement of the overall system 
scalability. Consequently, effective replication solutions considering these aspects 
are highly needed in LSPISs. To act in accordance to this need, this paper focuses on 
proposing a scalable replication approach that makes a sufficient trade-off pertaining to 
the achievement of the three desirable CAP properties in LSPISs. As such, the specific 
objectives of the study are:

1.	 Develop a scalable replication architecture that provides a robust basis for improving 
the availability of read/write operations and achieving partition tolerance in LSPISs.

2.	 Propose a service-oriented middleware to conduct and automate the essential oper-
ations of the replication process, including the automation of updates propagation 
between the replicas in the replication architecture in a manner that maintains the 
eventual consistency of the replicated data.

3.	 Propose a method for detecting and resolving update conflicts that occur due to the 
concurrent write operations on many replicas.

4.	 Develop a data caching scheme for mobile computing elements that enables them to 
conduct update operations during the disconnection times.

To achieve these objectives, the proposed replication approach exploits the capabil-
ities of both cloud computing and web services.

2	 Background and related work

This section provides a background to the categories of the data replication 
approaches, and presents the related work.

2.1	 Data replication approaches

Replication is a crucial process for effectively support shared data in a variety of 
distributed environments (e.g., grid, mobile, cloud, and P2P environments) [25,28–30]. 
It intends to provide several positive outcomes in these environments, including 
improve data availability, enhance fault tolerance, minimize bandwidth consumption, 
reduce data access latency, and decrease data transfer cost and time [28,31,32,54]. There 
are many replication approaches attempted for such environments. These approaches 
can be classified into synchronous and asynchronous replication solutions.
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In the synchronous replication (also called as eager replication), the updates occur 
on one replica are immediately propagated to the other replicas before the completion 
of the transaction that performed these updates (i.e., the update transaction). Accord-
ingly, the updates are implemented at each replica as a part of a single transaction. 
When this transaction commits, all the replicas will have the same value. This makes 
the synchronous replication an effective mechanism for providing a strong consistency 
guarantee. However, updating all the replicas before the termination of the update 
transaction negatively affects the transaction’s response time, and consequently hinders 
the applicability of this replication mechanism in environments consisting of a large 
number of replicas [10,33]. Moreover, it requires a reliable communication between 
replicas. Thus, this mechanism cannot act in accordance to the characteristics of 
LSPISs, especially the commonality of unreliable wireless connectivity and frequent 
disconnections of mobile computing elements, as well as it cannot cope adequately 
with the scalability requirement of these systems.

A widely cited synchronous replication approach is the read-one/write-all (ROWA) 
protocol, which requires the execution of the write operation on all the replicas of a data 
item and performing the read operation on any replica [34].

In contrast, in the asynchronous replication (also known as lazy replication), the 
updates are propagated to the other replicas sometime after the update transaction 
commits. This propagation occurs through independent transactions, generally known 
as refresh transactions. The main advantage of this replication mechanism is that it 
has lower response times for update transactions, because an update transaction can 
immediately commit once it has updated one replica [10]. Additionally, it improves the 
availability in systems having unreliable communication, increases the throughput, and 
enhances the overall system performance. Hence, it is widely used as a scalable replica-
tion solution in the distributed environments [35,36]. However, the delay in updating 
the other replicas leads to inconsistencies, and thus inhibits this replication mechanism 
from providing a strong consistency guarantee [25,37,38]. Consequently, a weak guar-
antee is provided by such mechanism, which is the eventual consistency.

Therefore, most of the existing asynchronous replication approaches tend to perform 
the tradeoff between the CAP properties through decreasing consistency for improving 
availability and partition tolerance.

2.2	 Related work

Representatives of asynchronous replication approaches in a variety of large-scale 
distributed environments are presented next. This variety is mainly due to the lack 
of approaches devoted specifically to LSPISs. More focus is given to the mobile 
environments because they represent a foundation for running the pervasive informa-
tion systems.

In a mobile environment, the Cedar system [39] focuses on trading off consistency in 
order to enable mobile data access (i.e., availability) with high performance over wide-
area networks. It adopts a simple client/server based asynchronous approach in which the 
updates occur on the server (i.e., hosting the master copy) are implemented on the clients 
at infrequent intervals. It relies on the usage of the stale client replicas for improving data 
access, and accordingly achieving such trade-off. However, keeping the master replica on 
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a certain node (i.e., the server) hinders the implementation of this approach in large-scale 
distributed systems having massive number of updatable replicas.

By concentration on providing a scalable asynchronous replication strategy for 
improving data availability in mobile environments, a system called ROAM was 
proposed with a characteristic that any replica can serve operation requests [40,41]. 
In this system, nearby replicas are grouped into domains called wards. The members of 
each ward can directly synchronize and communicate with each other in a P2P fashion. 
Each ward has a specific member designated as a ward leader that is responsible for 
maintaining consistency with the other wards. The updates propagation occurs within 
each ward (i.e., between its replicas) and among wards (i.e., between ward leaders) 
through a ring topology. Although ROAM seeks to achieve high scalability, the mech-
anisms of handling and committing large numbers of updates on highly distributed 
replicas were not addressed in details in this system.

Mohana and Jaykumar [42] proposed a cluster-based hierarchical replication scheme 
for mobile database systems. The hierarchical structure of this scheme consists of a 
database server, cluster heads, and cluster members (i.e., clients). The server sends the 
replicated data to the cluster heads to respond to the queries issued by the members. 
The heads can also fetch the desired data for satisfying the queries from each other. 
The updated data in each cluster are sent to the server through the heads. With respect 
to maintaining consistency, a detailed procedure for handling enormous concurrent 
updates on the same data items in different clusters is needed in this scheme.

Bsoul et al. [43] considered a grid distributed environment to implement a hierarchy- 
based replication strategy. In this strategy, the network structure consists of several 
regions. Each region has a header and a set of nodes that are located closely. On the 
top of the region headers, there is a master site in which the replicas are stored and 
further distributed to the headers. The region header ensures that the replica requests 
are satisfied in its region. The node can request a replica from the other nodes in the 
same region. The methods of handling the replica updates and maintaining the consis-
tency among the replicas were not discussed in this strategy.

Tos [6] proposed a replication strategy that concerns on several aspects in cloud 
computing environments, including the satisfaction of the query performance. It consid-
ers a cloud environment that comprises a set of geographical regions with each region 
encompassing a set of data centers, which each of them in turn contains a number of 
servers. These servers hold the replicas of the data fragments based on a placement 
heuristic. In this strategy, a minimum number of replicas is maintained to fulfill a least 
availability required level for the data fragments. Updating these replicas and maintain-
ing their consistency were not included in the scope of this strategy. Moreover, it limits 
its focus to dealing with queries pertaining to OLAP applications.

In a similar vein, the proposed strategy of Limam et al. [29] considered a hierarchi-
cal cloud topology for supporting data replication. It aims at calculating the minimum 
number of replicas needed to realize a high data availability. A new replica is created 
only when this minimum number is not reached or when the response time goal is not 
achieved. The limitations of this strategy include its focus on the replication of read 
only data. Accordingly, it is used for OLAP purposes.

In sum, the extant asynchronous replication approaches in the various distributed 
environments are not dealing well with the characteristics of LSPISs, especially the 
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carrying out of a massive number of concurrent update transactions by a wide variety of 
distributed computing elements, including mobile clients. Accordingly, new replication 
solutions that adequately cope with the traits of these systems while perceiving a 
reasonable trade-off between the CAP properties are highly needed.

3	 The proposed data replication approach

To cope well with the characteristics of the LSPISs and realize a sufficient trade-off 
between the CAP properties, the components of the proposed approach are specified as 
follows. The first component is a scalable replication architecture to provide a robust 
foundation for improving data availability and achieving partition tolerance in the 
LSPISs. The cloud computing concepts were employed to determine the specifications 
of this architecture and enable fast access to the replicated data. The second component 
is a web services based service-oriented middleware to perform and automate the cru-
cial operations of the replication process. The third component is a method for detect-
ing and resolving update conflicts that occur due to the concurrent write operations on 
multiple replicas. The last component is a data caching scheme to enable the mobile 
computing elements to conduct update operations during the disconnection periods.

3.1	 The replication architecture

The replication model of the LSPISs is structured in our proposed approach as 
a scalene triangle that includes a variety of computing elements from an internal 
cloud and one element from a public cloud (see Figure 1). Accordingly, the triangle 
encompasses a hybrid of both internal and public clouds. The internal cloud consists 
of two main categories of computing elements, which are local servers and update 
sources (i.e., located in the triangle’s right and bottom sides, respectively). Both 
categories are physically distributed among wide areas. An additional category that 
includes specialized servers is found in the left side. Regarding the public cloud, 
the triangle includes only the needed computing element from this cloud (i.e., in its 
upper vertex), and referred to here as external server. The roles of these elements are 
provided next.

•	 Local servers: They are placed in one or more internal data centers, which are 
administrated by the owning organization. They are the only computing elements 
in the internal cloud that hold data replicas, thereby they are called here as replica 
servers. Each of these servers receives read/update requests from many update 
sources in the replication architecture. Consequently, all transactions in the entire 
replication system are committed in the replicas hosted in these servers. The exact 
content of any of these servers is a set of replicated data domains. The data domain 
is the replication unit of the proposed approach, and is defined as a collection of 
data that can be changed by a large number of dispersed update sources. Accord-
ingly, it can be a data file, a database table, or a part of such units. Every domain is 
distinguished by a unique identifier and type, and is represented as an ordered triple: 
D(Identifier, Type, Data).
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•	 Update sources: This category encompasses a variety of computing elements, 
including fixed and mobile elements (e.g., user clients, sensors, and actuators). 
They are called here update sources because one of their major functions is to access 
the data replicas to generate update requests. The mobile elements can issue update 
requests only upon their connections with the replica servers, while their fixed peers 
can request updates at any time due to their reliable connectivity with these serv-
ers. Some of the mobile elements (i.e., mobile clients) need to have a cached copy 
of the replicated data in order to be able to perform local tentative updates during 
the disconnection periods. Once the connection takes place, these elements request 
the replica servers to commit their tentative updates permanently (i.e., making the 
changes permanent on the copies stored in these servers). This is because the only 
updatable copies admitted by the proposed approach are those stored in the replica 
servers. For mobile sensors, they do not need to store a cached copy for conducting 
tentative updates. This stems from their nature as merely data generators. Hence, 
their produced data represent stable updates.

•	 External server: Each of the replica servers propagates the updates committed on 
its replica to the external server in the public cloud. The purpose of using this server 
is to maximize the availability of the recent updates to all replicas. Its exact responsi-
bilities include receiving the updates committed in each replica in the internal cloud, 
reconciling the received updates through conducting the conflicts detection and 
resolution processes, and propagating the reconciled updates to all replica servers for 
reaching the eventual consistency in that cloud. Accordingly, the updates occurred in 
any internal cloud’s replica are distributed to the other replicas through the external 
server. This server holds a replica for only performing these responsibilities. There-
fore, it does not have any interactions with the update sources in the internal cloud 
in terms of receiving updates on its replica or committing them. These interactions 
are undertaken locally in the internal cloud by the replica servers. Accordingly the 
update transactions processing is performed reliably on the internal cloud, while the 
updates reconciliation process is conducted by an element (i.e., the external server) 
from a certified public cloud. This indicates that the update transactions are only 
carried out in the internal cloud.

•	 Specialized servers: The data center in the left side of the triangle contains three 
servers with certain functionalities. The first one is responsible for managing 
the admission process in the replication system. It registers the details of: (a) the 
replicas and their distribution among the ordinary data centers in the right side of 
the triangle and (b) the computing elements that are authorized to update these 
replicas (i.e., the update sources). Hence, before joining the system, each comput-
ing element should initially contact this server in order to be admitted as an autho-
rized node for interacting with the replicated data (i.e., performing read and update 
operations). Also, this server is contacted upon needing to get an updated list of 
the replicas. Moreover, it is contacted by the external server to obtain the details 
of the new replicas. It is called here as an admission server. The second server is 
acting as a backup facility for periodically maintaining a recent copy of the entire 
replicated data hosted in the external server. The last server includes analytical tools 
(e.g., OLAP and data mining packages) for analyzing vast amounts of replicated 
data, and providing the stakeholders of the owning organization with valuable 
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insights and predictions for better decision making. It regularly interacts with the 
external server for obtaining the most recent data to be analyzed.

Fig. 1. The replication architecture

For very large-scale systems, the proposed replication architecture can be extended 
by adding one or more triangles. This results in having multiple external servers in the 
hybrid cloud. In this case, one of the these servers will be elected for reconciling the 
recent updates received by it and its counterparts in the public cloud, and then propagat-
ing the reconciled updates to them in a P2P fashion. In turn, each peer propagates these 
updates to its underlying replica servers in the internal cloud in order to be available for 
the transaction requesters.

In this architecture, the replica servers are the only computing resources along the 
path from the update sources (e.g., user clients, sensors) to the external cloud server. 
Each of these servers represents an edge in the internal cloud that eliminates the needs 
of the update sources to access the external server. This is because the various read/
write requests are satisfied through these servers. Thus, the crucial computation per-
taining to updating and retrieving data is performed on the level of the edge of the 
internal cloud network. Therefore, such type of processing comprises the core concept 
of the edge computing, which represents a form of the cloud computing. Augmenting 
this concept through conducting the essential computation in the internal cloud aims to 
reach several consequences, including communication costs reduction, fast responses 
to read/write requests, load balance realization, and better response to the LSPISs’ 
challenges.

3.2	 The web services-based service-oriented middleware

The proposed replication architecture is augmented by specifying a service-oriented 
middleware for managing the crucial replication operations in the LSPISs and 
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facilitating the interactions (i.e., communications) between the heterogeneous com-
ponents of these systems. The middleware consists of a set of web services that 
enable the automation and rapid performance of the essential operations of the rep-
lication system, including the requisition, execution, reconciliation, and propagation 
of updates. Each computing element in the replication architecture has its own web 
service (see Figure 2). The crucial categories of these services are those reside in the 
update sources, the replica servers, the external server, and the admission server. They 
are denoted as US-WS, RS-WS, ES-WS, AS-WS, respectively. For instance, US-WS 
indicates the web service that resides in an update source. The vital roles of these cat-
egories are as follows.

•	 US-WS: It enables its update source to request update transactions on the replicated 
data domains hosted on the replica servers. It generates the details of the update 
request (such as request-ID, update-type, and requester-ID) and sends them to the 
RS-WS of the replica server.

•	 RS-WS: It executes the update requests, reconciles the updates received from the 
mobile computing elements (i.e., those conducted during the disconnection periods), 
and propagates all updates received within a certain time interval to the external 
server.

•	 ES-WS: It performs a global reconciliation for all updates received from the 
replica servers, and propagates a set of recent reconciled updates to these servers 
(i.e., updates propagation from the external cloud to the internal one).

•	 AS-WS: It handles the replicas registration process, and provides the web services 
of the other computing elements with a list of active replicas. Moreover, it attaches 
a web service to each new computing element joining the system based on its type 
(e.g., replica server or update source).

As such, these web services characterize the replication architecture as a service- 
oriented architecture. This is because the aforementioned operations of the replication 
system are provided as services by several providers, which are the web services of the 
computing elements involved in the replication process. The provider of the updates 
requisition service is the US-WS. The provider of the updates execution (i.e., conduct-
ing the updates on a replica) service is the RS-WS. Both updates reconciliation and 
propagation services are provided on different levels by the RS-WS and ES-WS. Thus, 
in this architecture, both the requestors and providers of a replication service are web 
services that reside in heterogeneous computing elements.

With respect to the implementation of these services, the core standards of the web 
services mechanism, which are the Web Services Description Language (WSDL), the 
Simple Object Access Protocol (SOAP), and the Universal Description, Discovery, and 
Integration (UDDI) protocol [44,45,55,56], are utilized in the proposed approach as fol-
lows. The functionalities of these services (i.e., their operations) are described using the 
WSDL, which represents an XML-based standard for describing the web services. The 
excerpt given in Figure 3 shows the usage of WSDL to define the update request oper-
ation (i.e., provided by the US-WS). As shown, the <portType> element of the WSDL 
document has been used to define one operation with request and response messages 
(i.e., input and output messages).
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Fig. 2. The web services-based service-oriented middleware

Fig. 3. An excerpt that shows the usage of WSDL to define the update request operation

The interaction between these web services occurs through using the SOAP, which 
represents an XML-based messaging protocol for transferring data [46]. The SOAP is 
generally recommended for distributed environments. It supports two different commu-
nication patterns: Remote Procedure Call (RPC) and message-oriented (or document). 
The message-oriented pattern is widely used in the modern SOAP engines as the 
default communication style [47]. Accordingly, the proposed strategy relies on using 
the message-oriented pattern of the SOAP communication to enable the interactions 
among the identified web services. A sample of this usage is sending a SOAP message 
for updates requisition (i.e., US-WS sends the update details to a RS-WS). As shown in 
Figure 4, this SOAP message is XML-formatted. The essential element in this message 
is the body one, which encompasses the details of the update request. These details are 
represented as XML data. The optional element of this message (i.e., the header one) 
contains data that aid in handling the message.

As such, using the SOAP, each web service can communicate with the others, with the 
exception that US-WS and ES-WS do not have direct communication with each other.

iJIM ‒ Vol. 15, No. 15, 2021 83



Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

With respect to the flow of the SOAP messages (i.e., the exchange style), for updates 
propagation, these messages are sent in two directions as follows. A RS-WS propagates 
the reconciled updates in its replica server through these messages to the ES-WS in a 
bottom-up fashion, while the ES-WS follows the top-down direction to propagate the 
universally reconciled updates to the RS-WSs. For updates requisition and queries, the 
SOAP messages are sent from the US-WSs to the RS-WSs according to the request/
response messaging style, which requires sending a reply back to the requester (i.e., in 
a form of acknowledgment or data retrieval).

Fig. 4. A sample SOAP message format for updates requisition

The registration and locating of these web services are enabled using a local reg-
istry in the internal cloud. This registry acts as the one provided by the UDDI stan-
dard, which is implemented for setting up a service registry [44]. As such, all services 
recorded in this local registry are belonging to one provider (i.e., the owning organi-
zation of the internal cloud). In its essence, this registry represents a directory in the 
admission server that facilitates the handling and discovery of the currently registered 
web services in the replication system, registering the specifications of new services, 
and providing the new computing elements joining the system with the web services 
they need to conduct the replication operations. Respecting the case that a new comput-
ing element joins the system, the content of this directory are searched by the AS-WS 
in order to decide which web service should be reside in the new member (e.g., replica 
server or update source). Then, it attaches the relevant service to this member.

Each of these web services can be implemented as a class that comprises a 
set of methods. The essential methods associated with these services include 
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Generate-Update-Request (), Detect-Conflicted-Update-Requests (), Execute-Update (), 
Reconcile-Conflicted-Update-Requests (), Propagate-Updates-To-Higher-Level (),  
Query-Satisfaction (), Perform-Universal-Reconciliation (), and Propagate-Updates- 
To-Lower-Level ().

The steps of the crucial operations of the web services: The crucial operations 
conducted by the web services in the proposed middleware encompass those pertaining 
to the updates request generation and execution. The steps that are carried out for per-
forming these operations are provided in Figure 5.

In this object, the Execution-indication attribute holds the value “True” in the case 
that the update was executed in a replica server, and “False” otherwise.

Step1. Upon generating an update request, the US-WS conducts the following:
1.1 Set the values of the attributes of the update request, including Request-ID, Update-Type, 
Update-Statement, Affected-data-Domain-ID, Requester-Update-Source-ID, Recipient-
Replica-Server-ID, and Request-Send-Timestamp. /* These attributes are stored on an object 
called Update-Requests-Object (URO) */
1.2 Send the request to the RS-WS of the destination replica server.

Step2. Upon receiving the request, the RS-WS performs the following actions:
2.1 Set the value of the Request-Received-By-Replica-Server-Timestamp attribute in the URO.
2.2 Retrieve the request details written by the US-WS from the URO.
2.3 Execute the request on the affected data domain.
2.4 Set the value of the Execution- indication attribute in the URO to “True”.
2.5 Send a snapshot of the results of the executed request to the requesting US-WS.

Fig. 5. The steps of the updates request generation and execution processes

The schema of the URO is given in Figure 6.

Object Name Attributes

URO Request-ID, Update-Type, Affected-data-
Domain-ID, Requester-Update-Source-ID, 
Recipient-Replica-Server-ID, Request-Send-
Timestamp, Request-Received-By-Replica-
Server-Timestamp, Execution-indication

Fig. 6. URO schema

Another crucial operation of the web services in the replication system is support-
ing the dynamic change of the used replicas. The proposed approach implies that the 
number of replicas in each internal data center is dynamically changed on the basis of 
the Access Pattern (AP), which is classified for each replica as very very low (VVL), 
very low (VL), low (L), medium (M), high (H), very high (VH), and very very high 
(VVH) access. These APs are determined based on the Average Number of Accesses 
(ANA) that occurred in all replicas during a Prefixed Time Period (i.e., pre-decided by 
the admission server), which is denoted by PTP. The values of APs range from 0 to 
0.14× ANA for very very low, …, 0.86× ANA to 100 for very very high. The focus in 
our explanation will be on the two exceptional APs, which are the minimum (very very 
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low) and maximum (very very high) ones. The steps of calculating the ANA and using it 
to dynamically change the number of replicas are given in Figure 7. The involved web 
services in these steps are RS-WS and AS-WS.

Step1. Calculate the ANA
1.1 When PTP is over, each RS-WS reports the number of accesses that occurred in its server 
during this period to the AS-WS.
1.2 The AS-WS calculates the ANA and disseminates the result to all RS-WSs.

Step2. Each RS-WS determines the AP on its server based on the received ANA and decides 
the required actions as follows.
2.1 In the case that AP is VVL, it sends a request to AS-WS to change the status of its server to 
Inactive. /* removing it temporarily from the list of servers that accept requests */
2.2 In the case that AP is VVH:
2.2.1 It sends a request to AS-WS to balance the load.
2.2.2 The AS-WS will activate one of the inactive replica servers to share the load of the 
heavy-loaded server, and inform the requesting RS-WS.
2.2.3 The RS-WS of the heavy-loaded server will forward the upcoming requests to its peer in 
the activated server.
2.2.4 In the case that no inactive server, the AS-WS will nominate a server with a VL pattern 
to its peer in the heavy-loaded server.
2.2.5 The step 2.2.4 will be repeated for any further request until all servers reach the VL 
pattern. In this case, the AS-WS will issue an alarm indicating that a new replica server is 
needed.

Fig. 7. The steps of calculating the ANA and its usage

The steps of the operations pertaining to the updates conflict detection and resolution 
as well as updates propagation are presented in the next sub-section.

3.3	 The conflicts detection and resolution method

Maintaining the eventual consistency among all replicas involves conducting 
the updates reconciliation process, which encompasses two sub-processes, called 
update conflicts detection and resolution. These sub-processes are carried out on 
both the internal and external clouds. In the internal cloud, each replica server performs 
these processes on the updates that it receives from its underlying update sources, and 
then propagates a set of reconciled updates to the external server. In turn, this server 
performs these processes on all updates received from the underlying replica servers, 
and propagates the totally reconciled updates to them.

The conflicts detection sub-process relies on the timestamp attribute of the received 
updates. The value of this attribute is assigned immediately to each generated update 
based on the global system time. Maintaining this unified time is not an issue in the 
replica servers and external server due to the reliable communications among them. 
But, for mobile computing elements, such maintaining cannot be guaranteed due to 
their frequent disconnections. Consequently, the proposed approach includes the steps 
shown in Figure 8 to ensure the matching of the update timestamps in these elements 
with the global system time:
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Step1 At the beginning of each connection session with a replica server, the web service of 
the mobile computing element checks the accuracy of the local time by comparing it with the 
global system time available in the replica server.
Step2 If a difference is found, the web service will correct the timestamps of all updates 
occurred since the last connection with a replica server.

Fig. 8. The steps of matching update timestamps

The following equation is used for the correctness process based on the difference 
from the system time:

CUT = IUT ± D

Where CUT≡ Corrected Update Timestamp, IUT≡ Incorrect Update Timestamp, 
D≡ Difference between the system time and local time of the mobile computing ele-
ment, + sign is used when the difference is negative (i.e., the local time of the element 
is less than the system time) and the – sign is used otherwise.

This equation acts as a method for enforcing the assignment of the update time-
stamps on the basis of the global time, and accordingly ensuring a unified fair timing 
for all updates occurred in the replication system. The corrected update timestamp is 
used by the RS-WS and further the ES-WS in detecting and resolving updates conflicts. 
It is necessary to include that the implementation of this equation by the fixed update 
sources is not required because they perform the updates directly on the replica servers, 
which always maintain the accurate global system time.

In sum, the proposed approach relies on the update timestamps, which are assigned 
based on the global time, for conflicts detection and updates ordering. The web services 
in the mobile computing elements are responsible for ensuring the accuracy of these 
timestamps by maintaining the same global time as in the replica servers.

With respect to the conflicts resolution sub-process, it is conducted in this approach 
based on the types of the conflicted update operations (i.e., insert, delete, and modify). 
The insert operation cannot conflict with the modify and delete operations and vice 
versa. Therefore, if the insert operation shares the same timestamp with one of these 
operations, the resolution will be implemented on the basis of several measures, includ-
ing their send-times to the higher level (i.e., a replica server or external server) and 
arrival-times at this level. As such, the resolution of such case is implemented in terms 
of updates reordering process.

If a delete operation conflicts with a modify one on the same portion of a data 
domain, the latter is given a priority to be executed in the higher level, because it indi-
cates the validity of the modified data, and accordingly the former is aborted. In this 
case, a notification is sent to the deletion requester indicating the validity of the data to 
be deleted to other update sources. To handle the case of receiving a modify operation 
on a deleted data (i.e., the timestamp of the delete operation is less than its counterpart 
for the modify operation), such data are not removed permanently. Instead, they are 
kept in an object (i.e., acts as a recycle bin) for a temporary period that is specified 
according to the application requirements. As such, the upcoming modify operation can 
restore the validity of these data during the reconciliation interval.

If two modify operations on the same data domain are conflicted (i.e., having 
the same timestamp), the resolution can be conducted by assigning priority levels to 
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the types of the modifications. These levels are determined based on the business rules 
that govern the data validity. A simple example is that deducting a health insurance 
premium from an employee gross pay can occur only after registering him in the ser-
vice. In this case, the registration modification is given a higher priority level than the 
deduction one (i.e., will be executed before the latter).

To conduct the reconciliation process, the external server implements the concept 
of the reconciliation time interval (RTI) for each data domain, which is denoted by 
RTIexternal-server and defined here as a regular time interval that the web service of the 
external server (i.e., ES-WS) must wait before ordering and propagating the received 
updates on the data domain to replica servers. This is in order to ensure that all recent 
updates carried out during RTIexternal-server are received, which enables mobile clients to 
catch this interval. The length of RTI varies among the data domains based on the 
Inconsistency Time Period (ITP) affordable by each data domain, which is specified 
according to the application requirements.

As such, for each data domain, these intervals have an equal length, indicating that 
Length(RTIexternal-server – i(x)) = ITPx, where i = 1, …, n, and n is total number of RTIs of a 
data domain x. They are numbered serially on the basis of the day (i.e., 24 hours), such 
as Domain1-RTI-SUN-02-march-20-1, Domain1-RTI-SUN-02-march-20-2, etc. Upon 
elapsing of each interval and propagating the reconciled updates to the replica servers, 
the divergence between the replicas will be bounded and both read(x) and write(x) oper-
ations will interact with consistent data, where x is a replicated data domain. To clarify 
this point, the sequence of RTIexternal-server intervals can be represented mathematically by 
the following function:

ρ (i,date) = RTIexternal-server – i
 Date, 1<= i <=24/ RTIexternal-server

Each item in this sequence corresponds to a convergence status for the replicated 
data domain in the replica servers. This indicates that the serial elapsing of the intervals 
in this sequence contributes to reaching consecutive convergences to consistent states 
by all replicas (i.e., the eventual consistency). As such, the following limit is assured by 
the behavior of this sequence:

Lim (RTIexternal-server – i
 Date) = eventual consistency

If a set of recent updates belong to the current interval (e.g., Domain1-RTI-SUN- 
02-march-20-10) have been reconciled and propagated to the replica servers, and some 
updates belonging to this interval have come on a next interval (e.g., Domain1-RTI-
SUN-02-march-20-11) due to a late propagation from mobile clients, then the web ser-
vice will implement these updates on its replica of the data domain, and propagate 
a correctness report along with the reconciled updates of the Domain1-RTI-SUN-02-
march-20-11 to the replica servers. The purpose of this report is to inform the replica 
servers to correct the execution of the pervious received updates on the basis of the 
timestamps of the late received updates.

The same notion of RTI is applied at the level of the replica servers. All these serv-
ers implement RTIreplica-server for each data domain to propagate the recent updates to the 
external server. Two conditions are identified for this interval as follows. The first con-
dition is that all replica servers should have the same RTIreplica-server for each data domain 
in order to enable consistent propagation of the updates that occur on the domain.  
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The second condition is that the logical expression RTIreplica-server < RTIexternal-server  
should be true in order to ensure a fast propagation to the external server where the 
ultimate reconciliation will be done. Another reason for this condition is that the 
updates performed on a replica server are always less than those received by the exter-
nal server.

The conceptual object schemas pertaining to the reconciliation process include the 
ones depicted in Figure 9.

Object Name Attributes

Reconciliation-Intervals-Object Data-Domain-ID, RTIexternal-server, RTIreplica-server

Reconciliation-Interval-Limits-Object Interval-Code*, Data-Domain-ID, Interval-
Type-ID**,  
Upper-Limit, Lower-Limit, Interval-ID- 
Within-24Hours***
Notes:
*Interval-Code is added to link this object with the 
Reconciliation-Details-Object.
**Interval-Type-ID is either 1 for RTIexternal-server or 
2 for RTIreplica-server.
***Interval-ID-Within-24Hours varies from 1 to 
24/ RTIreplica-server. For example if RTIreplica-server is  
2 hours, there will be 12 intervals of this type.

Reconciliation-Details-Object Reconciliation-ID, Server-Type-ID*, Server-ID, 
Interval-Code, Date
Note:
*Server-Type-ID is 1 for an external server and 2 
for a replica server.

Current-RTIexternal-server-Received-Updates-Object* Interval-Code, Data-Domain-ID, Update-ID, 
Update-Type, Update-Timestamp, Updates- 
Source-ID, Replica-Server-ID, Late- 
Received-Update-Flag**
Notes:
*Once the current interval is elapsed, the contents 
of this object are transferred to the Data- 
Domain-Updates-Tracking-Object for permanent 
saving.
**Late-Received-Update-Flag is either 0 for an 
update occurred during the current reconciliation 
interval or 1 for one occurred during a past 
interval.

Data-Domain-Updates-Tracking-Object Interval-Code, Data-Domain-ID, Update-ID, 
Update-Type, Update-Timestamp, Updates- 
Source-ID, Replica-Server-ID, Late- 
Received-Update-Flag

Fig. 9. Object schemas pertaining to the reconciliation process

Reconciliation steps in the external server: The steps shown in Figure 10 are car-
ried out by the web service of the external server for reconciling the updates received 
from the replica servers.

iJIM ‒ Vol. 15, No. 15, 2021 89



Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

Step1. Start a new reconciliation session
1.1 Retrieve the RTIexternal-server from the Reconciliation-Intervals-Object
1.2 Retrieve the Lower-Limit and Upper-Limit from the Reconciliation-Interval-Limits-Object
1.3 Insert the details of the current reconciliation in the Reconciliation-Details-Object

Step2. Upon receiving an update from a replica server during the current RTIexternal-server
2.1 Determine the affected data domain
2.2 Insert the details of the update in the Current- RTIexternal-server -Received-Updates-Object
2.3 If the timestamp (update) within the current RTIexternal-server then
2.3.1 Mark this update as a current by setting the value of the Late-Received-Update-Flag 
attribute to 0

Else
2.3.2 Mark this update as an old by setting the value of the Late-Received-Update-Flag 
attribute to 1

Step3. Upon elapsing of RTIexternal-server
3.1 Detect the conflicts of the current updates
3.2 If there are any conflicts then
3.2.1 Resolve the conflicts based on the time-stamp values

Else
3.2.3 Next step
3.3 Propagate the reconciled updates to the replica servers
3.4 Transfer the details of the reconciled current updates from the Current- RTIexternal-server – 
Received-Updates-Object to the Data-Domain-Updates-Tracking-Object
3.5 Detect the conflicts of the old updates against those stored in the 
Data-Domain-Updates-Tracking-Object
3.6 Perform step 3.2
3.7 Send the correctness report to the replica servers
3.8 Transfer the details of the reconciled old updates from the Current- RTIexternal-server –
Received-Updates-Object to the Data-Domain-Updates-Tracking-Object
3.9 �Remove the contents of the Current- RTIexternal-server -Received-Updates-Object to save 

storage space

Fig. 10. The steps of updates reconciliation

With minor modifications, this algorithm is applied on the level of the replica servers 
to reconcile the received updates from their sources before propagating them to the 
external server. These modifications include replacing RTIexternal-server with RTIreplica-server 
and making the external server as the destination of the propagated reconciled updates.

3.4	 The caching scheme

Data caching is essentially required for mobile computing elements in order to con-
tinue functioning in the disconnected modes and tolerate the network partitioning. As 
such, the proposed approach enables each mobile client to cache a recent copy of its 
data domain of interest and perform tentative updates on it in the disconnected mode. 
When it connects to a replica server, its web service performs the following functions: 
(a) captures all updates that occurred in the cached data domain since the last connec-
tion with a replica server (i.e., represent tentative updates), and (b) sends a request to the 
replica server for the permanent commitment of these updates. Hence, the cached copy 
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of the data domain in the mobile client is treated as a virtual replica that can receive 
tentative updates, which should be committed later on its corresponding domain in the 
replica server.

Accordingly, the purpose of this caching is only to record the tentative updates 
occurred on the cached data domain during the disconnection periods (i.e., tracking 
these updates). Such updates will become stable upon their commitment in a replica 
server. This is because the only updatable copies in the replication architecture are those 
stored on the replica servers. Hence, the tentative updates of the mobile client are not 
considered in the whole replication system unless they are committed in a replica server.

The validity of the cached data domain in the mobile client (i.e., its consistency 
with its peer in a replica server) is verified by the web service (i.e., US-WS) at each 
connection with a replica server. This verification involves comparing the Timestamp 
of the Last Connection (LCT ) with a replica server with the Timestamp of the Last 
Update (LUT ) that occurred on that data domain. LCT is stored in an object called 
Connections_Tracking_Object in the mobile client, while LUT is maintained in another 
one called Data_Items_Updates_Tracking_Object in the replica server. The schemas of 
these objects are depicted in Figure 11.

Object Name Attributes

Connections_Tracking_Object Mobile-Client-ID, Replica-Server-ID, LCT

Data_Items_Updates_Tracking_Object Data-Domain-ID, LUT

Fig. 11. The schemas of the objects that contain the timestamp attributes

The Data_Items_Updates_Tracking_Object stores only one tuple for each data 
domain. This tuple is frequently replaced by another one when the temporal data item 
(i.e., LUT ) is changed. At each connection with a mobile client, the RS-WS makes this 
tuple available to the US-WS for checking the validity of the cached data domain (i.e., 
comparing the value of LUT from this tuple with the value of LCT from the Connec-
tions_Tracking_Object). The system time of the replica servers is considered for track-
ing both LCT and LUT. This is because a unified global timing can be maintained easily 
in these servers as they represent a part of a fixed network. On the other hand, whenever 
the mobile clients disconnect from these servers, their local system times may change 
and become inconsistent with the unified global time.

If the cached data domain is valid (i.e., LCT > LUT), the US-WS will request the 
RS-WS to commit the tentative updates on the replica server. Otherwise, the US-WS 
will conduct the steps depicted in Figure 12.

Step1. Update the cached data domain based on the current state of its peer in the replica server. 
This update is done by importing such state (i.e., the current data) from the replica server.
Step2. Perform the tentative updates again on the updated cached data domain. /* This is 
because they were previously performed on the invalid cached data domain*/
Step3. Send a request to the RS-WS to commit these updates.

Fig. 12. The steps carried out in the case that the data item is invalid
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Accordingly, the requests to commit the tentative updates are sent to the replica 
server only if the cached data domain is valid.

An obvious characteristic of our caching scheme is that the replica server does not 
broadcast an invalidation report (i.e., contains timestamps and recent modifications) to 
the mobile client. This is in contrast to the previous schemes that rely on periodically 
broadcasting such report from the server to the mobile clients for maintaining the con-
sistency of the cached data [38,48]. Instead, the invalidation report broadcasting in our 
caching scheme is replaced by the invalidation verification, which is performed by the 
US-WS of the mobile client through comparing the temporal details in the Connec-
tions_Tracking_Object and Data_Items_Updates_Tracking_Object objects (i.e., LCT 
and LUT ) upon connecting to a replica server. Based on this comparison, the US-WS 
will import only the current state of the data domain from the replica server in the 
case that LUT exceeds LCT. This reduces the overheads associated with the frequent 
broadcasting of the invalidation reports (e.g., communication costs and bandwidth 
consumption).

Another characteristic is that the cached data domain can receive updates that make 
it more recent than its peer in the replica server. As such, the request sent by the US-WS 
to the RS-WS for committing these updates can be thought as an invalidation method 
that indicates the invalidity of the current state of the corresponding data domain in the 
replica server (i.e., it is not up-to-date).

4	 Performance aspects

This section presents the assessment of widely used performance metrics for evalu-
ating replication approaches.

4.1	 Average load balance (ALB) for the web services

Distributing the load among the web services participating in the replication system 
is a crucial aspect for augmenting the overall system’s performance. Such distribution is 
assessed here using the ALB metric, which is identified as the average number of com-
puting elements that the web service may interact with in order to accomplish a certain 
process in the replication system. As such, this metric can have the following instances: 
ALB-Propagation (i.e., the ALB for the propagation process), ALB-Requisition  
(i.e., the ALB for the updates/queries requisition process), ALB-Requests-Satisfaction 
(i.e., the ALB for the update/query requests satisfaction process). Table 1 includes the 
values of these instances along with their justifications. These values indicate that the 
average load is distributed among the web services of the servers in both internal and 
external clouds.
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Table 1. ALB instances and their values
ALB Instance Involved WS Value Justification

ALB-Propagation RS-WS 1 Each RS-WS 
propagates its updates 
to the external server

ES-WS N ES-WS propagates 
the overall reconciled 
updates to N replica 
servers

ALB- Requisition US-WS 1 Each US-WS sends a 
query/update request to 
one replica server

ALB-Requests-
Satisfaction

RS-WS M Each RS-WS satisfies 
the requests of M 
update sources

4.2	 Update propagation delay (UPD)

The updates propagation represents a vital process in the replication system for 
achieving the eventual consistency. It is evaluated here on the basis of the UPD met-
ric, which is measured based on the total number of hops required for propagating an 
update from a replica server to another one. This is because measuring the exact time 
that is consumed in updates propagation depends on many complicated factors, includ-
ing connectivity aspects (e.g., bandwidth and network delays) [49]. In our strategy, the 
total number of hops equals 1. This is because the update committed in each replica 
server will be propagated to the others through the external server. For the other strate-
gies, this total number varies according to their propagation protocol.

For instance, in Roam [40,41], propagating an update from a replica Ri to a replica  
Rj in a different ward involves using a ring topology, and requires: (a) Ri sends the 
update to its ward master, (b) Ri’s ward master forwards the update to Rj’s ward mas-
ter, and (c) Rj’s ward master forwards the update to Rj. Accordingly, for such case, the 
minimum number of hops in Roam is 2. However, this number will vary as the number 
of wards changes.

In the tree-based hierarchical strategy [50,51], the updates propagation relies on an 
N-ary tree. The root of this tree represents the owner of the data and the other nodes 
(i.e., residing in the tree’s levels) store replicas of these data. Based on the tree char-
acteristics, a top-down updates propagation is assumed, indicating that the updates are 
propagated to these replicas through following the tree’s levels. As such, the number of 
hops required to propagate an update from the tree’s root to all replicas in the last level 
equals L - 2, where L is the total number of the levels in the tree. Hence, the number of 
hops increases as the number of levels increases. In sum, the proposed strategy enables 
each replica to receive the recent updates in at most one hop. Thus, as compared to 
other strategies, this implies that it has the lowest updates propagation delay.
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4.3	 Performance metrics for evaluating the proposed caching scheme

Two widely performance metrics in the literature of the data caching were used to 
compare the proposed caching scheme with two baseline approaches (i.e., pull and 
push-based approaches). These metrics are number of hops and cache hit ratio.

Number of hops: The first comparison with the pull and push-based approaches 
was performed by considering the average number of hops required to validate the 
cached data item in the mobile clients. In the pull-based approach, which is called 
aggregate cache based on demand (ACOD) scheme, when a query request is generated, 
the mobile client broadcasts the request packet to the server or other mobile clients (i.e., 
closer to the server) for validating its cached data item before using it for satisfying 
the request. In the push-based approach, which is called modified timestamp (MTS) 
scheme, the server periodically broadcasts an invalidation report to the mobile clients. 
After the mobile client receives this report, it validates its cached data item accordingly, 
and forwards the report to the nearby clients [52].

In our proposed caching scheme, the number of hops is fixed, which equals one. This 
is because the cached data domain is validated when connecting to a replica server. 
Adversely, in the baseline approaches, this number may vary due to the possibility of 
having multiple hops between the client and the server. Figure 13(a) summarizes the 
average number of hops for the three schemes, and indicates that the proposed cach-
ing scheme has the lowest average. The average number of hops for the two baselines 
approaches was calculated based on the results of Lim et al. [52], which are pertaining 
to effects of multiple factors on the number of hops.

Regarding the effect of the cache size on the number of hops, this number is not 
impacted by varying the cache size in the proposed caching scheme (i.e., its value 
remains fixed as 1). In contrast, it varies in the baseline caching schemes according to 
the changes occur in the size. Figure 13(b) shows that the proposed caching scheme 
has the minimum number of hops. For the two baseline schemes, the number of hops 
was included in this figure according to the results of Lim et al. [52]. The cache size 
was measured by the number of the cached data items in the mobile client, which varies 
from 10 to 100.

Fig. 13. (a) The average number of hops for three schemes. (b) The effects of the cache size on 
the average number of hops
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Likewise, the number of hops of the proposed scheme is not influenced by varying 
the number of mobile nodes in the network. This contradicts the results of many stud-
ies, such as [53]. Figure 14 depicts that the caching approach of [53], which is called 
Adaptive Cooperative Caching Strategy (ACCS), has different hop counts for different 
numbers of mobile nodes, while the proposed scheme has a fixed count (i.e., one). The 
values included in this figure are obtained from the results of [53], which were pro-
duced using a fixed cache size (i.e., 1600 KB).

Fig. 14. The effects of the number of mobile nodes on the average number of hops

Cache hit ratio: The second comparison with the two baseline approaches was 
conducted on the basis of cache hit ratio, which can be decomposed into local and 
remote ratios. With respect to the local cache hit ratio of the proposed caching scheme 
(i.e., the ratio that an update request is satisfied locally in a mobile client), all requests 
of tentative updates are fully fulfilled in the mobile client via exploiting its local 
cached data domains. This indicates that the hit ratio is 100% (i.e., the maximum 
ratio) for such requests. On the other hand, the requests for committing these updates 
permanently are completely satisfied in a replica server. This satisfaction can be 
regarded as equivalent to the remote cache hit. Accordingly, the ratio of such hit is 
100% for the requests pertaining to the permanent commitment of tentative updates. 
In the baseline caching approaches as well as the others, the requests are of the 
same type (i.e., satisfying certain queries), and both local and remote hit ratios for 
these requests may vary. Figure 15(a) and Figure 15(b) depict such variation as well 
as the fixed ratios of the proposed scheme. These figures were produced through 
considering the effects of the mean cache update interval on these ratios and setting 
the cache size to 100 (i.e., as included in the results of Lim et al. [52]). As shown, the 
local and remote hit ratios of the proposed scheme are not affected by the variation 
of the update interval.
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Fig. 15. (a) Local cache hit ratio and (b) Remote cache hit ratio 
by considering the effects of the mean update interval

Regarding the effect of the cache size on the cache hit, both the local and remote hit 
ratios (LHR and RHR) of the proposed scheme were compared to three types of hits 
identified by [57]. These types are local cache hit (i.e., requests are serviced locally), 
cache node hit (i.e., requests are satisfied by intermediate nodes), and server hit (i.e., 
the server satisfies the requests). Figure 16 (i.e., produced based on the results of [57]) 
shows that these types are affected according to the variation of the cache size (i.e., 
varied between 100 KB and 600 KB). However, for the proposed scheme, both the 
local and remote hit ratios remain fixed (i.e., 100%). As aforementioned, this is due to 
having two types of requests: one should be satisfied locally (i.e., tentative update) and 
the other must be remotely fulfilled by a server (i.e., permanent commitment).

Fig. 16. Comparing the local and remote hit ratios (LHR and RHR) of the proposed scheme 
with those of the three types of hits identified by [57]

Similarly, the hit ratios of the proposed scheme are not affected by varying the num-
ber of mobile nodes. This is in contrast to many other caching approaches, including 
ACCS [53] and ACCC [58].
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5	 Discussion

Towards achieving a sufficient trade-off between the CAP properties in the LSPISs, 
the components of the proposed approach have been specified as follows. The first 
component is a replication architecture that combines elements from both internal 
and external clouds for ensuring high availability of read/write operations and achiev-
ing partition tolerance in the LSPISs. The second component is a web services based 
service-oriented middleware to perform and automate the crucial operations of the rep-
lication process, such as automating the updates propagation between the replicas in a 
manner that maintains the eventual consistency. The third component is a method for 
updates conflicts detection and resolution. The last component is a data caching scheme 
to enable the mobile computing elements to conduct update operations during the dis-
connection periods.

The proposed approach performs two main actions to make such trade-off. The first 
one is allowing the update transactions to be performed on many replicas in the internal 
cloud. This contributes to achieving both data availability and fault tolerance. The sec-
ond one is ensuring the availability of recent updates to all replicas via exploiting the 
capabilities of the external cloud. As such, this action contributes to achieving the even-
tual consistency. Accordingly, the proposed approach focuses on relaxing one of CAP 
attributes, which is the consistency, in order to realize a great deal of such trade-off. 
This relaxing is conducted by adopting the eventual consistency instead of the strong 
consistency, which cannot be achieved in the presence of distributed updatable replicas.

Some of the features and characteristics of the major components of the proposed 
approach are outlined as follows. The replication architecture component, which com-
prises a set of cloud elements, supports the system scalability in terms of accommo-
dating the future changes easily, such as covering more areas and encompassing vast 
numbers of new heterogeneous computing elements. This feature is highly needed in 
the large-scale systems as one of their design goals is developing scalable architectures 
that contribute to realizing higher availability levels for the system. The service-ori-
ented middleware component acts as an operating system for the proposed approach 
by conducting a set of essential replication operations, including replicas registration, 
updates request, update conflicts detection and resolution, and updates propagation. 
To support the scalability of the replication system, this middleware does not enforce 
any restrictions about the quantity and type of the data being replicated, indicating 
the ability to deal with a large number of diverse data domains. This stems from the 
cooperative work of the middleware’s web services, which facilitates the carrying out 
of the aforementioned replication operations on these data, regardless of their quantities 
and types.

With respect to the caching scheme component, the widely used cache invali-
dation scheme (i.e., broadcasting of invalidation reports) in the previous caching 
schemes has been replaced here by a verification process that is performed by the 
web service of the mobile client upon connecting to a replica server. This process 
involves comparing temporal data items, and importing only the current state of 
the data domain from the replica server in the case that the cached copy in the 
mobile client is invalid. As such, this process reduces the downlink traffic (i.e., the 
transferred data from a replica server to a mobile client) by eliminating the need to 
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broadcast periodic or on-demand invalidation reports. Regarding the uplink traffic 
(i.e., the transferred data from a mobile client to a replica server), it is reduced 
by sending only requests to the replica server to implement the same updates that 
occurred in the mobile client. Hence, the proposed scheme contributes to the reduc-
tion of the bandwidth usage.

The evaluation of the performance aspects revealed that the proposed approach 
achieves a load balance in conducting crucial processes in the replication system, 
including updates propagation and requests satisfaction. This balance has been realized 
through distributing the load among the web services of the servers in both internal and 
external clouds. The requests satisfaction is the responsibility of RS-WSs, while the 
updates propagation is conducted by these services and ES-WS. With a focus on the 
updates propagation process, the proposed approach achieves lower propagation delay 
than other replication strategies. Such delay was represented by the total number of 
hops required to propagate an update from a replica to another one.

Regarding the effectiveness of the proposed caching scheme, a comparison with 
several existing approaches was conducted. The results indicated that the proposed 
scheme is having a minimum fixed number of hops (i.e., one). In this regard, Saleh [53] 
included that the reduction of the energy consumption and the request satisfaction delay 
requires that the number of hops between the source and the destination of the request 
to be as small as possible. Also, the comparison characterized the proposed scheme as 
having maximum local and remote hit ratios. Accordingly, it highly improves the local 
satisfaction of the tentative update’s requests in the mobile clients. The maximum value 
of the remote hit ratio is not avoidable because the requests for permanent commitment 
of updates should be fulfilled by a server.

6	 Conclusion

This article has proposed an asynchronous replication approach to realize a sufficient 
trade-off between the CAP properties (i.e., consistency, availability, and partition toler-
ance) in the large-scale pervasive information systems. An obvious uniqueness of this 
research effort is that the proposed approach is having four new scalable components 
(i.e., replication architecture, service-oriented middleware, update conflicts detection 
and resolution method, and data caching scheme). The previous approaches are limited 
in having only some of these crucial components. Another uniqueness dimension is 
that the proposed approach exploits the capabilities of both cloud computing and web 
services to realize the trade-off among the CAP properties. The cloud computing con-
cepts were applied to develop the scalable replication architecture for improving the 
availability and partition tolerance. The web services were implemented to facilitate 
the interactions and shared processes among the heterogeneous computing elements of 
the replication architecture, including supporting updates propagation and data cach-
ing. Exploiting these two web-based technological solutions has a significant role in 
advancing the design approaches for large-scale systems. This is because both of them 
support the desirable characteristics of large-scale systems, including scalability and 
flexibility. Such exploitation represents a uniqueness aspect of this paper in both data 
replication and pervasive system areas.
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The future work encompasses developing the required tools to implement the com-
ponents of the proposed approach and testing them in a practical environment of a 
large-scale pervasive system.
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