
Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

Exploiting Cloud Computing and Web Services to
Achieve Data Consistency, Availability, and Partition

Tolerance in the Large-Scale Pervasive Systems

https://doi.org/10.3991/ijim.v15i15.22517

Ashraf Ahmed Fadelelmoula(*)

Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
asahfaab@gmail.com

Abstract—This article presents a new comprehensive approach to realize a
sufficient trade-off between the CAP properties (i.e., consistency, availability, and
partition tolerance) in the large-scale pervasive information systems. To achieve
these critical properties, the capabilities of both cloud computing and web ser-
vices were exploited in developing the components of the proposed approach.
These components include a cloud-based replication architecture for ensuring
high data availability and achieving partition tolerance, a web services-based
middleware for maintaining the eventual consistency, and a data caching scheme
to enable the mobile computing elements to conduct update transactions during
the disconnection periods. The evaluation of the performance aspects revealed
that the proposed approach is able to achieve a load balance, lower propagation
delay, and higher cache hit ratio, as compared to other baseline approaches.

Keywords—CAP properties, cloud computing, data replication, distributed
systems, pervasive information systems, web services

1	 Introduction

The recent decade has witnessed a tremendous spread of large-scale distributed
systems (LSDSs) in a wide variety of industries. The crucial factors behind this spread
include the rapid advancements in the wide area network technologies and com-
putational resources, the intensive use of networks for running a broad diversity of
applications, and the fast development of the modern industry [1–3]. Categories of
these systems include large-scale distributed computing systems (e.g., grid and cloud
computing systems), large-scale distributed information systems, and pervasive sys-
tems (e.g., mobile computing systems and sensor networks) [4,5].

The characteristics of LSDSs can be represented into several dimensions, including
the size and heterogeneity. With respect to their size, LSDSs consist of a large number
(usually millions) of highly geographically dispersed nodes. The heterogeneity character-
istic indicates that LSDSs are heterogeneous in nature at the levels of hardware, software,
and network technologies [1]. In addition to these dimensions, data in LSDSs are shared
extensively over wide areas and associated with intensive concurrent read/write operations.

74 http://www.i-jim.org

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

These characteristics make the data management in LSDSs more challenging than in
the ordinary systems. An important aspect of this challenge is developing scalable data
management solutions that enable reliable and fast access to massively distributed data
over wide areas. One feasible solution to provide such access is through implementing
the data replication. Substantially, data replication is a widely used data management
technique for decades in many systems [6]. It is defined as the process of maintaining
multiple copies of data objects, called replicas, on separate sites [7,8]. The mostly cited
benefits of data replication include increasing data availability, enhancing reliability,
and improving performance.

Despite of these benefits, there are many issues associated with the data replication.
A major issue is the impossibility of achieving strong consistency along with other
two desirable properties of replication systems, which are availability and partitioning
tolerance. This impossibility was indicated by the CAP theorem, which states that it
is not possible for a distributed system with data replication to guarantee more than
two of these three properties (i.e., consistency, availability, and partition tolerance) at
the same time [9]. In this theorem, consistency implies that all replicas of a data item
should have the same value (i.e., state) at the end of each update operation. Availability
indicates that the read/update requests for data items can be processed successfully.
Partition tolerance encompasses the ability of the system to continue operating even if
a network fault resulting in several partitions occurs [9,10].

To respond to the impossibility consequence of this theorem, a sufficient trade-off
between these properties is required. This involves finding weaker consistency guar-
antees that contribute to enabling both availability and high performance [11]. Many
systems (e.g., Amazon’s Dynamo [12]) have implemented a relaxed consistency guar-
antee (i.e., other than strong consistency) called eventual consistency, which its idea
encompasses performing local updates on each replica and afterward propagating
these updates to other replicas asynchronously to reach an eventual convergence [13].
Accordingly, eventual consistency allows the replicas of a data item to temporarily
diverge, as long as they eventually converge to a global consistent state (i.e., having the
same value) [14–16].

However, there are several challenges should be addressed for eventual consistency,
especially when the number of replicas increases. These include providing fast dissem-
ination (i.e., propagation) of updates between the data item’s replicas to eliminate their
state divergences, resolving update conflicts consistently, and ensuring that updates are
implemented in the same order at each replica.

This paper handles these issues in an important class of LSDSs, which is the Large-
scale Pervasive Information Systems (LSPISs). This class represents a hybrid of both
large-scale distributed information systems and pervasive systems. It is identified here
as a category of systems consisting of a large number of diverse pervasive comput-
ing elements, massive data, and heterogeneous networks that are distributed over wide
areas. In addition to the general characteristics of LSDSs, LSPISs have specific traits,
including the popularity of using mobile computing elements, sensors, and actuators
for conducting a huge number of distributed transactions, the commonality of wireless
communications, and the wide diffusion of computing elements in diverse environ-
ments to sense, manipulate, and store data [5,17,18]. Examples of these systems include
the pervasive variants of the healthcare information systems [19,20], environmental

iJIM ‒ Vol. 15, No. 15, 2021 75

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

monitoring systems [21], warehousing and logistics management systems [17], traffic
control systems [22,23], crimes recording systems, and financial transaction process-
ing systems. Despite their importance and commonality in vital industries, LSPISs are
often overlooked in research studies devoted to handling replication issues in the infor-
mation systems area.

There are intrinsic limitations associated with the popularity of wireless networks
and mobile computing elements in LSPISs, including poor bandwidth, communica-
tion latency, unreliability and unavailability of the wireless connectivity in many areas,
frequent disconnections, and limited battery duration [24–27]. These limitations aggra-
vate the aforementioned replication issues by hindering the realization of a sufficient
trade-off between the CAP properties and the achievement of the overall system
scalability. Consequently, effective replication solutions considering these aspects
are highly needed in LSPISs. To act in accordance to this need, this paper focuses on
proposing a scalable replication approach that makes a sufficient trade-off pertaining to
the achievement of the three desirable CAP properties in LSPISs. As such, the specific
objectives of the study are:

1.	 Develop a scalable replication architecture that provides a robust basis for improving
the availability of read/write operations and achieving partition tolerance in LSPISs.

2.	 Propose a service-oriented middleware to conduct and automate the essential oper-
ations of the replication process, including the automation of updates propagation
between the replicas in the replication architecture in a manner that maintains the
eventual consistency of the replicated data.

3.	 Propose a method for detecting and resolving update conflicts that occur due to the
concurrent write operations on many replicas.

4.	 Develop a data caching scheme for mobile computing elements that enables them to
conduct update operations during the disconnection times.

To achieve these objectives, the proposed replication approach exploits the capabil-
ities of both cloud computing and web services.

2	 Background and related work

This section provides a background to the categories of the data replication
approaches, and presents the related work.

2.1	 Data replication approaches

Replication is a crucial process for effectively support shared data in a variety of
distributed environments (e.g., grid, mobile, cloud, and P2P environments) [25,28–30].
It intends to provide several positive outcomes in these environments, including
improve data availability, enhance fault tolerance, minimize bandwidth consumption,
reduce data access latency, and decrease data transfer cost and time [28,31,32,54]. There
are many replication approaches attempted for such environments. These approaches
can be classified into synchronous and asynchronous replication solutions.

76 http://www.i-jim.org

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

In the synchronous replication (also called as eager replication), the updates occur
on one replica are immediately propagated to the other replicas before the completion
of the transaction that performed these updates (i.e., the update transaction). Accord-
ingly, the updates are implemented at each replica as a part of a single transaction.
When this transaction commits, all the replicas will have the same value. This makes
the synchronous replication an effective mechanism for providing a strong consistency
guarantee. However, updating all the replicas before the termination of the update
transaction negatively affects the transaction’s response time, and consequently hinders
the applicability of this replication mechanism in environments consisting of a large
number of replicas [10,33]. Moreover, it requires a reliable communication between
replicas. Thus, this mechanism cannot act in accordance to the characteristics of
LSPISs, especially the commonality of unreliable wireless connectivity and frequent
disconnections of mobile computing elements, as well as it cannot cope adequately
with the scalability requirement of these systems.

A widely cited synchronous replication approach is the read-one/write-all (ROWA)
protocol, which requires the execution of the write operation on all the replicas of a data
item and performing the read operation on any replica [34].

In contrast, in the asynchronous replication (also known as lazy replication), the
updates are propagated to the other replicas sometime after the update transaction
commits. This propagation occurs through independent transactions, generally known
as refresh transactions. The main advantage of this replication mechanism is that it
has lower response times for update transactions, because an update transaction can
immediately commit once it has updated one replica [10]. Additionally, it improves the
availability in systems having unreliable communication, increases the throughput, and
enhances the overall system performance. Hence, it is widely used as a scalable replica-
tion solution in the distributed environments [35,36]. However, the delay in updating
the other replicas leads to inconsistencies, and thus inhibits this replication mechanism
from providing a strong consistency guarantee [25,37,38]. Consequently, a weak guar-
antee is provided by such mechanism, which is the eventual consistency.

Therefore, most of the existing asynchronous replication approaches tend to perform
the tradeoff between the CAP properties through decreasing consistency for improving
availability and partition tolerance.

2.2	 Related work

Representatives of asynchronous replication approaches in a variety of large-scale
distributed environments are presented next. This variety is mainly due to the lack
of approaches devoted specifically to LSPISs. More focus is given to the mobile
environments because they represent a foundation for running the pervasive informa-
tion systems.

In a mobile environment, the Cedar system [39] focuses on trading off consistency in
order to enable mobile data access (i.e., availability) with high performance over wide-
area networks. It adopts a simple client/server based asynchronous approach in which the
updates occur on the server (i.e., hosting the master copy) are implemented on the clients
at infrequent intervals. It relies on the usage of the stale client replicas for improving data
access, and accordingly achieving such trade-off. However, keeping the master replica on

iJIM ‒ Vol. 15, No. 15, 2021 77

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

a certain node (i.e., the server) hinders the implementation of this approach in large-scale
distributed systems having massive number of updatable replicas.

By concentration on providing a scalable asynchronous replication strategy for
improving data availability in mobile environments, a system called ROAM was
proposed with a characteristic that any replica can serve operation requests [40,41].
In this system, nearby replicas are grouped into domains called wards. The members of
each ward can directly synchronize and communicate with each other in a P2P fashion.
Each ward has a specific member designated as a ward leader that is responsible for
maintaining consistency with the other wards. The updates propagation occurs within
each ward (i.e., between its replicas) and among wards (i.e., between ward leaders)
through a ring topology. Although ROAM seeks to achieve high scalability, the mech-
anisms of handling and committing large numbers of updates on highly distributed
replicas were not addressed in details in this system.

Mohana and Jaykumar [42] proposed a cluster-based hierarchical replication scheme
for mobile database systems. The hierarchical structure of this scheme consists of a
database server, cluster heads, and cluster members (i.e., clients). The server sends the
replicated data to the cluster heads to respond to the queries issued by the members.
The heads can also fetch the desired data for satisfying the queries from each other.
The updated data in each cluster are sent to the server through the heads. With respect
to maintaining consistency, a detailed procedure for handling enormous concurrent
updates on the same data items in different clusters is needed in this scheme.

Bsoul et al. [43] considered a grid distributed environment to implement a hierarchy-
based replication strategy. In this strategy, the network structure consists of several
regions. Each region has a header and a set of nodes that are located closely. On the
top of the region headers, there is a master site in which the replicas are stored and
further distributed to the headers. The region header ensures that the replica requests
are satisfied in its region. The node can request a replica from the other nodes in the
same region. The methods of handling the replica updates and maintaining the consis-
tency among the replicas were not discussed in this strategy.

Tos [6] proposed a replication strategy that concerns on several aspects in cloud
computing environments, including the satisfaction of the query performance. It consid-
ers a cloud environment that comprises a set of geographical regions with each region
encompassing a set of data centers, which each of them in turn contains a number of
servers. These servers hold the replicas of the data fragments based on a placement
heuristic. In this strategy, a minimum number of replicas is maintained to fulfill a least
availability required level for the data fragments. Updating these replicas and maintain-
ing their consistency were not included in the scope of this strategy. Moreover, it limits
its focus to dealing with queries pertaining to OLAP applications.

In a similar vein, the proposed strategy of Limam et al. [29] considered a hierarchi-
cal cloud topology for supporting data replication. It aims at calculating the minimum
number of replicas needed to realize a high data availability. A new replica is created
only when this minimum number is not reached or when the response time goal is not
achieved. The limitations of this strategy include its focus on the replication of read
only data. Accordingly, it is used for OLAP purposes.

In sum, the extant asynchronous replication approaches in the various distributed
environments are not dealing well with the characteristics of LSPISs, especially the

78 http://www.i-jim.org

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

carrying out of a massive number of concurrent update transactions by a wide variety of
distributed computing elements, including mobile clients. Accordingly, new replication
solutions that adequately cope with the traits of these systems while perceiving a
reasonable trade-off between the CAP properties are highly needed.

3	 The proposed data replication approach

To cope well with the characteristics of the LSPISs and realize a sufficient trade-off
between the CAP properties, the components of the proposed approach are specified as
follows. The first component is a scalable replication architecture to provide a robust
foundation for improving data availability and achieving partition tolerance in the
LSPISs. The cloud computing concepts were employed to determine the specifications
of this architecture and enable fast access to the replicated data. The second component
is a web services based service-oriented middleware to perform and automate the cru-
cial operations of the replication process. The third component is a method for detect-
ing and resolving update conflicts that occur due to the concurrent write operations on
multiple replicas. The last component is a data caching scheme to enable the mobile
computing elements to conduct update operations during the disconnection periods.

3.1	 The replication architecture

The replication model of the LSPISs is structured in our proposed approach as
a scalene triangle that includes a variety of computing elements from an internal
cloud and one element from a public cloud (see Figure 1). Accordingly, the triangle
encompasses a hybrid of both internal and public clouds. The internal cloud consists
of two main categories of computing elements, which are local servers and update
sources (i.e., located in the triangle’s right and bottom sides, respectively). Both
categories are physically distributed among wide areas. An additional category that
includes specialized servers is found in the left side. Regarding the public cloud,
the triangle includes only the needed computing element from this cloud (i.e., in its
upper vertex), and referred to here as external server. The roles of these elements are
provided next.

•	 Local servers: They are placed in one or more internal data centers, which are
administrated by the owning organization. They are the only computing elements
in the internal cloud that hold data replicas, thereby they are called here as replica
servers. Each of these servers receives read/update requests from many update
sources in the replication architecture. Consequently, all transactions in the entire
replication system are committed in the replicas hosted in these servers. The exact
content of any of these servers is a set of replicated data domains. The data domain
is the replication unit of the proposed approach, and is defined as a collection of
data that can be changed by a large number of dispersed update sources. Accord-
ingly, it can be a data file, a database table, or a part of such units. Every domain is
distinguished by a unique identifier and type, and is represented as an ordered triple:
D(Identifier, Type, Data).

iJIM ‒ Vol. 15, No. 15, 2021 79

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

•	 Update sources: This category encompasses a variety of computing elements,
including fixed and mobile elements (e.g., user clients, sensors, and actuators).
They are called here update sources because one of their major functions is to access
the data replicas to generate update requests. The mobile elements can issue update
requests only upon their connections with the replica servers, while their fixed peers
can request updates at any time due to their reliable connectivity with these serv-
ers. Some of the mobile elements (i.e., mobile clients) need to have a cached copy
of the replicated data in order to be able to perform local tentative updates during
the disconnection periods. Once the connection takes place, these elements request
the replica servers to commit their tentative updates permanently (i.e., making the
changes permanent on the copies stored in these servers). This is because the only
updatable copies admitted by the proposed approach are those stored in the replica
servers. For mobile sensors, they do not need to store a cached copy for conducting
tentative updates. This stems from their nature as merely data generators. Hence,
their produced data represent stable updates.

•	 External server: Each of the replica servers propagates the updates committed on
its replica to the external server in the public cloud. The purpose of using this server
is to maximize the availability of the recent updates to all replicas. Its exact responsi-
bilities include receiving the updates committed in each replica in the internal cloud,
reconciling the received updates through conducting the conflicts detection and
resolution processes, and propagating the reconciled updates to all replica servers for
reaching the eventual consistency in that cloud. Accordingly, the updates occurred in
any internal cloud’s replica are distributed to the other replicas through the external
server. This server holds a replica for only performing these responsibilities. There-
fore, it does not have any interactions with the update sources in the internal cloud
in terms of receiving updates on its replica or committing them. These interactions
are undertaken locally in the internal cloud by the replica servers. Accordingly the
update transactions processing is performed reliably on the internal cloud, while the
updates reconciliation process is conducted by an element (i.e., the external server)
from a certified public cloud. This indicates that the update transactions are only
carried out in the internal cloud.

•	 Specialized servers: The data center in the left side of the triangle contains three
servers with certain functionalities. The first one is responsible for managing
the admission process in the replication system. It registers the details of: (a) the
replicas and their distribution among the ordinary data centers in the right side of
the triangle and (b) the computing elements that are authorized to update these
replicas (i.e., the update sources). Hence, before joining the system, each comput-
ing element should initially contact this server in order to be admitted as an autho-
rized node for interacting with the replicated data (i.e., performing read and update
operations). Also, this server is contacted upon needing to get an updated list of
the replicas. Moreover, it is contacted by the external server to obtain the details
of the new replicas. It is called here as an admission server. The second server is
acting as a backup facility for periodically maintaining a recent copy of the entire
replicated data hosted in the external server. The last server includes analytical tools
(e.g., OLAP and data mining packages) for analyzing vast amounts of replicated
data, and providing the stakeholders of the owning organization with valuable

80 http://www.i-jim.org

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

insights and predictions for better decision making. It regularly interacts with the
external server for obtaining the most recent data to be analyzed.

Fig. 1. The replication architecture

For very large-scale systems, the proposed replication architecture can be extended
by adding one or more triangles. This results in having multiple external servers in the
hybrid cloud. In this case, one of the these servers will be elected for reconciling the
recent updates received by it and its counterparts in the public cloud, and then propagat-
ing the reconciled updates to them in a P2P fashion. In turn, each peer propagates these
updates to its underlying replica servers in the internal cloud in order to be available for
the transaction requesters.

In this architecture, the replica servers are the only computing resources along the
path from the update sources (e.g., user clients, sensors) to the external cloud server.
Each of these servers represents an edge in the internal cloud that eliminates the needs
of the update sources to access the external server. This is because the various read/
write requests are satisfied through these servers. Thus, the crucial computation per-
taining to updating and retrieving data is performed on the level of the edge of the
internal cloud network. Therefore, such type of processing comprises the core concept
of the edge computing, which represents a form of the cloud computing. Augmenting
this concept through conducting the essential computation in the internal cloud aims to
reach several consequences, including communication costs reduction, fast responses
to read/write requests, load balance realization, and better response to the LSPISs’
challenges.

3.2	 The web services-based service-oriented middleware

The proposed replication architecture is augmented by specifying a service-oriented
middleware for managing the crucial replication operations in the LSPISs and

iJIM ‒ Vol. 15, No. 15, 2021 81

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

facilitating the interactions (i.e., communications) between the heterogeneous com-
ponents of these systems. The middleware consists of a set of web services that
enable the automation and rapid performance of the essential operations of the rep-
lication system, including the requisition, execution, reconciliation, and propagation
of updates. Each computing element in the replication architecture has its own web
service (see Figure 2). The crucial categories of these services are those reside in the
update sources, the replica servers, the external server, and the admission server. They
are denoted as US-WS, RS-WS, ES-WS, AS-WS, respectively. For instance, US-WS
indicates the web service that resides in an update source. The vital roles of these cat-
egories are as follows.

•	 US-WS: It enables its update source to request update transactions on the replicated
data domains hosted on the replica servers. It generates the details of the update
request (such as request-ID, update-type, and requester-ID) and sends them to the
RS-WS of the replica server.

•	 RS-WS: It executes the update requests, reconciles the updates received from the
mobile computing elements (i.e., those conducted during the disconnection periods),
and propagates all updates received within a certain time interval to the external
server.

•	 ES-WS: It performs a global reconciliation for all updates received from the
replica servers, and propagates a set of recent reconciled updates to these servers
(i.e., updates propagation from the external cloud to the internal one).

•	 AS-WS: It handles the replicas registration process, and provides the web services
of the other computing elements with a list of active replicas. Moreover, it attaches
a web service to each new computing element joining the system based on its type
(e.g., replica server or update source).

As such, these web services characterize the replication architecture as a service-
oriented architecture. This is because the aforementioned operations of the replication
system are provided as services by several providers, which are the web services of the
computing elements involved in the replication process. The provider of the updates
requisition service is the US-WS. The provider of the updates execution (i.e., conduct-
ing the updates on a replica) service is the RS-WS. Both updates reconciliation and
propagation services are provided on different levels by the RS-WS and ES-WS. Thus,
in this architecture, both the requestors and providers of a replication service are web
services that reside in heterogeneous computing elements.

With respect to the implementation of these services, the core standards of the web
services mechanism, which are the Web Services Description Language (WSDL), the
Simple Object Access Protocol (SOAP), and the Universal Description, Discovery, and
Integration (UDDI) protocol [44,45,55,56], are utilized in the proposed approach as fol-
lows. The functionalities of these services (i.e., their operations) are described using the
WSDL, which represents an XML-based standard for describing the web services. The
excerpt given in Figure 3 shows the usage of WSDL to define the update request oper-
ation (i.e., provided by the US-WS). As shown, the <portType> element of the WSDL
document has been used to define one operation with request and response messages
(i.e., input and output messages).

82 http://www.i-jim.org

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

Fig. 2. The web services-based service-oriented middleware

Fig. 3. An excerpt that shows the usage of WSDL to define the update request operation

The interaction between these web services occurs through using the SOAP, which
represents an XML-based messaging protocol for transferring data [46]. The SOAP is
generally recommended for distributed environments. It supports two different commu-
nication patterns: Remote Procedure Call (RPC) and message-oriented (or document).
The message-oriented pattern is widely used in the modern SOAP engines as the
default communication style [47]. Accordingly, the proposed strategy relies on using
the message-oriented pattern of the SOAP communication to enable the interactions
among the identified web services. A sample of this usage is sending a SOAP message
for updates requisition (i.e., US-WS sends the update details to a RS-WS). As shown in
Figure 4, this SOAP message is XML-formatted. The essential element in this message
is the body one, which encompasses the details of the update request. These details are
represented as XML data. The optional element of this message (i.e., the header one)
contains data that aid in handling the message.

As such, using the SOAP, each web service can communicate with the others, with the
exception that US-WS and ES-WS do not have direct communication with each other.

iJIM ‒ Vol. 15, No. 15, 2021 83

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

With respect to the flow of the SOAP messages (i.e., the exchange style), for updates
propagation, these messages are sent in two directions as follows. A RS-WS propagates
the reconciled updates in its replica server through these messages to the ES-WS in a
bottom-up fashion, while the ES-WS follows the top-down direction to propagate the
universally reconciled updates to the RS-WSs. For updates requisition and queries, the
SOAP messages are sent from the US-WSs to the RS-WSs according to the request/
response messaging style, which requires sending a reply back to the requester (i.e., in
a form of acknowledgment or data retrieval).

Fig. 4. A sample SOAP message format for updates requisition

The registration and locating of these web services are enabled using a local reg-
istry in the internal cloud. This registry acts as the one provided by the UDDI stan-
dard, which is implemented for setting up a service registry [44]. As such, all services
recorded in this local registry are belonging to one provider (i.e., the owning organi-
zation of the internal cloud). In its essence, this registry represents a directory in the
admission server that facilitates the handling and discovery of the currently registered
web services in the replication system, registering the specifications of new services,
and providing the new computing elements joining the system with the web services
they need to conduct the replication operations. Respecting the case that a new comput-
ing element joins the system, the content of this directory are searched by the AS-WS
in order to decide which web service should be reside in the new member (e.g., replica
server or update source). Then, it attaches the relevant service to this member.

Each of these web services can be implemented as a class that comprises a
set of methods. The essential methods associated with these services include

84 http://www.i-jim.org

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

Generate-Update-Request (), Detect-Conflicted-Update-Requests (), Execute-Update (),
Reconcile-Conflicted-Update-Requests (), Propagate-Updates-To-Higher-Level (),
Query-Satisfaction (), Perform-Universal-Reconciliation (), and Propagate-Updates-
To-Lower-Level ().

The steps of the crucial operations of the web services: The crucial operations
conducted by the web services in the proposed middleware encompass those pertaining
to the updates request generation and execution. The steps that are carried out for per-
forming these operations are provided in Figure 5.

In this object, the Execution-indication attribute holds the value “True” in the case
that the update was executed in a replica server, and “False” otherwise.

Step1. Upon generating an update request, the US-WS conducts the following:
1.1 Set the values of the attributes of the update request, including Request-ID, Update-Type,
Update-Statement, Affected-data-Domain-ID, Requester-Update-Source-ID, Recipient-
Replica-Server-ID, and Request-Send-Timestamp. /* These attributes are stored on an object
called Update-Requests-Object (URO) */
1.2 Send the request to the RS-WS of the destination replica server.

Step2. Upon receiving the request, the RS-WS performs the following actions:
2.1 Set the value of the Request-Received-By-Replica-Server-Timestamp attribute in the URO.
2.2 Retrieve the request details written by the US-WS from the URO.
2.3 Execute the request on the affected data domain.
2.4 Set the value of the Execution- indication attribute in the URO to “True”.
2.5 Send a snapshot of the results of the executed request to the requesting US-WS.

Fig. 5. The steps of the updates request generation and execution processes

The schema of the URO is given in Figure 6.

Object Name Attributes

URO Request-ID, Update-Type, Affected-data-
Domain-ID, Requester-Update-Source-ID,
Recipient-Replica-Server-ID, Request-Send-
Timestamp, Request-Received-By-Replica-
Server-Timestamp, Execution-indication

Fig. 6. URO schema

Another crucial operation of the web services in the replication system is support-
ing the dynamic change of the used replicas. The proposed approach implies that the
number of replicas in each internal data center is dynamically changed on the basis of
the Access Pattern (AP), which is classified for each replica as very very low (VVL),
very low (VL), low (L), medium (M), high (H), very high (VH), and very very high
(VVH) access. These APs are determined based on the Average Number of Accesses
(ANA) that occurred in all replicas during a Prefixed Time Period (i.e., pre-decided by
the admission server), which is denoted by PTP. The values of APs range from 0 to
0.14× ANA for very very low, …, 0.86× ANA to 100 for very very high. The focus in
our explanation will be on the two exceptional APs, which are the minimum (very very

iJIM ‒ Vol. 15, No. 15, 2021 85

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

low) and maximum (very very high) ones. The steps of calculating the ANA and using it
to dynamically change the number of replicas are given in Figure 7. The involved web
services in these steps are RS-WS and AS-WS.

Step1. Calculate the ANA
1.1 When PTP is over, each RS-WS reports the number of accesses that occurred in its server
during this period to the AS-WS.
1.2 The AS-WS calculates the ANA and disseminates the result to all RS-WSs.

Step2. Each RS-WS determines the AP on its server based on the received ANA and decides
the required actions as follows.
2.1 In the case that AP is VVL, it sends a request to AS-WS to change the status of its server to
Inactive. /* removing it temporarily from the list of servers that accept requests */
2.2 In the case that AP is VVH:
2.2.1 It sends a request to AS-WS to balance the load.
2.2.2 The AS-WS will activate one of the inactive replica servers to share the load of the
heavy-loaded server, and inform the requesting RS-WS.
2.2.3 The RS-WS of the heavy-loaded server will forward the upcoming requests to its peer in
the activated server.
2.2.4 In the case that no inactive server, the AS-WS will nominate a server with a VL pattern
to its peer in the heavy-loaded server.
2.2.5 The step 2.2.4 will be repeated for any further request until all servers reach the VL
pattern. In this case, the AS-WS will issue an alarm indicating that a new replica server is
needed.

Fig. 7. The steps of calculating the ANA and its usage

The steps of the operations pertaining to the updates conflict detection and resolution
as well as updates propagation are presented in the next sub-section.

3.3	 The conflicts detection and resolution method

Maintaining the eventual consistency among all replicas involves conducting
the updates reconciliation process, which encompasses two sub-processes, called
update conflicts detection and resolution. These sub-processes are carried out on
both the internal and external clouds. In the internal cloud, each replica server performs
these processes on the updates that it receives from its underlying update sources, and
then propagates a set of reconciled updates to the external server. In turn, this server
performs these processes on all updates received from the underlying replica servers,
and propagates the totally reconciled updates to them.

The conflicts detection sub-process relies on the timestamp attribute of the received
updates. The value of this attribute is assigned immediately to each generated update
based on the global system time. Maintaining this unified time is not an issue in the
replica servers and external server due to the reliable communications among them.
But, for mobile computing elements, such maintaining cannot be guaranteed due to
their frequent disconnections. Consequently, the proposed approach includes the steps
shown in Figure 8 to ensure the matching of the update timestamps in these elements
with the global system time:

86 http://www.i-jim.org

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

Step1 At the beginning of each connection session with a replica server, the web service of
the mobile computing element checks the accuracy of the local time by comparing it with the
global system time available in the replica server.
Step2 If a difference is found, the web service will correct the timestamps of all updates
occurred since the last connection with a replica server.

Fig. 8. The steps of matching update timestamps

The following equation is used for the correctness process based on the difference
from the system time:

CUT = IUT ± D

Where CUT≡ Corrected Update Timestamp, IUT≡ Incorrect Update Timestamp,
D≡ Difference between the system time and local time of the mobile computing ele-
ment, + sign is used when the difference is negative (i.e., the local time of the element
is less than the system time) and the – sign is used otherwise.

This equation acts as a method for enforcing the assignment of the update time-
stamps on the basis of the global time, and accordingly ensuring a unified fair timing
for all updates occurred in the replication system. The corrected update timestamp is
used by the RS-WS and further the ES-WS in detecting and resolving updates conflicts.
It is necessary to include that the implementation of this equation by the fixed update
sources is not required because they perform the updates directly on the replica servers,
which always maintain the accurate global system time.

In sum, the proposed approach relies on the update timestamps, which are assigned
based on the global time, for conflicts detection and updates ordering. The web services
in the mobile computing elements are responsible for ensuring the accuracy of these
timestamps by maintaining the same global time as in the replica servers.

With respect to the conflicts resolution sub-process, it is conducted in this approach
based on the types of the conflicted update operations (i.e., insert, delete, and modify).
The insert operation cannot conflict with the modify and delete operations and vice
versa. Therefore, if the insert operation shares the same timestamp with one of these
operations, the resolution will be implemented on the basis of several measures, includ-
ing their send-times to the higher level (i.e., a replica server or external server) and
arrival-times at this level. As such, the resolution of such case is implemented in terms
of updates reordering process.

If a delete operation conflicts with a modify one on the same portion of a data
domain, the latter is given a priority to be executed in the higher level, because it indi-
cates the validity of the modified data, and accordingly the former is aborted. In this
case, a notification is sent to the deletion requester indicating the validity of the data to
be deleted to other update sources. To handle the case of receiving a modify operation
on a deleted data (i.e., the timestamp of the delete operation is less than its counterpart
for the modify operation), such data are not removed permanently. Instead, they are
kept in an object (i.e., acts as a recycle bin) for a temporary period that is specified
according to the application requirements. As such, the upcoming modify operation can
restore the validity of these data during the reconciliation interval.

If two modify operations on the same data domain are conflicted (i.e., having
the same timestamp), the resolution can be conducted by assigning priority levels to

iJIM ‒ Vol. 15, No. 15, 2021 87

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

the types of the modifications. These levels are determined based on the business rules
that govern the data validity. A simple example is that deducting a health insurance
premium from an employee gross pay can occur only after registering him in the ser-
vice. In this case, the registration modification is given a higher priority level than the
deduction one (i.e., will be executed before the latter).

To conduct the reconciliation process, the external server implements the concept
of the reconciliation time interval (RTI) for each data domain, which is denoted by
RTIexternal-server and defined here as a regular time interval that the web service of the
external server (i.e., ES-WS) must wait before ordering and propagating the received
updates on the data domain to replica servers. This is in order to ensure that all recent
updates carried out during RTIexternal-server are received, which enables mobile clients to
catch this interval. The length of RTI varies among the data domains based on the
Inconsistency Time Period (ITP) affordable by each data domain, which is specified
according to the application requirements.

As such, for each data domain, these intervals have an equal length, indicating that
Length(RTIexternal-server – i(x)) = ITPx, where i = 1, …, n, and n is total number of RTIs of a
data domain x. They are numbered serially on the basis of the day (i.e., 24 hours), such
as Domain1-RTI-SUN-02-march-20-1, Domain1-RTI-SUN-02-march-20-2, etc. Upon
elapsing of each interval and propagating the reconciled updates to the replica servers,
the divergence between the replicas will be bounded and both read(x) and write(x) oper-
ations will interact with consistent data, where x is a replicated data domain. To clarify
this point, the sequence of RTIexternal-server intervals can be represented mathematically by
the following function:

ρ (i,date) = RTIexternal-server – i
 Date, 1<= i <=24/ RTIexternal-server

Each item in this sequence corresponds to a convergence status for the replicated
data domain in the replica servers. This indicates that the serial elapsing of the intervals
in this sequence contributes to reaching consecutive convergences to consistent states
by all replicas (i.e., the eventual consistency). As such, the following limit is assured by
the behavior of this sequence:

Lim (RTIexternal-server – i
 Date) = eventual consistency

If a set of recent updates belong to the current interval (e.g., Domain1-RTI-SUN-
02-march-20-10) have been reconciled and propagated to the replica servers, and some
updates belonging to this interval have come on a next interval (e.g., Domain1-RTI-
SUN-02-march-20-11) due to a late propagation from mobile clients, then the web ser-
vice will implement these updates on its replica of the data domain, and propagate
a correctness report along with the reconciled updates of the Domain1-RTI-SUN-02-
march-20-11 to the replica servers. The purpose of this report is to inform the replica
servers to correct the execution of the pervious received updates on the basis of the
timestamps of the late received updates.

The same notion of RTI is applied at the level of the replica servers. All these serv-
ers implement RTIreplica-server for each data domain to propagate the recent updates to the
external server. Two conditions are identified for this interval as follows. The first con-
dition is that all replica servers should have the same RTIreplica-server for each data domain
in order to enable consistent propagation of the updates that occur on the domain.

88 http://www.i-jim.org

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

The second condition is that the logical expression RTIreplica-server < RTIexternal-server
should be true in order to ensure a fast propagation to the external server where the
ultimate reconciliation will be done. Another reason for this condition is that the
updates performed on a replica server are always less than those received by the exter-
nal server.

The conceptual object schemas pertaining to the reconciliation process include the
ones depicted in Figure 9.

Object Name Attributes

Reconciliation-Intervals-Object Data-Domain-ID, RTIexternal-server, RTIreplica-server

Reconciliation-Interval-Limits-Object Interval-Code*, Data-Domain-ID, Interval-
Type-ID**,
Upper-Limit, Lower-Limit, Interval-ID-
Within-24Hours***
Notes:
*Interval-Code is added to link this object with the
Reconciliation-Details-Object.
**Interval-Type-ID is either 1 for RTIexternal-server or
2 for RTIreplica-server.
***Interval-ID-Within-24Hours varies from 1 to
24/ RTIreplica-server. For example if RTIreplica-server is
2 hours, there will be 12 intervals of this type.

Reconciliation-Details-Object Reconciliation-ID, Server-Type-ID*, Server-ID,
Interval-Code, Date
Note:
*Server-Type-ID is 1 for an external server and 2
for a replica server.

Current-RTIexternal-server-Received-Updates-Object* Interval-Code, Data-Domain-ID, Update-ID,
Update-Type, Update-Timestamp, Updates-
Source-ID, Replica-Server-ID, Late-
Received-Update-Flag**
Notes:
*Once the current interval is elapsed, the contents
of this object are transferred to the Data-
Domain-Updates-Tracking-Object for permanent
saving.
**Late-Received-Update-Flag is either 0 for an
update occurred during the current reconciliation
interval or 1 for one occurred during a past
interval.

Data-Domain-Updates-Tracking-Object Interval-Code, Data-Domain-ID, Update-ID,
Update-Type, Update-Timestamp, Updates-
Source-ID, Replica-Server-ID, Late-
Received-Update-Flag

Fig. 9. Object schemas pertaining to the reconciliation process

Reconciliation steps in the external server: The steps shown in Figure 10 are car-
ried out by the web service of the external server for reconciling the updates received
from the replica servers.

iJIM ‒ Vol. 15, No. 15, 2021 89

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

Step1. Start a new reconciliation session
1.1 Retrieve the RTIexternal-server from the Reconciliation-Intervals-Object
1.2 Retrieve the Lower-Limit and Upper-Limit from the Reconciliation-Interval-Limits-Object
1.3 Insert the details of the current reconciliation in the Reconciliation-Details-Object

Step2. Upon receiving an update from a replica server during the current RTIexternal-server
2.1 Determine the affected data domain
2.2 Insert the details of the update in the Current- RTIexternal-server -Received-Updates-Object
2.3 If the timestamp (update) within the current RTIexternal-server then
2.3.1 Mark this update as a current by setting the value of the Late-Received-Update-Flag
attribute to 0

Else
2.3.2 Mark this update as an old by setting the value of the Late-Received-Update-Flag
attribute to 1

Step3. Upon elapsing of RTIexternal-server
3.1 Detect the conflicts of the current updates
3.2 If there are any conflicts then
3.2.1 Resolve the conflicts based on the time-stamp values

Else
3.2.3 Next step
3.3 Propagate the reconciled updates to the replica servers
3.4 Transfer the details of the reconciled current updates from the Current- RTIexternal-server –
Received-Updates-Object to the Data-Domain-Updates-Tracking-Object
3.5 Detect the conflicts of the old updates against those stored in the
Data-Domain-Updates-Tracking-Object
3.6 Perform step 3.2
3.7 Send the correctness report to the replica servers
3.8 Transfer the details of the reconciled old updates from the Current- RTIexternal-server –
Received-Updates-Object to the Data-Domain-Updates-Tracking-Object
3.9 �Remove the contents of the Current- RTIexternal-server -Received-Updates-Object to save

storage space

Fig. 10. The steps of updates reconciliation

With minor modifications, this algorithm is applied on the level of the replica servers
to reconcile the received updates from their sources before propagating them to the
external server. These modifications include replacing RTIexternal-server with RTIreplica-server
and making the external server as the destination of the propagated reconciled updates.

3.4	 The caching scheme

Data caching is essentially required for mobile computing elements in order to con-
tinue functioning in the disconnected modes and tolerate the network partitioning. As
such, the proposed approach enables each mobile client to cache a recent copy of its
data domain of interest and perform tentative updates on it in the disconnected mode.
When it connects to a replica server, its web service performs the following functions:
(a) captures all updates that occurred in the cached data domain since the last connec-
tion with a replica server (i.e., represent tentative updates), and (b) sends a request to the
replica server for the permanent commitment of these updates. Hence, the cached copy

90 http://www.i-jim.org

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

of the data domain in the mobile client is treated as a virtual replica that can receive
tentative updates, which should be committed later on its corresponding domain in the
replica server.

Accordingly, the purpose of this caching is only to record the tentative updates
occurred on the cached data domain during the disconnection periods (i.e., tracking
these updates). Such updates will become stable upon their commitment in a replica
server. This is because the only updatable copies in the replication architecture are those
stored on the replica servers. Hence, the tentative updates of the mobile client are not
considered in the whole replication system unless they are committed in a replica server.

The validity of the cached data domain in the mobile client (i.e., its consistency
with its peer in a replica server) is verified by the web service (i.e., US-WS) at each
connection with a replica server. This verification involves comparing the Timestamp
of the Last Connection (LCT) with a replica server with the Timestamp of the Last
Update (LUT) that occurred on that data domain. LCT is stored in an object called
Connections_Tracking_Object in the mobile client, while LUT is maintained in another
one called Data_Items_Updates_Tracking_Object in the replica server. The schemas of
these objects are depicted in Figure 11.

Object Name Attributes

Connections_Tracking_Object Mobile-Client-ID, Replica-Server-ID, LCT

Data_Items_Updates_Tracking_Object Data-Domain-ID, LUT

Fig. 11. The schemas of the objects that contain the timestamp attributes

The Data_Items_Updates_Tracking_Object stores only one tuple for each data
domain. This tuple is frequently replaced by another one when the temporal data item
(i.e., LUT) is changed. At each connection with a mobile client, the RS-WS makes this
tuple available to the US-WS for checking the validity of the cached data domain (i.e.,
comparing the value of LUT from this tuple with the value of LCT from the Connec-
tions_Tracking_Object). The system time of the replica servers is considered for track-
ing both LCT and LUT. This is because a unified global timing can be maintained easily
in these servers as they represent a part of a fixed network. On the other hand, whenever
the mobile clients disconnect from these servers, their local system times may change
and become inconsistent with the unified global time.

If the cached data domain is valid (i.e., LCT > LUT), the US-WS will request the
RS-WS to commit the tentative updates on the replica server. Otherwise, the US-WS
will conduct the steps depicted in Figure 12.

Step1. Update the cached data domain based on the current state of its peer in the replica server.
This update is done by importing such state (i.e., the current data) from the replica server.
Step2. Perform the tentative updates again on the updated cached data domain. /* This is
because they were previously performed on the invalid cached data domain*/
Step3. Send a request to the RS-WS to commit these updates.

Fig. 12. The steps carried out in the case that the data item is invalid

iJIM ‒ Vol. 15, No. 15, 2021 91

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

Accordingly, the requests to commit the tentative updates are sent to the replica
server only if the cached data domain is valid.

An obvious characteristic of our caching scheme is that the replica server does not
broadcast an invalidation report (i.e., contains timestamps and recent modifications) to
the mobile client. This is in contrast to the previous schemes that rely on periodically
broadcasting such report from the server to the mobile clients for maintaining the con-
sistency of the cached data [38,48]. Instead, the invalidation report broadcasting in our
caching scheme is replaced by the invalidation verification, which is performed by the
US-WS of the mobile client through comparing the temporal details in the Connec-
tions_Tracking_Object and Data_Items_Updates_Tracking_Object objects (i.e., LCT
and LUT) upon connecting to a replica server. Based on this comparison, the US-WS
will import only the current state of the data domain from the replica server in the
case that LUT exceeds LCT. This reduces the overheads associated with the frequent
broadcasting of the invalidation reports (e.g., communication costs and bandwidth
consumption).

Another characteristic is that the cached data domain can receive updates that make
it more recent than its peer in the replica server. As such, the request sent by the US-WS
to the RS-WS for committing these updates can be thought as an invalidation method
that indicates the invalidity of the current state of the corresponding data domain in the
replica server (i.e., it is not up-to-date).

4	 Performance aspects

This section presents the assessment of widely used performance metrics for evalu-
ating replication approaches.

4.1	 Average load balance (ALB) for the web services

Distributing the load among the web services participating in the replication system
is a crucial aspect for augmenting the overall system’s performance. Such distribution is
assessed here using the ALB metric, which is identified as the average number of com-
puting elements that the web service may interact with in order to accomplish a certain
process in the replication system. As such, this metric can have the following instances:
ALB-Propagation (i.e., the ALB for the propagation process), ALB-Requisition
(i.e., the ALB for the updates/queries requisition process), ALB-Requests-Satisfaction
(i.e., the ALB for the update/query requests satisfaction process). Table 1 includes the
values of these instances along with their justifications. These values indicate that the
average load is distributed among the web services of the servers in both internal and
external clouds.

92 http://www.i-jim.org

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

Table 1. ALB instances and their values
ALB Instance Involved WS Value Justification

ALB-Propagation RS-WS 1 Each RS-WS
propagates its updates
to the external server

ES-WS N ES-WS propagates
the overall reconciled
updates to N replica
servers

ALB- Requisition US-WS 1 Each US-WS sends a
query/update request to
one replica server

ALB-Requests-
Satisfaction

RS-WS M Each RS-WS satisfies
the requests of M
update sources

4.2	 Update propagation delay (UPD)

The updates propagation represents a vital process in the replication system for
achieving the eventual consistency. It is evaluated here on the basis of the UPD met-
ric, which is measured based on the total number of hops required for propagating an
update from a replica server to another one. This is because measuring the exact time
that is consumed in updates propagation depends on many complicated factors, includ-
ing connectivity aspects (e.g., bandwidth and network delays) [49]. In our strategy, the
total number of hops equals 1. This is because the update committed in each replica
server will be propagated to the others through the external server. For the other strate-
gies, this total number varies according to their propagation protocol.

For instance, in Roam [40,41], propagating an update from a replica Ri to a replica
Rj in a different ward involves using a ring topology, and requires: (a) Ri sends the
update to its ward master, (b) Ri’s ward master forwards the update to Rj’s ward mas-
ter, and (c) Rj’s ward master forwards the update to Rj. Accordingly, for such case, the
minimum number of hops in Roam is 2. However, this number will vary as the number
of wards changes.

In the tree-based hierarchical strategy [50,51], the updates propagation relies on an
N-ary tree. The root of this tree represents the owner of the data and the other nodes
(i.e., residing in the tree’s levels) store replicas of these data. Based on the tree char-
acteristics, a top-down updates propagation is assumed, indicating that the updates are
propagated to these replicas through following the tree’s levels. As such, the number of
hops required to propagate an update from the tree’s root to all replicas in the last level
equals L - 2, where L is the total number of the levels in the tree. Hence, the number of
hops increases as the number of levels increases. In sum, the proposed strategy enables
each replica to receive the recent updates in at most one hop. Thus, as compared to
other strategies, this implies that it has the lowest updates propagation delay.

iJIM ‒ Vol. 15, No. 15, 2021 93

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

4.3	 Performance metrics for evaluating the proposed caching scheme

Two widely performance metrics in the literature of the data caching were used to
compare the proposed caching scheme with two baseline approaches (i.e., pull and
push-based approaches). These metrics are number of hops and cache hit ratio.

Number of hops: The first comparison with the pull and push-based approaches
was performed by considering the average number of hops required to validate the
cached data item in the mobile clients. In the pull-based approach, which is called
aggregate cache based on demand (ACOD) scheme, when a query request is generated,
the mobile client broadcasts the request packet to the server or other mobile clients (i.e.,
closer to the server) for validating its cached data item before using it for satisfying
the request. In the push-based approach, which is called modified timestamp (MTS)
scheme, the server periodically broadcasts an invalidation report to the mobile clients.
After the mobile client receives this report, it validates its cached data item accordingly,
and forwards the report to the nearby clients [52].

In our proposed caching scheme, the number of hops is fixed, which equals one. This
is because the cached data domain is validated when connecting to a replica server.
Adversely, in the baseline approaches, this number may vary due to the possibility of
having multiple hops between the client and the server. Figure 13(a) summarizes the
average number of hops for the three schemes, and indicates that the proposed cach-
ing scheme has the lowest average. The average number of hops for the two baselines
approaches was calculated based on the results of Lim et al. [52], which are pertaining
to effects of multiple factors on the number of hops.

Regarding the effect of the cache size on the number of hops, this number is not
impacted by varying the cache size in the proposed caching scheme (i.e., its value
remains fixed as 1). In contrast, it varies in the baseline caching schemes according to
the changes occur in the size. Figure 13(b) shows that the proposed caching scheme
has the minimum number of hops. For the two baseline schemes, the number of hops
was included in this figure according to the results of Lim et al. [52]. The cache size
was measured by the number of the cached data items in the mobile client, which varies
from 10 to 100.

Fig. 13. (a) The average number of hops for three schemes. (b) The effects of the cache size on
the average number of hops

94 http://www.i-jim.org

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

Likewise, the number of hops of the proposed scheme is not influenced by varying
the number of mobile nodes in the network. This contradicts the results of many stud-
ies, such as [53]. Figure 14 depicts that the caching approach of [53], which is called
Adaptive Cooperative Caching Strategy (ACCS), has different hop counts for different
numbers of mobile nodes, while the proposed scheme has a fixed count (i.e., one). The
values included in this figure are obtained from the results of [53], which were pro-
duced using a fixed cache size (i.e., 1600 KB).

Fig. 14. The effects of the number of mobile nodes on the average number of hops

Cache hit ratio: The second comparison with the two baseline approaches was
conducted on the basis of cache hit ratio, which can be decomposed into local and
remote ratios. With respect to the local cache hit ratio of the proposed caching scheme
(i.e., the ratio that an update request is satisfied locally in a mobile client), all requests
of tentative updates are fully fulfilled in the mobile client via exploiting its local
cached data domains. This indicates that the hit ratio is 100% (i.e., the maximum
ratio) for such requests. On the other hand, the requests for committing these updates
permanently are completely satisfied in a replica server. This satisfaction can be
regarded as equivalent to the remote cache hit. Accordingly, the ratio of such hit is
100% for the requests pertaining to the permanent commitment of tentative updates.
In the baseline caching approaches as well as the others, the requests are of the
same type (i.e., satisfying certain queries), and both local and remote hit ratios for
these requests may vary. Figure 15(a) and Figure 15(b) depict such variation as well
as the fixed ratios of the proposed scheme. These figures were produced through
considering the effects of the mean cache update interval on these ratios and setting
the cache size to 100 (i.e., as included in the results of Lim et al. [52]). As shown, the
local and remote hit ratios of the proposed scheme are not affected by the variation
of the update interval.

iJIM ‒ Vol. 15, No. 15, 2021 95

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

Fig. 15. (a) Local cache hit ratio and (b) Remote cache hit ratio
by considering the effects of the mean update interval

Regarding the effect of the cache size on the cache hit, both the local and remote hit
ratios (LHR and RHR) of the proposed scheme were compared to three types of hits
identified by [57]. These types are local cache hit (i.e., requests are serviced locally),
cache node hit (i.e., requests are satisfied by intermediate nodes), and server hit (i.e.,
the server satisfies the requests). Figure 16 (i.e., produced based on the results of [57])
shows that these types are affected according to the variation of the cache size (i.e.,
varied between 100 KB and 600 KB). However, for the proposed scheme, both the
local and remote hit ratios remain fixed (i.e., 100%). As aforementioned, this is due to
having two types of requests: one should be satisfied locally (i.e., tentative update) and
the other must be remotely fulfilled by a server (i.e., permanent commitment).

Fig. 16. Comparing the local and remote hit ratios (LHR and RHR) of the proposed scheme
with those of the three types of hits identified by [57]

Similarly, the hit ratios of the proposed scheme are not affected by varying the num-
ber of mobile nodes. This is in contrast to many other caching approaches, including
ACCS [53] and ACCC [58].

96 http://www.i-jim.org

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

5	 Discussion

Towards achieving a sufficient trade-off between the CAP properties in the LSPISs,
the components of the proposed approach have been specified as follows. The first
component is a replication architecture that combines elements from both internal
and external clouds for ensuring high availability of read/write operations and achiev-
ing partition tolerance in the LSPISs. The second component is a web services based
service-oriented middleware to perform and automate the crucial operations of the rep-
lication process, such as automating the updates propagation between the replicas in a
manner that maintains the eventual consistency. The third component is a method for
updates conflicts detection and resolution. The last component is a data caching scheme
to enable the mobile computing elements to conduct update operations during the dis-
connection periods.

The proposed approach performs two main actions to make such trade-off. The first
one is allowing the update transactions to be performed on many replicas in the internal
cloud. This contributes to achieving both data availability and fault tolerance. The sec-
ond one is ensuring the availability of recent updates to all replicas via exploiting the
capabilities of the external cloud. As such, this action contributes to achieving the even-
tual consistency. Accordingly, the proposed approach focuses on relaxing one of CAP
attributes, which is the consistency, in order to realize a great deal of such trade-off.
This relaxing is conducted by adopting the eventual consistency instead of the strong
consistency, which cannot be achieved in the presence of distributed updatable replicas.

Some of the features and characteristics of the major components of the proposed
approach are outlined as follows. The replication architecture component, which com-
prises a set of cloud elements, supports the system scalability in terms of accommo-
dating the future changes easily, such as covering more areas and encompassing vast
numbers of new heterogeneous computing elements. This feature is highly needed in
the large-scale systems as one of their design goals is developing scalable architectures
that contribute to realizing higher availability levels for the system. The service-ori-
ented middleware component acts as an operating system for the proposed approach
by conducting a set of essential replication operations, including replicas registration,
updates request, update conflicts detection and resolution, and updates propagation.
To support the scalability of the replication system, this middleware does not enforce
any restrictions about the quantity and type of the data being replicated, indicating
the ability to deal with a large number of diverse data domains. This stems from the
cooperative work of the middleware’s web services, which facilitates the carrying out
of the aforementioned replication operations on these data, regardless of their quantities
and types.

With respect to the caching scheme component, the widely used cache invali-
dation scheme (i.e., broadcasting of invalidation reports) in the previous caching
schemes has been replaced here by a verification process that is performed by the
web service of the mobile client upon connecting to a replica server. This process
involves comparing temporal data items, and importing only the current state of
the data domain from the replica server in the case that the cached copy in the
mobile client is invalid. As such, this process reduces the downlink traffic (i.e., the
transferred data from a replica server to a mobile client) by eliminating the need to

iJIM ‒ Vol. 15, No. 15, 2021 97

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

broadcast periodic or on-demand invalidation reports. Regarding the uplink traffic
(i.e., the transferred data from a mobile client to a replica server), it is reduced
by sending only requests to the replica server to implement the same updates that
occurred in the mobile client. Hence, the proposed scheme contributes to the reduc-
tion of the bandwidth usage.

The evaluation of the performance aspects revealed that the proposed approach
achieves a load balance in conducting crucial processes in the replication system,
including updates propagation and requests satisfaction. This balance has been realized
through distributing the load among the web services of the servers in both internal and
external clouds. The requests satisfaction is the responsibility of RS-WSs, while the
updates propagation is conducted by these services and ES-WS. With a focus on the
updates propagation process, the proposed approach achieves lower propagation delay
than other replication strategies. Such delay was represented by the total number of
hops required to propagate an update from a replica to another one.

Regarding the effectiveness of the proposed caching scheme, a comparison with
several existing approaches was conducted. The results indicated that the proposed
scheme is having a minimum fixed number of hops (i.e., one). In this regard, Saleh [53]
included that the reduction of the energy consumption and the request satisfaction delay
requires that the number of hops between the source and the destination of the request
to be as small as possible. Also, the comparison characterized the proposed scheme as
having maximum local and remote hit ratios. Accordingly, it highly improves the local
satisfaction of the tentative update’s requests in the mobile clients. The maximum value
of the remote hit ratio is not avoidable because the requests for permanent commitment
of updates should be fulfilled by a server.

6	 Conclusion

This article has proposed an asynchronous replication approach to realize a sufficient
trade-off between the CAP properties (i.e., consistency, availability, and partition toler-
ance) in the large-scale pervasive information systems. An obvious uniqueness of this
research effort is that the proposed approach is having four new scalable components
(i.e., replication architecture, service-oriented middleware, update conflicts detection
and resolution method, and data caching scheme). The previous approaches are limited
in having only some of these crucial components. Another uniqueness dimension is
that the proposed approach exploits the capabilities of both cloud computing and web
services to realize the trade-off among the CAP properties. The cloud computing con-
cepts were applied to develop the scalable replication architecture for improving the
availability and partition tolerance. The web services were implemented to facilitate
the interactions and shared processes among the heterogeneous computing elements of
the replication architecture, including supporting updates propagation and data cach-
ing. Exploiting these two web-based technological solutions has a significant role in
advancing the design approaches for large-scale systems. This is because both of them
support the desirable characteristics of large-scale systems, including scalability and
flexibility. Such exploitation represents a uniqueness aspect of this paper in both data
replication and pervasive system areas.

98 http://www.i-jim.org

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

The future work encompasses developing the required tools to implement the com-
ponents of the proposed approach and testing them in a practical environment of a
large-scale pervasive system.

7	 References

	 [1]	A. Salkenov and S. Bagchi, “Cloud based autonomous monitoring and administration of
heterogeneous distributed systems using mobile agents,” Future Generation Computer Sys-
tems, vol. 99, pp. 527–557, 2019. https://doi.org/10.1016/j.future.2019.04.047

	 [2]	S. Ghosh, Distributed systems: an algorithmic approach, 2nd ed., Boca Raton, FL, USA:
CRC press, 2014.

	 [3]	D. Zhang, W. A. Zhang, Z. G. Wu, K. Liu, H. Zhang, and Y. B. Zhao, “New advances in dis-
tributed control of large-scale systems,” Mathematical Problems in Engineering, vol. 2015,
2015. https://doi.org/10.1155/2015/102469

	 [4]	J. M. Pierson, Large-scale Distributed Systems and Energy Efficiency: A Holistic View,
Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. https://doi.org/10.1002/9781118981122

	 [5]	M. van Steen and A. S. Tanenbaum, “A brief introduction to distributed systems,” Comput-
ing, vol. 98, no. 10, pp. 967–1009, 2016. https://doi.org/10.1007/s00607-016-0508-7

	 [6]	U. Tos, “Data replication in large-scale data management systems,” Doctoral Dissertation,
Université Paul Sabatier-Toulouse III, France, 2017.

	 [7]	C. Coronel and S. Morris, Database Systems: Design, Implementation, and Management,
13th. ed., Boston, MA, USA: Cengage Learning, 2019.

	 [8]	Y. Saito and M. Shapiro, “Optimistic replication,” ACM Computing Surveys (CSUR), vol.
37, no. 1, pp. 42–81, 2005. https://doi.org/10.1145/1057977.1057980

	 [9]	R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, 7th. ed., Hoboken, NJ,
USA: Pearson, 2016.

	[10]	M. T. Özsu and P. Valduriez, (2020). Principles of distributed database systems, 4th. ed.,
Cham, Switzerland: Springer, 2020. https://doi.org/10.1007/978-3-030-26253-2

	[11]	P. Bailis and A. Ghodsi, “Eventual consistency today: Limitations, extensions, and
beyond,” Communications of the ACM, vol. 56, no. 5, pp. 55–63, 2013. https://doi.
org/10.1145/2447976.2447992

	[12]	G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,..., and
W. Vogels, “Dynamo: amazon’s highly available key-value store,” ACM SIGOPS operating
systems review, vol. 41, no. 6, pp. 205–220, 2007. https://doi.org/10.1145/1294261.1294281

	[13]	S. Burckhardt, “Principles of eventual consistency,” Foundations and Trends in Program-
ming Languages, vol. 1, no. 1–2, pp. 1–150, 2014. https://doi.org/10.1561/2500000011

	[14]	D. Frey, A. Mostefaoui, M. Perrin, P. L. Roman, and F. Taïani, “Speed for the elite, con-
sistency for the masses: differentiating eventual consistency in large-scale distributed sys-
tems,” in Proc. of 2016 IEEE 35th Symposium on Reliable Distributed Systems (SRDS),
pp. 197–206, 2016. https://doi.org/10.1109/SRDS.2016.032

	[15]	T. Y. Hsu, A. D., Kshemkalyani, and M. Shen, “Causal consistency algorithms for partially
replicated and fully replicated systems,” Future Generation Computer Systems, vol. 86,
pp. 1118–1133, 2018. https://doi.org/10.1016/j.future.2017.04.044

	[16]	M. Perrin, Distributed systems: concurrency and consistency, 1st. ed., UK: ISTE Press and
Elsevier, 2017.

	[17]	P. E. Kourouthanassis, G. M. Giaglis, and D. C. Karaiskos, “Delineating ‘pervasiveness’
in pervasive information systems: a taxonomical framework and design implications,”
Journal of Information Technology, vol. 25, no. 3, pp. 273–287, 2010. https://doi.org/10.1057/
jit.2009.6

iJIM ‒ Vol. 15, No. 15, 2021 99

https://doi.org/10.1016/j.future.2019.04.047
https://doi.org/10.1155/2015/102469
https://doi.org/10.1002/9781118981122
https://doi.org/10.1007/s00607-016-0508-7
https://doi.org/10.1145/1057977.1057980
https://doi.org/10.1007/978-3-030-26253-2
https://doi.org/10.1145/2447976.2447992
https://doi.org/10.1145/2447976.2447992
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1561/2500000011
https://doi.org/10.1109/SRDS.2016.032
https://doi.org/10.1016/j.future.2017.04.044
https://doi.org/10.1057/jit.2009.6
https://doi.org/10.1057/jit.2009.6

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

	[18]	P. E. Kourouthanassis and G. M. Giaglis, “Toward pervasiveness: four eras of informa-
tion systems development,” in Pervasive Information Systems. Advances in Management
Information Systems, vol. 10, P. E. Kourouthanassis and G. M Giaglis, Eds. M.E. Sharpe,
Armonk, NY. pp. 3–25, 2008.

	[19]	F. Kitsios, T. Papadopoulos, and S. Angelopoulos, “A roadmap to the introduction of per-
vasive Information Systems in healthcare,” International Journal of Advanced Perva-
sive and Ubiquitous Computing, vol. 2, no. 3, pp. 21–32, 2010. https://doi.org/10.4018/
japuc.2010070102

	[20]	J. Sligo, R. Gauld, V. Roberts and L. Villa, “A literature review for large-scale health information
system project planning, implementation and evaluation,” International journal of medical
informatics, vol. 97, pp. 86–97, 2017. https://doi.org/10.1016/j.ijmedinf.2016.09.007

	[21]	R. Buyya and A. V. Dastjerdi, Internet of Things: Principles and paradigms, Cambridge,
MA, USA: Morgan Kaufmann, 2016.

	[22]	R. Srivastava and K. Ahuja, “Pervasive computing and its application to traffic collision
and congestion control,” International Journal of Computer Applications, vol. 100, no. 5,
pp. 7–11, 2014. https://doi.org/10.5120/17519-8081

	[23]	A. M. De Souza, C. A. Brennand, R. S. Yokoyama, E. A. Donato, E. R. Madeira, and L.
A. Villas, “Traffic management systems: A classification, review, challenges, and future
perspectives,” International Journal of Distributed Sensor Networks, vol. 13, no. 4, 2017.
https://doi.org/10.1177/1550147716683612

	[24]	S. K. Madria, M. Mohania, S. S. Bhowmick, and B. Bhargava, “Mobile data and transac-
tion management,” Information Sciences, vol. 141, no. 3–4, pp. 279–309, 2002. https://doi.
org/10.1016/S0020-0255(02)00178-0

	[25]	T. Connolly and C. Begg, Database systems: A practical approach to design, implementa-
tion, and management, (6th. ed.). Harlow, UK: Pearson, 2015.

	[26]	G. Biegel and V. Cahill, “Requirements for middleware for pervasive information systems,”
In Pervasive Information Systems. Advances in Management Information Systems. vol. 10,
P. E. Kourouthanassis and G. M Giaglis, Eds. M.E. Sharpe, Armonk, NY. pp. 86–102, 2008.

	[27]	V. Kumar, Fundamentals of pervasive information management systems, Hoboken, NJ,
USA: John Wiley & Sons, 2013. https://doi.org/10.1002/9781118647714

	[28]	S. Souravlas and A. Sifaleras, “Trends in data replication strategies: a survey,” International
Journal of Parallel, Emergent and Distributed Systems, vol. 34, no. 2, pp. 222–239, 2017.
https://doi.org/10.1080/17445760.2017.1401073

	[29]	S. Limam, R. Mokadem, and G. Belalem, “Data replication strategy with satisfaction of
availability, performance and tenant budget requirements,” Cluster Computing, vol. 22,
pp. 1199–1210, 2019. https://doi.org/10.1007/s10586-018-02899-6

	[30]	F. Xhafa, A. D. Potlog, E. Spaho, F. Pop, V. Cristea, and L. Barolli, “Evaluation of intra-
group optimistic data replication in P2P groupware systems,” Concurrency and Computa-
tion: Practice and Experience, vol. 27, no. 4, pp. 870–881, 2015. https://doi.org/10.1002/
cpe.2836

	[31]	N. Dogra and S. Singh, “A survey of dynamic replication strategies in distributed sys-
tems,” International Journal of Computer Applications, vol. 110, no. 11, 2015. https://doi.
org/10.5120/19357-9898

	[32]	F. Xie, J. Yan, and J. Shen, “Towards cost reduction in cloud-based workflow management
through data replication,” in Proc. of 2017 Fifth International Conference on Advanced
Cloud and Big Data (CBD), pp. 94–99, 2017. https://doi.org/10.1109/CBD.2017.24

	[33]	A. Silberschatz, H. F. Korth, and S. Sudarshan, Database system concepts, 7th. ed., New
York, NY, USA: McGraw-Hill Education, 2020.

	[34]	P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control and recovery in data-
base systems, 1st. ed., Boston, MA, USA: Addison-Wesley, 1987.

100 http://www.i-jim.org

https://doi.org/10.4018/japuc.2010070102
https://doi.org/10.4018/japuc.2010070102
https://doi.org/10.1016/j.ijmedinf.2016.09.007
https://doi.org/10.5120/17519-8081
https://doi.org/10.1177/1550147716683612
https://doi.org/10.1016/S0020-0255(02)00178-0
https://doi.org/10.1016/S0020-0255(02)00178-0
https://doi.org/10.1002/9781118647714
https://doi.org/10.1080/17445760.2017.1401073
https://doi.org/10.1007/s10586-018-02899-6
https://doi.org/10.1002/cpe.2836
https://doi.org/10.1002/cpe.2836
https://doi.org/10.5120/19357-9898
https://doi.org/10.5120/19357-9898
https://doi.org/10.1109/CBD.2017.24

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

	[35]	A. Gao and L. Diao, “Lazy update propagation for data replication in cloud computing,”
in Proc. of 5th International Conference on Pervasive Computing and Applications,
pp. 250–254, 2010. https://doi.org/10.1109/2010.5704107

[36] K. Daudjee and K. Salem, “Lazy database replication with ordering guarantees,” in Proc.
of 20th International Conference on Data Engineering, pp. 424–435, 2004. https://doi.org/
10.1109/ICDE.2004.1320016

	[37]	M. Santana, J. E. Armendáriz-Inigo, and F. D. Munoz-Escoi, “Evaluation of database
replication techniques for cloud systems,” Computing and Informatics, vol. 34, no. 5,
pp. 973–995, 2015.

	[38]	R. K. Ghosh, “Caching and Data Replication in Mobile Environment,” in Wireless Network-
ing and Mobile Data Management, pp. 443–474, Springer, Singapore, 2017. https://doi.
org/10.1007/978-981-10-3941-6_14

	[39]	N. Tolia, M. Satyanarayanan, and A. Wolbach, “Improving mobile database access over
wide-area networks without degrading consistency,” in Proc. of 5th international con-
ference on Mobile systems, applications and services, pp. 71–84, 2007. https://doi.
org/10.1145/1247660.1247672

	[40]	D. H. Ratner, “Roam: a scalable replication system for mobile and distributed computing”,
Doctoral Dissertation, University of California, Los Angeles, USA, 1998.

	[41]	D. Ratner, P. Reiher, and G. I. Popek, “Roam: a scalable replication system for mobility,”
Mobile Networks and Applications, vol. 9, no. 5, pp. 537–544, 2004. https://doi.org/10.1023/
B:MONE.0000034707.26695.e8

	[42]	M. Mohana and C. Jaykumar, “Hierarchical replication and multiversion concurrency
control model for mobile database systems (MDS),” Wireless Networks, vol. 23, no. 5,
pp. 1401–1411, 2017. https://doi.org/10.1007/s11276-015-1190-y

	[43]	M. Bsoul, A. F. Otoom, A. E. Abdallah, and N. Hamadneh, “An enhanced bandwidth hier-
archy based replication strategy for dynamic replication in data grid,” Multiagent and Grid
Systems, vol. 13(2017), pp. 163–175, 2017. https://doi.org/10.3233/MGS-170266

	[44]	R. Fox and W. Hao, Internet infrastructure: networking, web services, and cloud computing,
Boca Raton, FL, USA: CRC press, 2018.

	[45]	L. H. Etzkorn, Introduction to Middleware: Web Services, Object Components, and Cloud
Computing, Boca Raton, FL, USA: CRC press, 2017.

	[46]	M. Papazoglou, Web services: principles and technology, Harlow, UK: Pearson, 2008.
	[47]	H. Y. Paik, A. L. Lemos, M. C. Barukh, B. Benatallah, and A. Natarajan, Web service imple-

mentation and composition techniques, Cham, Switzerland: Springer, 2017.
	[48]	H. Safa, H. Artail, and M. Nahhas, “A cache invalidation strategy for mobile networks,”

Journal of Network and Computer Applications, vol. 33, no. 2, pp. 168–182, 2010. https://
doi.org/10.1016/j.jnca.2009.08.003

	[49]	A. Ahmed, D. D. Dominic, and A. Azween, “A novel replication strategy for large-scale
mobile distributed database systems,” Journal of Engineering Science and Technology,
vol. 6, no. 3, pp. 268–299, 2011.

	[50]	T. Hara, M. Nakadori, W. Uchida, K. Maeda, and S. Nishio, “Update propagation based on tree
structure in peer-to-peer networks,” in Proc. of 3rd ACS/IEEE International Conference on
Computer Systems and Applications, 2005. https://doi.org/10.1109/AICCSA.2005.1387037

	[51]	T. Watanabe, T. Hara, Y. Kido, and S. Nishio, “An update propagation strategy for delay
reduction and node failure tolerance in peer-to-peer networks,” in Proc. of 21st Interna-
tional Conference on Advanced Information Networking and Applications Workshops
(AINAW’07), vol. 1, pp. 103–108, 2007. https://doi.org/10.1109/AINAW.2007.92

	[52]	S. Lim, W. C. Lee, G. Cao, and C. R. Das, “Cache invalidation strategies for internet-based
mobile ad hoc networks,” Computer Communications, vol. 30, no. 8, pp. 1854–1869, 2007.
https://doi.org/10.1016/j.comcom.2007.02.020

iJIM ‒ Vol. 15, No. 15, 2021 101

https://doi.org/10.1109/2010.5704107
https://doi.org/ 10.1109/ICDE.2004.1320016
https://doi.org/ 10.1109/ICDE.2004.1320016
https://doi.org/10.1007/978-981-10-3941-6_14
https://doi.org/10.1007/978-981-10-3941-6_14
https://doi.org/10.1145/1247660.1247672
https://doi.org/10.1145/1247660.1247672
https://doi.org/10.1023/B:MONE.0000034707.26695.e8
https://doi.org/10.1023/B:MONE.0000034707.26695.e8
https://doi.org/10.1007/s11276-015-1190-y
https://doi.org/10.3233/MGS-170266
https://doi.org/10.1016/j.jnca.2009.08.003
https://doi.org/10.1016/j.jnca.2009.08.003
https://doi.org/10.1109/AICCSA.2005.1387037
https://doi.org/10.1109/AINAW.2007.92
https://doi.org/10.1016/j.comcom.2007.02.020

Paper—Exploiting Cloud Computing and Web Services to Achieve Data Consistency, Availability,…

	[53]	A. I. Saleh, “An adaptive cooperative caching strategy (ACCS) for mobile ad hoc net-
works,” Knowledge-Based Systems, vol. 120, pp. 133–172, 2017. https://doi.org/10.1016/j.
knosys.2017.01.005

	[54]	M. Banane and A. Belangour, “Towards a new scalable big data system semantic web
applied on mobile learning,” International Journal of Interactive Mobile Technologies,
vol. 14, no. 1, pp. 126–140, 2020. https://doi.org/10.3991/ijim.v14i01.10922

	[55]	M. Hammoudeh and A. Al-Ajlan, “Implementing web services using PHP SOAP approach,”
International Journal of Interactive Mobile Technologies, vol. 14, no. 10, pp. 35–45, 2020.
https://doi.org/10.3991/ijim.v14i10.14391

	[56]	F. Mdarbi, N. Zahir, N. Afifi, and I. Hilal, “Web service to automate bibliographic research –
case of dependability ontology,” International Journal of Recent Contributions from Engi-
neering, Science & IT, vol. 8, no. 2, pp. 21–35, 2020.

	[57]	L. Selvin and Y. Palanichamy, “Push-pull cache consistency mechanism for cooperative
caching in mobile ad hoc environments,” Turkish Journal of Electrical Engineering & Com-
puter Sciences, vol. 24, no.5, pp. 3459–3470, 2016. https://doi.org/ 10.3906/elk-1406-178

	[58]	S. El Khawaga, A. Saleh, and H. Ali, “An administrative cluster-based cooperative caching
(ACCC) strategy for mobile ad hoc networks. Journal of Network and Computer Applica-
tions, 69, 54–76, 2016. https://doi.org/10.1016/j.jnca.2016.05.003

8	 Author

Ashraf Ahmed Fadelelmoula received his Ph.D. in Information Technology from
Universiti Teknologi PETRONAS, Malaysia. He joined University of Khartoum,
Sudan as a teaching staff after his graduation. He is currently an assistant professor in
the Department of Management Information Systems, College of Business administra-
tion, Prince Sattam Bin Abdulaziz University, Saudi Arabia. His teaching and research
interests include Management Information Systems, Distributed Database Systems,
Mobile Databases, Cloud Computing, and ERP Systems.

Article submitted 2021-03-11. Resubmitted 2021-05-31. Final acceptance 2021-06-09. Final version
published as submitted by the authors.

102 http://www.i-jim.org

https://doi.org/10.1016/j.knosys.2017.01.005
https://doi.org/10.1016/j.knosys.2017.01.005
https://doi.org/10.3991/ijim.v14i01.10922
https://doi.org/10.3991/ijim.v14i10.14391
https://doi.org/ 10.3906/elk-1406-178
https://doi.org/10.1016/j.jnca.2016.05.003

