
Paper—A Reinforcement Learning Approach for Interference Management in Heterogeneous Wireless... 

A Reinforcement Learning Approach for Interference 
Management in Heterogeneous Wireless Networks 

https://doi.org/10.3991/ijim.v15i12.20751 

Akindele Segun Afolabi (*) 
University of Ilorin, Ilorin, Nigeria 

afolabisegun@unilorin.edu.ng 

Shehu Ahmed 
The Nigerian Television Authority, Ilorin, Nigeria 

Olubunmi Adewale Akinola 
Federal University of Agriculture, Abeokuta, Nigeria 

Abstract—Due to the increased demand for scarce wireless bandwidth, it 
has become insufficient to serve the network user equipment using macrocell 
base stations only. Network densification through the addition of low power 
nodes (picocell) to conventional high-power nodes addresses the bandwidth 
dearth issue, but unfortunately introduces unwanted interference into the net-
work which causes a reduction in throughput. The purpose of this paper is to 
develop a model for controlling the interference between picocell and macrocell 
users of a cellular network so as to increase the overall network throughput. In 
order to achieve this, a reinforcement learning model was developed which was 
used in coordinating interference in a heterogeneous network comprising mac-
rocell and picocell base stations. The learning mechanism was derived based on 
Q-learning, which consisted of agent, state, action, and reward. The base station 
was modeled as the agent, while the state represented the condition of the user 
equipment in terms of Signal to Interference Plus Noise Ratio. The action was 
represented by the transmission power level and the reward was given in terms 
of throughput. Simulation results showed that the trend of values of the learning 
rate (e.g., high to low, low to high, etc.) plays a major role in throughput per-
formance. It was particularly shown that a multi-agent system with a normal 
learning rate could increase the throughput of associated user equipment by a 
whopping 212.5% compared to a macrocell-only scheme. 

Keywords—Heterogeneous Network, Q-Learning, Macrocell, Picocell, Inter-
ference 

1 Introduction 

Mobile broadband usage has increased dramatically in the last couple of years due 
to new types of terminals such as smart phones and tablet computers [1, 2]. The tradi-
tional homogeneous networks [3, 4],comprising of only macrocell base stations (BSs), 
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have become insufficient to meet the high traffic demands and stringent quality of 
service (QoS) requirements of mobile broadband communications [5]. A key method 
to fulfill the traffic demands is by network densification which involves adding small-
er low power nodes, such as picocells, to traditional high power macro nodes. This 
results in what is termed "Heterogeneous Networks", or simply HetNets [3]-[7]. Het-
Nets are expected to boost capacity and coverage beyond macrocells. They have been 
regarded as a promising paradigm to provide mobile users with high quality experi-
ence [2, 5]. However, network densification through the addition of picocells intro-
duces harmful interference into the network [2, 4, 8]. Therefore, the influence of 
picocell densification on the network performance is obviously of large interest and 
the use of sophisticated inter-cell interference management techniques is very crucial. 
This paper aims at developing a learning model for coordinating inter-cell interfer-
ence existing between a picocell and macrocell base stations for the purpose of im-
proving network throughput. 

The ability of learning new behaviours and adapt to the temporal dynamics of the 
system is associated with reinforcement learning (RL). Q-learning (QL) is a basic 
example of RL, which is proposed in this paper. The scenario of Q-learning is related 
to Markov decision method, where the learning agents interact with their environment 
to achieve the desired goals (rewards). Q-learning models have a set of states S, ac-
tions A, and rewards R. The learning cycle is a state-action-reward process. On learn-
ing, an agent takes an action aÎA that interacts with the environment. The agent goes 
into a state s(t)ÎSand receives a reward r(s(t))ÎR. The objective is to select actions at 
each state s, based on maximized reward r [9]-[12]. The agent should observe the state 
or environment and take actions that affect that state. Moreover, a goal must be intro-
duced relating to the state of the environment. Learning can be performed using a 
centralised (single agent) [9, 10] or a distributed approach (multi-agent) [10, 11, 12]. 
A decentralized approach of learning is effective for solving complex problems. In 
this case, each agent in a multi-agent system is specialized at solving a particular 
problem. A multi-agent system is therefore useful, if a model can be developed for the 
agents’ behaviour in terms of desires and goals. The performances of single and mul-
ti-agent systems are compared in this paper. 

2 Related Works 

The problem interference poses to heterogeneous networks has recently dominated 
discussions in the research community [13]-[26]. In heterogeneous cellular networks, 
a user equipment (UE) at the cell border always experiences high interference from 
neighbouring transmitters as their distance dependent attenuation is a critical issue 
[27]. Spectrum splitting is a mechanism used by the operator in a multi-tier network 
to split the available sub-bands among the cells in a cellular network to mitigate inter-
ference. Spectrum splitting can be carried out using a centralized approach. Splitting 
spectrum, in a centralized fashion, assigns sub bands to the macrocell base station 
(MBS) and small cells by means of a controller, which achieves efficient resource 
utilization at the expense of complexity and signalling overhead. The authors in [28] 
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proposed an interference coordination method in which resource partitioning opera-
tion is done centrally, such that, sub-bands are given to the base stations in the net-
work based on a weighted vertex colouring operation executed by a central controller. 

The authors in [29]-[31] used beam-forming technique to mitigate interference. 
Specifically, [29] proposed a method called "dynamic interference steering", in which, 
interference is steered in an optimum direction where its impact on an interference 
victim is minimized. Ref. [30] applied a cross-layer approach where interference co-
ordination is applied both at the Physical and MAC (Media Access Control) layers. 
Beam-forming is used to suppress interference at the physical layer while an optimisa-
tion problem is solved at the MAC layer to determine the set of users that will be 
accommodated by a resource block such that interference is reduced. In Ref [31], a 
beam selection scheme known as "beam skipping" is used to optimise a performance 
utility in a way that reduces inter-beam interference. 

Self-organization and self-configuration are useful features that are usually exploit-
ed during interference coordination. Self-Organizing Networks (SONs) [32] attempt 
to minimize human intervention, where they use measurements from the network to 
minimize the cost of installation, configuration, and maintenance of a network [33]. 
Base stations can be made to self-organise by learning from their environment. Sever-
al research works on Q-Learning based interference coordination exist in the litera-
ture, in which, agents (usually base stations) self-organise based on network meas-
urements. A self-organised method was proposed for mitigating interference in [9]. It 
considers a vehicular network, in which, a base station agent selects optimal resource 
control policy during each action policy interval of the learning and running phases. 
During the learning phase, the agent is trained to maximize expected future reward by 
updating Q elements till the attainment of convergence. The running phase involves 
the agent choosing the action that yields the highest expected reward from updated Q. 

Ref. [34] presents a multi-agent deep reinforcement learning system where 
femtocell and macrocell base stations act as agents whose goal is to maximize net-
work capacity. Neural network used in the system enhances its ability to process a 
large amount of state information. The parallel operation of multiple agents ensures 
that the overall network interference is reduced in order to achieve an enhancement in 
capacity. In [35] a downlink reinforcement learning-based interference control algo-
rithm is presented. The algorithm employs convolutional neural network to estimate Q 
values which as a result reduces the size of the state space. After a sufficient number 
of power control iterations, the network throughput is significantly increased. The 
authors in [36] developed a reinforcement learning algorithm for optimal configura-
tion of interference coordination parameters, which have stochastic characteristics, 
such as, location of users, traffic demands, and strength of received signals. 

3 System Model and Formulations 

In this model, learning based strategy for interference coordination in an environ-
ment, where macrocell and picocell co-exist is considered. Our focus is on the analy-
sis of a network deployment with a picocell underlaying a macrocell network. The 
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total bandwidth (BW) of the network is divided into sub-carriers, with each sub-
carrier having a bandwidth of Δf (15 kHz). Resource blocks are grouped using or-
thogonal frequency division multiplexing (OFDM) symbols as shown in Figure 1. 
Both macrocell and picocell operate in the same frequency band, and they have access 
to the same set of resource blocks. 

 
Fig. 1. LTE downlink physical resource based on OFDM 

When picocell and macrocell utilise the same spectrum, inter-cell interference 
problem emerges. A typical collocation scenario of picocell and macro-cell is shown 
in Figure 2. In this scenario, the downlink transmissions from the MBS or picocell 
base station (PBS) will create a strong interference at a nearby macrocell user equip-
ment (MUE) or picocell user equipment (PUE) and may cause the received macrocell 
or picocell signal at the MUE or PUE to be degraded. Hence, inter-cell interference 
hampers a successful macrocell and picocell co-existence. 

 
Fig. 2. A heterogeneous scenario 

3.1 Computation of signal to interference plus noise ratio 

We consider that each MBS has a set of MUEs associated to it and the MUEs peri-
odically report the quality of each resource block (RB) in terms of signal to interfer-
ence plus noise ratio (SINR) to their serving MBS in order to facilitate a channel-
aware scheduling. PBSs in the vicinity of an MUE constitute interference sources to 
the downlink signal of the MUE, and in a similar way, MBS interferes with the down-
link signal of PUE. Without the loss of generality, only downlink transmission is 
considered in this work, since interference in the downlink is usually more severe than 
the uplink, especially when the interfering bases station is in close proximity to the 
victim UE. It can be observed in Figure 2 that the interference between macrocell and 
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picocell is mutual; which means that, the transmissions of MBS interfere with PUE’s 
received signal and also, the transmissions of the PBSs interfere with MUE’s received 
signal. The SINR of MUE i is computed as: 

 (1) 

where PMBSd denotes the transmit power from serving MBS d to the i-th MUE,  
PMBSf denotes the transmit power from interfering MBS f to the i-th MUE,  

PPBSg denotes the transmit power from interfering PBS g the i-th MUE, 
hMBSd,MUEi denotes the link gain between serving MBS d and the i-th MUE, 
hMBSf, MUEi denotes the link gain between interfering MBS f and the i-th MUE, 
hPBSg, MUEi denotes the link gain between interfering PBS g and the i-th MUE, 
δ2 denotes the noise power. Similarly, the SINR of PUE j is computed as: 

 (2) 

wherePPBSk denotes the transmit power from serving PBS k to the j-th PUE,  
hPBSk, PUEj denotes the link gain between serving PBS k and the j-th PUE, 
hMBSf, PUEj denotes the link gain between interfering MBS f and the j-th PUE, 
hPBSg, PUEj denotes the link gain between interfering PBS g and the j-th PUE. 
By applying Shannon’s capacity formula, the data rate achieved on an RB with 

SINR scheduled by the base station is computed as: 

  (3) 

where  BWRB denotes resource block bandwidth (in Hertz). The throughput of a UE 
is a function of the SINR and is expressed as: 

  (4) 

3.2 Model formulation 

This section presents a single agent, and also, multi-agent learning approach in or-
der to solve the inter-cell interference problem in HetNets. In this study, the base-
station is modeled as the learning agent as shown in Figures 3(a) and (b). It learns the 
condition or state of the UE in terms of interference level before taking an action of 
power allocation on RBs of UEs, while ensuring that the best reward in terms of the 
throughput is realised. We consider both single and multi-agent Q-learning models, 
such that, in the former, either PBS or MBS acts as an agent (not both concurrently), 
while in the latter, they concurrently both act as agents. Throughout the rest of this 
paper, the terms, “Q-learning” and “reinforcement learning” are used interchangeably. 

å å
¹= =

++
=

M

df,f

ψ

g
iggiff

idd
i

δhPhP

hP
γ

1 1

2
MUE,PBSPBSMUE,MBSMBS

MUE,MBSMBS
MUE

å å
= ¹=

++
=

M

f

ψ

kg,g
jggjff

jkk
j

δhPhP

hP
γ

1 1

2
PUE,PBSPBSPUE,MBSMBS

PUE,PBSPBS
PUE

g

( )γBWC += 1log2RB

( )γfTP =user

iJIM ‒ Vol. 15, No. 12, 2021 69



Paper—A Reinforcement Learning Approach for Interference Management in Heterogeneous Wireless... 

  

a) A single agent learning model 
where macrocell BS is the learning 

agent. 

b) A single agent learning model 
where picocell BS is the learning 

agent. 

Fig. 3. Agent learning model 

In the next section, we present our proposed learning method for mitigating the ag-
gregate interference generated between the picocell and the macrocell of a HetNet. 
The section also introduces the concept of learning rate. 

Enhanced inter-cell interference coordination based on single agent Q-
learning model: A single agent, which is either a picocell or macro-cell BS (but not 
both) learns the condition of the SINR of the resource blocks of its UE. Typical single 
agent scenarios are illustrated in Figures 3(a) and (b). Let D represent a set of similar 
base stations; in this context, we are assume that picocell BSs are similar to each other 
but are dissimilar to macrocell and vice versa; then, a single agent is  such that 

. (5) 

The actions of the learning agent , the associated states, and reward functions 
are explained next: 

• Agent: This is base station x, which is a member of the set of similar base stations 
D that satisfies Eqn. (5).  

• State: The state represents the condition of a UE within the cell of agent  
based on the SINR seen on RB r of its UE. The set of states of a UE for all N RBs 
can be represented mathematically by: 

  (6) 
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where,  

  (7) 

where is the instantaneous value of the SINR reported by a UE on a resource 
block r served by a learning agent , while  is the SINR threshold used in 
classifying an RB as either being in a good or bad state. Depending on what the state 

 of an RB of its UE is, the agent takes an action. For instance, if the agent 
observes that an RB r of a UE has an SINR less than the threshold value , it takes 
an appropriate action which will be different from the action it would take when the 
SINR is above this threshold. The actions of the BS are described next.  

• Action: The action is the power level allocation by the single agent to the 
resource block of its served UE. The possible set of actions is repre-
sented mathematically as: 

  (8) 

where,  

 (9) 

where  is the transmitted power level of agent  on resource block r. In this 
paper, we consider two possible levels of transmitted power for each resource block. 
They are maximum power level and zero power level. Maximum power is loaded 
when the reported SINR for an RB is above the threshold value , which indicates a 
state of 1, while zero power is loaded for a state of 0.  

• Reward: The reward is the capacity achieved by the single-agent on re-
source block r when it is transmitting at a power level to a UE associated to it. It is 
represented mathematically as:  

  (10) 

where  of agent  is computed according to Eqn. (3) such that, whenever 
zero transmission power (bad state of resource block of UE) is loaded on a resource 
block r, the capacity will be zero for that resource block; meaning that the reward  
is zero and vice versa. A reward of 0 is regarded as a penalty, and by learning an op-
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timal policy, agent x, after some time, will be able to avoid actions causing zero re-
wards but instead, will take the ones that yield higher rewards.  

 
Fig. 4. A multi-agent learning model where both macro-cell BS  

and picocell BS are learning agents. 

Enhanced inter-cell interference coordination based on multi-agent Q-
learning model: In this section, the multi-agent Q-learning model in which, both 
picocell and macrocell serve as learning agents that learn the condition of the UE is 
introduced. This is called a multi-agent Q-learning approach where multiple agents 
(picocell and macrocell) aim at carrying out the learning process by repeatedly inter-
acting with the environment to provide the best reward to their associated user equip-
ment. A typical multi-agent learning scenario is illustrated in Figure 4. The set of 
learning agents in this case comprise all picocell and macrocell base stations repre-
sented as . The learning agent, actions, states, and reward functions are de-
signed and explained as follows: 

• Agent: An agent y is a member of  
• State: The state represents the condition of a UE within the cell of agent 

based on the SINR seen on RB r of the UE. The set of states of a UE 
for all N RBs can be represented mathematically by: 

  (11) 

where 
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where  is the instantaneous value of the SINR reported by a UE on a resource 

block r served by a learning agent . represents the state of an RB 
r of the UE in the cell of agent , such that the state takes value of 0 if the 
SINR of the user falls below a certain threshold value , but takes a value of is 1, if 
otherwise. MBS and PBS, as agents, have the capability of jointly observing interfer-
ence levels through periodical SINR reports received from their associated UEs. If the 
reported SINR falls below a threshold , the BSs identifies the RB as occupied (i.e., 
bad state) and takes a subsequent action which is explained next.  

• Action: For a multi-agent scenario, the action is defined as: 

  (13) 

where 

 (14) 

where , just like the single agent case, is the transmitted power level of agent
 on resource block r. 

• Reward: In this paper, the reward is the capacity achieved by the multi-agent y, 
while transmitting to a UE in its cell. It is represented mathematically as: 

  (15) 

where is computed according to Eqn. (3). The rationale behind this reward 
function is that the Q-learning model aims to select optimum power level capable of 
improving the capacity of UEs associated to agent . 

Algorithm of Q-learning for inter-cell interference coordination scenario: To 
achieve interference coordination, exploration is performed and the Q-learning equa-
tion is updated as:  

 (16) 

where is the learnt or updated Q-value corresponding to the Quality value of 
state (interference) and the action (allocated power level) that gave the best reward in 
terms of throughputs of the UE. is the previous Q-values corresponding to the 
quality value of state (interference) and the action (power level allocation) that was 
previously learnt by the agent (base station) that does not result into an optimum re-
ward in terms of throughputs to the UE [34]. is the next optimal Q-value 
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learnt by the agent (base station) after observing that Q(s, a) is not optimal to give a 
correct update. Action is denoted as a, that is, transmitted power level of the agent (or 
base station). α and β are the learning rate and discount factor, respectively. Note that 
x, y, and r are not included in Eqn. (16) in order to reduce nomenclature complexities. 
The algorithm for computation of the Q-value and associated parameters is given in 
Algorithm 1 [34]. 

 
Learning rate (𝜶) model: Learning rate implies willingness of the agent to learn 

from its environment. Three types of learning rate are considered in this paper. These 
are: 

 Normal learning rate:  (17) 

 Logarithm learning rate:  (18) 

Polynomial learning rate:  (19) 

where Θ is the state learning indicator and the update of α is constrained by Eqn. (20) 
which is computed as: 
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  (20) 

where ε is a small positive number greater than 0. Equation (20) ensures that α is 
always maintained in the interval (0,1) during any learning episode. 

Analysis of learning rate model: Consider Eqn. (16), it is observed that 1-α and α 
are the weighting factors of and , respectively. 
This indicates that when α is high, contributes signifi-

cantly to the updated value of . This allows the system to explore new state 
and action pairs that have the tendency of yielding higher rewards. On the other hand, 
when α is low, contributes significantly to the updated value of , 
making the system to potentially adopt already known values (i.e., exploitation is 
favoured). Figure 5 graphically illustrates the relationship between learning rate and 
state learning indicator.  

 
Fig. 5. Illustration of α as a function of Θ 

It can be observed that for Normal learn rate and Logarithm learn rate, the learning 
rate is a monotonically decreasing function of the state learning indicator. In the case 
of the Polynomial learning rate, the learning rate initially increases and subsequently 
decays as the state learning indicator is increased. If we consider 2 extreme values of 
Θ (i.e., 1.0 and 5.0) the behaviour of the learning system can be summarised as shown 
in Table 1. 
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Table 1.  Summary of the Behaviour of the Learning System 

Model State learning 
indicator (Θ) Learning rate (α) 

Implication on system 
Exploration Exploitation 

Normal learning rate 
1.0 1.0 Very high  No 
5.0 0.22 Low High 

Polynomial learning rate 
1.0 0.5 Moderate  Moderate 
5.0 0.22 Low High 

Logarithm learning rate 
1.0 0.3 Low High 
5.0 0.09 Very low Very high 

4 Results and Discussions 

4.1 Simulation setup 

Three scenarios were evaluated in the simulation and all of them will be discussed 
shortly. The simulation parameters used are shown in Table 2. 

Table 2.  Simulation Parameters 

Simulation Parameter Value 
Cellular layout Hexagonal cell 
Carrier frequency 2 GHz 
Bandwidth 10 MHz 
Number of resource blocks(RBs) 50 
Number of MBS 1 
Number of PBS 1 
Maximum MBS transmit power 46 dBm 
Maximum PBS transmit power 30 dBm 
Macrocell path loss model (d in km) 128.1 + 37.6 log10 (d) dB 
Picocell path loss model (d in km) 140.7 + 37.6 log10 (d) dB 

Target SINR ( ) 18 dB 

Thermal noise density -174 dBm/Hz 
Discount factor (b) 0.8 
Number of MUEs 20 
Number of PUEs 20 
Macro-cell radius 1 km 
Pico-cell radius 114 m 
Scheduling type Proportional fair 

4.2 Average UE throughput 

Figure 6 shows the throughput performances of under-laying a picocell on a mac-
rocell network. As can be observed in the figure, when there is no picocell base sta-
tion present, only the macrocell base station served the UEs in the network. Due to the 
high loading of the MBS system, UE throughput suffers. However, adding picocell 
resulted in an improvement in the overall average UE’s throughput; for instance, from 

Tγ
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0.32 Mbps to 0.43 Mbps. This is a 34.4% increase in throughput which indirectly 
translates to a 34.4% increment in data transmission speed. When the picocell is in-
troduced to the macro-cell layout, some of the UEs that are now served by the picocell 
are able to get some throughput increment. However, the deployment of picocell 
comes at a cost, which is the introduction of unwanted interference into the network. 
It is therefore important to address this interference in order to ameliorate its negative 
impact on the overall network. This can be achieved through reinforcement learning-
based inter-cell interference coordination technique that is being proposed in this 
paper and the simulation results of the proposed scheme will be discussed next. 

 
Fig. 6. Graph of Cumulative Distribution Function (CDF)  

against average UE throughput  

4.3 Inter-cell interference coordination using the proposed Q-learning model  

The reinforcement learning model discussed in Section 2.2 was applied to the net-
work and the result in terms of cumulative distribution function (CDF) of average UE 
throughput is shown in Figure 7. As can be observed in the figure, multi-agent rein-
forcement learning model outperforms single agent reinforcement learning when 
normal learning rate (i.e., when Eqn. (17) is applied) is used, while the single agent 
macrocell learning model is slightly better than single agent picocell learning model.  

The lower performance of the single agent system stems from the fact that the 
agents have a limited knowledge of the radio environment in terms of interference 
level, which makes them to take arbitrary decisions (or actions) that subsequently 
caused harmful interference to other network users in their vicinity, thereby reducing 
the overall throughput gain. The higher performance of multi-agent system shown in 
the figure is because the agents are allowed to learn from each other and this in turn 
improves cooperation among them, thereby yielding again in throughput. Figure 8 
shows a comparison of the performances of multi-agent and single agent systems. As 
can be observed in the figure, multi-agent reinforcement learning model outperforms 
single agent reinforcement learning model in terms of CDF of average UE throughput 
when logarithm learning rate (i.e., when Eqn. (18) is applied) is used, while the single 
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agent macrocell learning model is slightly better than single agent picocell learning 
model.  

 
Fig. 7. Comparing effects on throughput of UEs due to single agent  

and multi-agent Q-learning model using a normal learn rate 

 
Fig. 8. Comparing effects on throughput of UEs due to single agent  

and multi-agent Q-learning model using a logarithm learn rate. 

Figure 9 compares the performances of multi-agent and single agent systems when 
polynomial learning rate (i.e., when Eqn. (19) is applied) is used, and again, it can be 
observed that multi-agent reinforcement learning model outperforms single agent 
reinforcement learning model in terms of CDF of average UE throughput, while the 
single agent macrocell learning model is much better than single agent picocell learn-
ing model. The single agent picocell learning model showed the lowest performance. 
Based on the results shown in Figures 7 through 9, it can therefore be inferred that 
UEs benefit more from multi-agent learning schemes than from single-agent learning 
schemes. 
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Fig. 9. Comparing effects on throughput of UEs due to single agent and  

multi-agent Q-learning model using a polynomial learn rate. 

4.4 Comparing throughput performance of multi-agent Q-learning model in 
terms learning rate 

The normal, logarithm, and polynomial learning rates are applied to the proposed 
multi-agent system and the results in terms of CDF of average UE throughput are 
compared as shown in Figure 10. The figure shows that the normal learning rate 
achieved higher average UE throughput compared to logarithm and polynomial learn-
ing rate, while polynomial learning rate has much better performances than the loga-
rithm learning rate. In particular, normal learning rate shows a 28.2% throughput gain 
over normal learning rate, while polynomial learning rate has a 25.6% gain over loga-
rithm learning rate. The higher throughput achieved by the normal learning rate is as a 
result of the fact that the system was able to first explore the environment due to low 
initial value of state learning indicator and correspondingly high value of learning rate 
as was illustrated in Figure 5 and Table 1. After a number of episodes, the value of the 
state learning indicator would have sufficiently increased to result in low value of 
learning rate. By this time, the system must have sufficiently explored the environ-
ment and exploitation based on learnt values can be done. The early exploration and 
later exploitation by the system ensures that the system is not trapped in a local opti-
mum region. In the case of polynomial learning rate, both exploration and exploitation 
are performed together with the same preference at the initial stage while the system 
switches to more of exploitation at a later time. This results in UE throughput that is 
lower than that of normal learning rate but higher than logarithm learning rate. The 
values of learning rate for polynomial learning rate model can be observed in Figure 
5. The logarithm learning rate performed worst in terms of average UE throughput 
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since low values of learning rate are always selected which prevents the system from 
engaging in sufficient exploration and possibly causing the system to be trapped in a 
local optimum region which yields lower average UE throughput as shown in Fig-
ure.10  

 
Fig. 10. Comparing effects on throughput of UEs due to  

multi-agent Q-learning model  

4.5 Comparing the multi agent Q-learning scheme results to no learning 
scenario 

The no learning scenario, which consisted of macrocell deployment when under-
laid with picocell, is used as the reference scheme to compare with the proposed Q-
learning schemes. The results are compared based on the cumulative distribution 
function (CDF) of average UE throughput as shown in Figures 11 through13. Figure 
11 shows the comparison of the CDF of the average UE throughput between a macro-
cell only, macrocell under-laid with a picocell, and macro+picocell with multi agent 
Q-learning using logarithm learning rate. As can be observed in the figure, deploying 
picocell helped to increase the average UE throughput from 0.32 Mbps to 0.43 Mbps, 
which is a 34.4% throughput increment. The overall performances, as shown in Fig-
ure 11, is even further boosted by the introduction of multi-agent Q-learning (loga-
rithm learn rate) scheme. It can be observed that the maximum throughput obtained 
with the introduction of Q-learning (logarithm learning rate) is 0.77 Mbps as against 
0.32 Mbps in a macrocell-only deployment. This is a 140.6% throughput increment.   
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Fig. 11.  Comparing between the throughput of UEs based on multi agent Q-learning  

scheme (logarithm learning rate) and no learning scenario. 

Figure 12 illustrates the comparison of the CDF of the average UE throughput of 
between macrocell-only, macrocell underlaid with a picocell, and macro+picocell 
with multi agents Q-learning using polynomial learning rate. The overall perfor-
mance, as shown in the figure, is boosted by the introduction of multi-agent Q-
learning (polynomial learning rate) scheme. The scheme yielded a whooping 200% 
increase in the average UE throughput (i.e., 0.96 Mbps) compared to macrocell-only 
deployment (i.e., 0.32 Mbps). 

 
Fig. 12. Comparison between throughput of UEs based on multi agent Q-learning  

scheme (polynomial learning rate) and no learning scenario. 

Figure 13 illustrates the comparison of the CDF of the average UE throughput be-
tween a macrocell-only, macrocell underlaid with a picocell, and macro+picocell with 
multi-agent Q-learning using normal learning rate. It can be observed that the multi-
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agent Q-learning (normal learning rate) scheme yielded a whooping 212.5% increase 
in the average UE throughput (i.e., 1 Mbps) compared to macrocell-only deployment 
(0.32 Mbps). 

 
Fig. 13.  Comparison between throughput of UEs based on multi agent Q-learning  

scheme (polynomial learning rate) and no learning scenario. 

5 Conclusion 

In this paper, single agent and multi-agent Q-learning models have been analyzed 
from the perspective of their effectiveness in interference coordination in heterogene-
ous wireless networks. The results show that Q-learning model, using multi-agent 
system, outperforms the single agent scenario since the multi-agent Q-learning 
scheme significantly improved spectrum utilization compared to the single agent Q-
learning counterpart. 

Three learning rates were proposed, namely, Normal learning rate, Polynomial 
learning rate, and Logarithm learning rate. For the normal learning rate, the initial 
values of the learning rate are very high which ensures that the system accorded more 
preference to environment exploration than exploitation of known state-action pairs. 
As time progresses, the value of the learning rate decays which causes the system to 
accord more preference to exploitation than exploration. These particular settings 
made the normal learning rate to perform much better that the other 2 learning rates 
proposed.  

The polynomial learning rate, on the other hand, has an initial medium value of 
learning rate. This causes the system to initially accord the same preference to explo-
ration and exploitation. The throughput performance of polynomial learning rate is 
not as good as the normal learning rate but is better than logarithm learning rate which 
consistently selected low values of learning rate throughout the experiment. Simula-
tion experiment shows that a multi-agent system based on normal learning rate could 
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achieve a throughput gain of up to 212.5% compared to a macrocell-only reference 
scheme.  

For future work, a hybrid of two or more of the proposed learning rates could be 
developed and tweaked for possible performance improvement.  
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