
Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

Establishing Continuous App Improvement by

Considering Heterogenous Data Sources

https://doi.org/10.3991/ijim.v15i10.20613

Simon André Scherr (), Steffen Hupp, Frank Elberzhager

Fraunhofer IESE, Kaiserslautern, Germany

simon.scherr@iese.fraunhofer.de

Abstract—Mobile apps have penetrated the market and are being used eve-

rywhere. Companies developing apps face increasing challenges such as short

time to market or demand for high quality. Furthermore, the success of an app

also depends on how users perceive its quality. Feedback provided by users in-

fluences other potential users and provides new opportunities for identifying

features. Consequently, it is a valuable source of input for app developers with

respect to product improvements. One form is textual feedback. This kind of

feedback is usually distributed across various data sources. Therefore, it must be

captured from these sources and put into one single pool of data before it can be

analyzed. The analysis must take into account the peculiarities of the short re-

lease cycles and high change rate of features for mobile apps. In this article, we

present User Echo Service (UES), which was built to address heterogeneous da-

ta sources. The aim of UES is to allow product managers to be able to be al-

ways up to date with the latest feedback data. Therefore, we have created an ex-

tensible architecture aimed at supporting different data sources and present the

feedback collection scheduling system. This forms the prerequisite for subse-

quent analyses of the collected data. We discuss our solution and provide ideas

for future development.

Keywords—Quality Assurance, Apps, User Feedback, Architecture, Product

Improvement, Quality Monitoring

1 Introduction

Mobile apps have become an essential part of our daily life. For many people, their

smartphone has become their primary electronic device. For app-developing compa-

nies, key challenges are high market pressure, the diversity of devices, and the often

limited resources during development. However, users demand high quality (includ-

ing great user experience) as well as features that support their tasks in a meaningful

way.

Various approaches and techniques support the development with regard to some

of these challenges, such as the use of MVPs for quick market entry, agile and lean

development practices [1], increased automation of quality assurance activities, or

different web services. In our research, we focus on analyzing and using user feed-

66 http://www.i-jim.org

https://doi.org/10.3991/ijim.v15i10.20613

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

back to assure and improve app quality. Such feedback is often not considered sys-

tematically by developers, but can offer great value in terms of enabling a better un-

derstanding of customers, their real needs, and bugs discovered by users. In recent

years, the role of user feedback for development has increased [2]. This also means

that developers of apps need to consider feedback, as users and potential users are

influenced by it. Bad feedback can have an impact on other potential users who are

not using this app yet and may prevent them from using it. To make it easier for de-

velopers to consider feedback, we have developed an approach that captures usage

feedback and textual feedback – the latter being the focus of this article.

For such an approach to be used, textual feedback must be gathered systematically

and quickly. Artur Strzelecki [3] notes that ratings and reviews play an important role

as success factor for mobile apps in the stores. Users frequently give feedback and

also change their minds based on recent changes of the product [4]. Therefore, data

should be continuously gathered and evaluated in order to enable reaction to fast

trends and implementation of changes within short release cycles [5]. As many differ-

ent sources exist nowadays where users can provide feedback (e.g., app stores, social

media), another central requirement is that different sources must be taken into ac-

count. Research has shown that considering just one type of source lacks a significant

portion of feedback [6]. As far as textual feedback for apps is concerned, these could

be the Apple App Store, Google Play, or social media sources like Twitter. The data

from these sources must be unified to create a holistic view of the users’ perspective

on the product. In the best-case feedback would be captured and analyzed continuous

by considering all relevant data sources.

In this article, we therefore focus on the following research question:

How to continuously gather feedback from different sources in order to pro-

vide a foundation for user feedback analyses representing a holistic view on this

feedback?

In this article, we introduce User Echo Service (UES), which implements these re-

quirements. This means that we focus on data acquisition and not on subsequent feed-

back analysis steps. UES offers continuous user feedback monitoring and includes

new sources such as different app stores and social media. Our tool was further devel-

oped to cope with the new requirements. We embed our work into the current state of

the art (Section 2) and discuss our solution in Section 3. Section 4 provides a mapping

of our data model to different sources, while Section 5 discusses our solution. Section

6 closes with a summary and an outlook on follow-up work.

2 Foundations and Related Work

2.1 User feedback and the crowd

The rise of central app stores and smartphone platforms has enabled users to sub-

mit reviews that can be viewed by other (potential) users and developers and to view

the entries of other users. As a result, app store reviews and ratings have become an

important factor for a product’s success. At the same time, the use of social media has

iJIM ‒ Vol. 15, No. 10, 2021 67

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

become a society-wide phenomenon. These two factors have accelerated the spread of

the concept of crowd requirements engineering (CrowdRE). With the help of Crow-

dRE, requirements engineers are no longer limited to performing only traditional

requirements engineering to create the requirements for a product – they are now also

supported in paying attention to the information provided by its potential user base. In

contrast to giving tasks to the crowd, CrowdRE gives the crowd its own voice [7].

In this context, requirements researchers have started to investigate the potential

benefits of performing app store and social media mining to gather new requirements.

Broadening the idea beyond requirements, we are not only able to validate, verify, or

identify requirements for a product. Applying such mining in a continuous fashion

also allows identifying potential bugs in a product. Projects like SUPERSEDE [8] or

Opti4Apps [9] focus on the potential of product improvement by systematically con-

sidering the crowd and user feedback.

In order to systematically gather, analyze, and provide feedback, different classifi-

cations or taxonomies exist. For example, Groen et al. [10] introduced five dimen-

sions: Awareness, mode, data type, intention, and homogeneity, each with two to

three sub-categories. This taxonomy was developed with respect to CrowdRE and is

based on a literature analysis. Elberzhager and Holl [11] provide another classification

with a strong focus on mobile app feedback. This classification was mainly developed

to identify different feedback channels and to understand the different kinds of feed-

back. Considering these classifications, textual feedback, which is the focus of this

article, can be understood as explicit feedback. It provides concrete content, for ex-

ample as written text or through emojis in the text. Textual feedback can be directed

at the developers (or the app-developing company in general) but can also be used to

share one’s experience with other users. Finally, feedback can be very general (e.g.,

“nice app”), which gives an idea about the general perception, but also very concrete

(e.g., “I’d like to have feature X”). These characteristics already show that textual

feedback can be of great value for app developers.

2.2 Existing approaches for textual user feedback collection and analysis

In recent years, a lot of publications have focused on textual feedback analysis, its

potential, as well as opportunities for analyzing such texts [12]. Within this field,

many technical concepts relate more to natural language processing (NLP) than to

feedback analysis in parallel with software development. In NLP, sentiment analysis,

where (parts of) texts are classified between positive and negative, is a central con-

cept. Another technique is topic modeling, for example to extract features of an app.

Groundbreaking work in sentiment analysis for user feedback was done by Guz-

man and Maalej [13]. They created an automated approach that analyzes user feed-

back data from the Apple App Store and Google Play. They applied a mixture of

sentiment analysis and topic modeling to extract the features users are talking about.

Their goal was to create an analysis solution that shows how people perceive certain

features. However, their approach suffers from the problem that infrequently men-

tioned features are not properly detected. In addition, according to the authors, the

third-party lexical sentiment analyzer they used suffers from limitations [13].

68 http://www.i-jim.org

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

Martínez-Cámara et al. [14] created a sentiment analysis for Twitter that combines

different sentiment analysis approaches. The combinations used and the way they

combine the results of each sentiment analyzer show that multiple classifiers can

increase the quality of the result compared to the use of a single one. As their ap-

proach also includes machine learning, the proposed ensemble classifier needs to be

properly trained. Depending on the app that needs to be analyzed, this training must

be repeated.

Vu et al. [15] present PUMA, an approach for extracting user opinions in a phrase-

based way. For PUMA, a phrase is “a sequence of consecutive words corresponding

to a grammatically correct phrase, clause, or sentence in English” [15]. The authors

mention the problem that their approach suffers from the low language quality found

in online texts. To detect negative and positive phrases, they assign star ratings to the

identified phrases.

In addition to these approaches, many other approaches for analyzing feedback

from app stores exist. These approaches can mostly be differentiated by the form of

sentiment analysis they apply or by the approach they use for topic modeling; exam-

ples are [16], [17], [18], and [19].

Morales-Ramirez et al. [20] proposed a concept for making use of user feedback

for the requirements prioritization process. Their aim is to evaluate user feedback in

multiple prioritization dimensions and not only by one prioritization type. To realize

this concept someday, the authors provide a characterization of the properties of user

feedback, including ideas on how the different properties could be extracted from

feedback.

In 2017, Guzman et al. [21] proposed ALERTme, an approach that analyzes textual

user feedback on software from Twitter. This was one of the first studies focusing on

gathering requirements from tweets sent to support accounts of software systems.

ALERTme is only capable of classifying, grouping, and ranking tweets. Other social

media sources are not supported, nor does the system cover app stores.

An investigation done by Nayebi et al. [6] compares app store feedback and Twit-

ter feedback. As reported by the authors, when evaluated for the same app, these two

sources have substantially unique feedback provided in just one of the sources. This

means that neither using social media feedback only nor app store feedback exclusive-

ly can show the broad picture of user feedback. Considering Twitter in addition to

Apple App Store feedback led to 22.4% additional feature requests and 12.89% addi-

tional bug reports. This shows that the picture of user feedback becomes more com-

plete when multiple sources are considered.

Palomba et al. [22] present an approach called CRISTAL. The goal is to link user

reviews to git commits. In contrast to the approaches mentioned above, CRISTAL

does not focus on or provide an analysis of the feedback. The proposed solution is

rather intended as a starting point for perceiving feedback as a continuous process to

be considered during development.

The analysis of the work being performed in this field shows that many approaches

focus more on aspects of automation support for analyzing textual feedback than on

software development decision support. This leads to a focus on natural language pro-

cessing (NLP). This clearly pushes the boundaries of NLP further, but leads to the

iJIM ‒ Vol. 15, No. 10, 2021 69

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

problem that most studies merely consider a single data source to explore their capa-

bilities in NLP. Unfortunately, research has shown that even though a lot of research

has been performed, e.g., in the area of sentiment analysis, the quality of these results

still varies to a large extent [23] [24]. Nayebi et al. [6] clearly showed that multiple

sources must be considered if feedback analysis is to be embraced in software devel-

opment practices. In an ideal world such a System should support any source of feed-

back information.

In addition, it is necessary to consider user feedback not only as a static data set to

be analyzed. Due to the nature of mobile development, updates are issued frequently,

features are added and changed; the same is the case for user feedback, which is pro-

vided continuously by the user base. Scherr et al. argue in [5] that feedback should be

captured and analyzed side by side with continuous software evolution. Furthermore

Scherr et. al. propose to include emotions of the end user for user feedback analysis

[25]. Therefore, feedback analysis is a continuous process. This requires permanent

acquisition of feedback to to match iterative changes of the product.

We argue that in order to apply textual user feedback analysis in practice, ap-

proaches have to be flexible in terms of data sources. In addition, they have to be able

to detect trends and events in data that are related to subsequent changes in a product

(other researchers such as Palomba et al. [22] and Hassan et al. [4] also support the

goal of continuous feedback gathering).

3 Technical Solution for Feedback Gathering

We propose User Echo Service built with the needs of developers and product

managers in mind. It provides the ability to use heterogeneous data sources and peri-

odic data updates to form a data-source-agnostic basis for further analysis of the gath-

ered feedback data. The overall vision is that it should be capable of collecting any

kind of textual user feedback independent of where it came from. In addition, this data

collection has to be as easy as possible. Therefore, we introduced the concept of

crawlers for popular data sources, which can automatically fetch data, and an API for

dynamically adding feedback from more individual data sources. These individual

data sources could be, for example, a set of private data that is not available publicly,

like customer support data. As such data can provide very valuable feedback, it has to

be considered in order to get a holistic view on the opinions of the user base.

From a high-level perspective, the UES consists of the data collection infrastruc-

ture, the analysis backend, and the web-based front end for real-time analyses and

visualization of the analysis results and the collected feedback, as depicted in Fig 1. In

the following, we will explain our data collection infrastructure, which is the founda-

tion for the subsequent user feedback analysis not discussed in this article. We will

explain how the system copes with the heterogeneous nature of user feedback and the

different data sources as well as with permanent monitoring of user feedback.

The data collection infrastructure can support different data sources, from which it

can automatically capture textual user feedback. To achieve this, we designed a plugin

system where different crawlers can simply be added or exchanged without having to

70 http://www.i-jim.org

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

rebuild and deploy the whole system. Therefore, we created an API for crawlers and a

data model representing feedback in an abstract manner. An overview of the different

components involved in UES is shown in Fig 2. In the next sections, we will present

the three major aspects of our data collection infrastructure: the feedback data model,

the API for the crawlers, and our scheduling mechanism.

Fig. 1. System overview

Fig. 2. Functional decomposition of the data collection infrastructure

3.1 Common feedback data model

First, we created a common feedback data model, which is used throughout all

components and is therefore located in a shared library. Our main challenge regarding

the data model was to support all kinds of possible data sources without losing any

relevant data. To come up with this data model, we first examined what kinds of data

could be extracted from an initial set of data sources. Data sources explicitly consid-

ered for the initial creation were Apple App Store, Google Play, Amazon Market-

place, and Twitter. In addition, one of our requirements was that it should be possible

to include different kinds of feedback, meaning individual feedback items like cus-

tomer support data should be supported. We also considered different analysis possi-

bilities involving these data points. The result was an abstract model containing all the

data we need for these analyses, like feedback text or rating. We created a mapping

iJIM ‒ Vol. 15, No. 10, 2021 71

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

between the crawlable data points and this model in order to maintain traceability to

the data source and the semantics. Then we included other data sources and verified

that the data model was still compatible with them.

As we want to collect user feedback, the central data structure is the Review, which

contains the textual feedback of the users on the product (depicted in Fig 3). Some

other feedback metrics are also available in the data source, like the five-star rating in

the app stores. Such metrics are modeled as the data structures Rating and RatingSet-

ting. The RatingSetting stores information on what kind of Rating this is (enumeration

RatingType). RatingTypes encompasses star rating (which is basically any rating

where a value between a defined minimum and maximum can be chosen), posi-

tive/negative (including neutral), and reaction (which can be, for example, a tag, a

sentiment, or an emoji). The actual value is stored in the Rating, which references the

corresponding shared RatingSetting. RatingSettings are defined for each data source.

Each Review can have several (or no) Ratings depending on the data available from

the specific data source.

Fig. 3. Data-source-agnostic feedback data model – Review view

Another set of metrics resulted in the data types Confidence and ConfidenceSet-

ting.

These are very similar to Rating and RatingSetting, but do not represent a user’s feed-

back on a product; rather, they give an indication of how reliable or important this

user’s feedback is considered by others. An example is Amazon’s “helpful review”

72 http://www.i-jim.org

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

functionality, where other Amazon customers can mark a review as helpful and there-

fore it can be assumed that the review seems convincing, which improves confidence

in the review. This kind of confidence measure is represented by the ConfidenceType

DoubleCounter, with the value being the helpful count and the counter being the total

number of votes (helpful + not helpful). Other possible confidence indicators are, for

example, the number of retweets or comments on Twitter, which are examples of the

ConfidenceType Counter. These metrics give an indication of the visibility of the

feedback to other users. Facebook’s new like-system with different emojis instead of a

plain counter is modeled as the Reaction ConfidenceType, with the StringValue speci-

fying the reaction and the value specifying the number of occurrences.

In many sources, different types of replies to Reviews are also possible. We mod-

eled three different types of replies as relationships between Reviews. First, we have

replyToParent, where the reply references the original Review. Second, there is reply-

ToSibling, indicating a relationship between two Reviews on the same hierarchical

level, e.g., citing a previous comment in a forum thread. Finally, we have the

shareReply relationship, which models references to a Review without content of its

own, but, e.g., with its own set of Confidence metrics.

With Review, Rating, RatingSetting, Confidence, and ConfidenceSetting, we have

several means for modeling the user’s feedback. However, as we want to have full

traceability from the analysis results to the actual feedback on the data source, it is

necessary to add references to the data sources and to further structure the feedback.

This would also enable us to recrawl specific reviews in case we need to extend the

feedback model in the future. Fig 4 depicts the data model used to address this issue.

Product represents an entity for which users give feedback in one or more data

sources. An example is the Facebook app, which is available in different stores, such

as the Apple App Store, Google Play, or the Microsoft Store. All Reviews for this

entity are linked to Product, so reviews can be found easily by Product. Product also

has a ProductCategory. We compared the different categories of multiple app stores

and homogenized them into a joint tree of categories.

As we also need to distinguish the data sources from which the feedback is gath-

ered, we introduced ProductSource and SourceType. SourceType models a data

source, like the Apple App Store in the United States in English. The language is

relevant for conducting some language-dependent analyses. ProductSource connects a

Product with a SourceType and holds information on the URL and the identifier of the

product in the specific data source, e.g., the package identifier in Google Play

(“com.facebook.katana” for Facebook). We further introduced ReviewSource, which

associates a Review with a ProductSource and has a URL and an identifier to directly

reference the feedback in a data source.

iJIM ‒ Vol. 15, No. 10, 2021 73

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

Fig. 4. Data-source-agnostic feedback data model – Product view

We chose Entity Framework and SQL Server as the technologies for creating the

code-first data model described above. All changes to the model will be modeled as

migrations to ensure data integrity and consistency when we want to extend the model

without having to discard already collected feedback.

3.2 Crawlers and crawler plugin API

Once the data model is defined, we can build crawlers for different feedback

sources. All crawlers are separate components and use different means to get the data

of their data source (e.g., existing APIs from Twitter). Our crawlers also support dif-

ferent functionalities depending on the crawling method used for the source, like

crawling a past timespan (start and end in the past), limiting how many reviews

should be crawled at most, and approximating the progress of the current crawl. The

different means of accessing the data sources, the necessary extensibility to support

new data sources, and the need for a central component that controls all crawlers were

our main challenges for coming up with a suitable system. Our solution is a plugin

system with a specified API for crawlers and a plug-and-play crawler plugin API,

which is depicted in Fig 5.

The crawlers can be used by other components via the plugin API, which is pack-

aged as a library and used by the crawlers as well as by the consumers of the plugin.

This enables us to work independently on creating different crawlers using different

technologies without having a central component that needs to reference all of them.

74 http://www.i-jim.org

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

Fig. 5. Fig 1Crawler API and plugin

The API specifies that a crawler can be asked whether it supports the input, and it

can be told to start crawling the source, using optional parameters to further limit the

crawl, like the start and end timestamps or the maximum number of reviews to crawl.

The input can differ a lot and depends on the crawler; it can be, for example, a product

ID or a URL on Amazon, or search terms and hashtags on Twitter. As an additional

feature, crawlers also send regular updates of the crawl’s status and the reviews

crawled up to that time using events. If the crawl is aborted, information on the reason

and on the progress the crawler has made until it was aborted are returned to the call-

er. A crawler might abort a crawl, for example, if the data source repeatedly blocks

attempts to access data or if usage limits are exhausted. If a crawler is used for a

product that does not exist yet, it will also extract all necessary information and create

Product and ProductSource before starting to crawl Reviews and related entities.

If no APIs exist, parsing HTML is an alternative. This comes with the risk that the

crawler may stop working or may crawl incorrect data, e.g., if the layout of the

crawled website changes. To handle this problem, the crawlers perform some checks

and will abort if these fail. When using unofficial APIs, we designed our crawlers in a

way that should not introduce exceptionally high loads on the target site, e.g., by

slowing the crawls down and waiting between single requests to the data source.

iJIM ‒ Vol. 15, No. 10, 2021 75

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

As some sources have low usage limits for APIs or start blocking the crawls after

some time, it has become apparent that manually starting crawls every couple of days

on different products is not effective. The aforementioned measures taken to avoid

high loads on the target site have alleviated the problem, but have not completely

solved the issue of getting blocked. If we could spread out the crawls for different

products on the same data source, our crawls would be much more likely to be suc-

cessful. We also want to assure that we are gathering all feedback from a source with-

out any gaps, meaning we have to regularly crawl new feedback.

3.3 Scheduling mechanism for periodic crawls

The last remaining major challenges for the data collection infrastructure are relat-

ed to regularly crawling data for all products we are interested in. We have to consider

the request limits of the different data sources and the varying rates between products

of new collectable feedback per data source, and we must be able to handle aborted or

unsuccessful crawls. We tackled these problems by designing a scheduling mecha-

nism that enables periodic crawls. Our crawl scheduling service lets us define which

product should be crawled on which data source how often, so we can fine-tune the

schedule to the rate of new feedback. This extends the previous ability of manually

starting a crawl for a delta update on the data. To have a history of the crawls, we

introduced the CrawlRun data type, which stores information on when a crawler has

started and finished, what it crawled, and what the result of the crawl was. The

CrawlSchedule data type defines the ProductSource (and thus the Product) to work

on, the maximum number of reviews to crawl, and the timespan between the start

times of the crawls in minutes. It also holds the next scheduled crawl time, which can

be modified to spread out crawls on the same data source. The CrawlerConfiguration

type holds the information on the connection and the setting for the crawler itself.

Location and IsRemote determine the local path or URL of the crawler.

CooldownMinutes defines the minimum time after each crawl of the referenced

crawler before it can crawl again, delaying crawls scheduled for it. MaximumCount

defines the maximum number of reviews to be crawled at once. SupportedSource-

TypeName refers to the SourceType.Name from the common feedback data model

and is the connection between the CrawlSchedule and the CrawlerConfiguration via

the ProductSource. This model is shown in Fig 6. The scheduler stores its data in its

own database, which is not directly connected to the database holding the common

feedback data model.

To make it easier to optimize the crawls, we introduced a functionality to distribute

them for given timespans. Crawls to different data sources may be executed in paral-

lel, as these crawls do not influence each other. The scheduling service runs continu-

ously and utilizes a task scheduling mechanism set to the next execution time of any

crawl to start the respective crawl.

To be able to deploy the crawlers on several different machines, we created a

standardized web service executable that uses the aforementioned crawler plugin API

to utilize any crawler’s capabilities. Conceptually similar to the web service approach,

we also developed a command line interface for the crawlers that is more convenient

76 http://www.i-jim.org

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

to use if crawling on a local machine. We use this, for example, when crawling a new

product that does not have a CrawlSchedule yet or does not need one.

Our crawl-scheduling service is a web service that offers a REST API to manage

schedules and provide information on connected crawlers. It furthermore provides a

web-based set of forms for creating, listing, modifying, and deleting schedules and

upcoming run times. The crawlers can be accessed using the aforementioned web

services, whose URLs are configured in the scheduling service.

Fig. 6. Fig 2Crawl scheduler model

As we explored several data sources, we also came across sources that cannot be

effectively and efficiently crawled by machines, but might still be interesting for in-

clusion in our data collection. Some of these sources are, for example, custom web-

sites and forums, but also graphical content like pictures and videos. For such cases,

another tool was developed to provide a simple UI for manually entering data into the

database according to our model. Such entries are marked, so if we later develop a

crawler for that source, we can distinguish them from automatically crawled entries.

All this has resulted in a growing collection of feedback on several products in our

database. However, this collection has to be processed further to provide further in-

sights. To enable continuous analysis of the crawled feedback, we extended the crawl-

scheduling service in order to be able to notify other components that new feedback

has been crawled so they can start analyzing it. We have already begun to develop an

extensible analysis infrastructure for the tool, which will support continuous process

feedback by applying different, partly interdependent, analysis steps while always

preserving traceability to the source data.

iJIM ‒ Vol. 15, No. 10, 2021 77

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

4 Evaluation

In this section, we will present the evaluation of our data acquisition approach. We

will first show how we map our data model to different data sources. Then we will

provide an example of how UES can be used in practice to make product owners

aware of the latest data.

4.1 Mapping data sources to our data model

In the following, we will show that our data model (see Fig 3) is capable of han-

dling different data sources. Currently we have added support for the stores Amazon

Marketplace, Google Play, and Apple App Store. In addition to that, we have an im-

plementation for the social media data sources Twitter, Instagram, and Facebook,

including a former crawler to the now closed Google+. We will conceptually cover

how we have currently mapped the data sources implemented as crawlers and the

crawlers under development, and describe the manual pasting functionality of the

system. This will show that even though the model is general and abstracted from

concrete data sources, we are able to host different data sources while keeping the

detailed data they provide for user feedback. We will skip the attribute Id for each

entity as it is only used by our database to maintain primary keys and foreign key

relationships.

Project, Product, and ProductCategory are independent of any data source as they

are purely related to the app or set of apps whose feedback is being monitoring. Prod-

uctSource, SourceType, and ReviewSource are entities that are set based on the data

source and are only used to identify the data being retrieved; they do not contain the

actual feedback data.

The mapping of the data provided by a data source to the data model itself starts

with the Review entity, as this entity is our foundation for representing feedback. For

the Apple App Store, Amazon Marketplace, and Google Play, the mapping of the

attributes is similar and covers all attributes. We get a non-unique identifier for the

Author from the Apple App Store and Google Play, which preserves the anonymity of

the user, but from Amazon Marketplace, we get the actual user id. The data we get

from the source for Date only contains the date but not a time component for the app

stores. Text and Title for Review are set in a straightforward manner.

Our social media sources Twitter, Instagram, and Facebook behave differently.

They provide a unique identifier for the Author, and the Date of the posting also con-

tains the exact timestamp. As these sources only allow texts without titles, the title

attribute is always empty and only the text is set. In the case of a multimedia posting,

we are not able to capture the multimedia content of the source, only the textual de-

scription. Manually added feedback supports all entities, but the degree of specificity

depends on the data. An email to customer support might contain data with all attrib-

utes fully set, but feedback derived from a phone call might just contain a date and a

textual summary. It is mostly up to the developer or customer support team how they

fill out the form.

78 http://www.i-jim.org

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

For the Language entity, Google Play provides this information, as the store itself

is divided by language codes. Therefore, the language is fixed with the crawl. As the

Apple App Store as well as Amazon Marketplace are divided by country, we could

assume that the language of the feedback is the primary language of that country. To

get a more precise classification, however, it is more appropriate to use language de-

tection frameworks based on the text and titles submitted in a review and set the op-

tional Language in the Review accordingly. The latter is necessary for all social media

sources as they do not offer any division by language or country at all.

The ratings available for a review are individual for each data source. First of all,

social media sources currently in use have no means of providing a direct rating for a

product. Ratings exist primarily in store scenarios. Apple App Store, Amazon Market-

place, and Google Play currently have a five-star rating system. Our system maps this

rating as shown in the following example. A Review only has one Rating, with a Val-

ue between one and five. The corresponding RatingSetting shows that this is a Rating

with a Max of five and a Min of one. The name is “five-star-rating” and the Rat-

ingType is set to StarRating. Manually added data in the form of our inserter also

supports ratings, although it depends on the kind of feedback entered whether there is

relevant data.

For the Confidence entity, the Apple App Store does not provide any information.

Amazon Marketplace contains a feature showing whether a review was helpful or not.

We capture this as DoubleCounter Confidence, with the counter combining the help-

ful and unhelpful votes and the value containing the helpful votes. In Google Play,

only helpful votes are counted, so this is only a normal Counter.

Social media sources come with several potential confidence metrics. Twitter, for

example, offers the ability to express likes with a heart or share the same thought in

the form of a retweet. The number of likes and retweets shows how many people

potentially agree with the posting. Therefore, we capture both in the form of Confi-

dence expressed as a Counter. In addition, Twitter offers commenting on posts (re-

plies), which also indicates the interest of people in a posting. In contrast to likes and

retweets, however, comments do not directly signal agreement or disagreement. In the

end, the number of comments is implemented in the form of Counter Confidence. The

same is the case for the comment counts on Facebook and Instagram.

Like Twitter, Facebook shows the number of shares of a post. Instagram does not

offer such a counter. Both platforms also support forms to express one’s attitude to-

wards a posting. In the case of Instagram, a like feature is available similar to the one

on Twitter. For Facebook, this form of confidence is more complex, expressed in the

form of Reactions, including Love, Haha, Wow, Sad, Angry, and the traditional Like.

The replyToParent relationship can be found in forums (thread start and replies),

on Facebook, and on Instagram as comments/replies to a post and on Twitter as re-

tweets with the user’s own commentary (“RT <Twitter-url>”). The replyToSibling

relationship is mostly present in forums, where in a reply to a thread one can usually

cite multiple comments in a thread. The shareReply can be found in all social net-

works, e.g., on Twitter as a retweet (without the user’s own commentary) or on Face-

book as a share.

iJIM ‒ Vol. 15, No. 10, 2021 79

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

The mapping shows that we can currently express the two most popular app stores,

Google Play and Apple App Store, with our model. In addition, Amazon Marketplace

is a third store offering Android apps and apps for Kindle Fire. From the perspective

of social media, we have mapped postings from Facebook, Twitter, and Instagram.

Looking at the number of users on these platforms, we should cover a total of more

than 3.5 billion active users [26]. This shows not only the flexibility of the approach

but also the fact that we support a huge share of the social network market.

4.2 Using the data collection infrastructure in practice

One major goal of our solution is is that the end user does not interact directly with

the data collection infrastructure. Instead, we added the management capabilities for it

to our web-based visualization. This makes it easy to use, as the product manager

does not need to use the REST API directly, but can use it in a browser. The design

aims at providing a simple user interface for management, as the product manager

should be able to focus on the analyzed data for their product and not on configuring

the tool. A new product can be easily added directly on the landing page. The only

elements that have to be specified at this stage are the name and the category of a

product (Fig 7).

Fig. 7. Adding a product to our tool

The product sources and the corresponding schedules can be maintained in the set-

tings tab of each product. Here, product sources can be added or altered. Once a prod-

uct source contains raw data, it cannot be deleted anymore. On the same screen, the

product manager can create, alter, and delete schedules for the product sources in

order to get the latest data at the desired intervals.

The details section of a schedule shows information on when the next crawl for this

source is scheduled and what the desired interval is (Fig 8). Both values can be altered

here. However, no immediate manual update of the data right from the dashboard is

possible. Changing the next interval shifts the schedule. An ‘update now’ feature is

planned for inclusion in a future release.

Next to the details, the user sees the history of frequent crawls. Information is

shown on when the crawl took place and from which timeframe the feedback was, as

80 http://www.i-jim.org

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

well as the total amount of feedback collected, divided into successfully crawled,

crawling failed, and number of errors. This history gives the user insights into whether

a higher frequency of updates would make sense.

Fig. 8. Crawl schedule status and editing view

5 Discussion

With our data collection infrastructure, we have created a flexible solution that is

able to handle very different data sources. Our approach introduces and combines

several new aspects for collecting data, like having the described flexibility, our data-

agnostic understanding of the data, and the means to continuously process new data.

The current implementation supports the Apple App Store, Google Play, and Amazon

Marketplace as store sources. In addition, we have added the social media data

sources Facebook, Twitter, and Instagram. We also had a crawler for the social net-

work Google+, which is now shut down. Crawlers supporting YouTube and phpBB

are currently under development and will also suit the API and data model. In addition

to automated crawlers, we have also added a module where developers can manually

insert feedback, e.g., from customer support. The range of sources currently supported

and the ease of including new sources shows the flexibility of this approach.

If the approach presented here is embedded into the software engineering process,

it can lead to continuous collection and analysis of user feedback. Due to its ability to

iJIM ‒ Vol. 15, No. 10, 2021 81

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

handle data sources in the form of installable plugins as well as the ability to manually

add raw data, acquiring a broad range of feedback is possible. By enabling a continu-

ous and comprehensive stream of feedback, we offer a way to collect feedback from

many sources continuously in order to improve the product under development.

Continuous analysis of user feedback is facilitated by UES right from the crawling

step, as well as for each data source and query in a data source. Once the crawling

intervals have been set up initially, the system handles the updating of the data. When

new data is received, the product manager sees immediately the updated data. The

same can be done for the analysis. By extending the system with an analysis frame-

work that can continuously analyze newly collected data, we can provide faster and

more complex insights into the user feedback. Such a framework should support dif-

ferent steps of interdependent analyses to provide flexibility while keeping the system

complexity low. By continuously streaming new data into such a framework or analy-

sis pipeline the degree of automation is increased substantially.

When collecting feedback continuously, the data set will grow so much that an ex-

perience database emerges. Teams will learn from past events and be able, for ex-

ample, to identify failure patterns, which can then be checked in their test runs. These

patterns can be derived from lessons learned about the analyzed detected events. In

the case of bug and crash reports, developers have a growing database of checks they

can introduce to prevent issues from being reintroduced in subsequent releases.

Switching the perspective from issues to events, showing ideas for feature requests

or change requests as well for appreciating feedback, enables developers to extend,

update, verify, and validate their requirements. Such an event detection can be imple-

mented as one of the analyses embedded in the analysis pipeline. By doing this con-

sistently in the development process, a product will subsequently match the users’

expectations better. This should lead to a higher product acceptance rate.

As our approach allows collecting and detecting feedback in an automated way, it

offers benefits for developers without creating additional effort for them. The ability

of our web-based dashboard to fully customize when each data source of a product

should be updated as well as the history of recent crawls give the product manager full

control and transparency of the data acquisition process.

One limitation of our approach is that developers have to ensure that they are lis-

tening to the right feedback channels. Collecting feedback from app stores is straight-

forward, as it is given directly on the app. As soon as social media or online forums

come into play, however, feedback is spread around the data source. It is not sufficient

to just collect the feedback sent directly to the developer’s social media account. In

addition, a collection of hashtags – at least the product name – often also contain

relevant feedback. Therefore, developers have to carefully set up the terms they are

interested in on social media. The better they deal with the selection of the search

terms, the more complete the picture of the feedback will be.

82 http://www.i-jim.org

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

6 Conclusion

In this article, we presented parts of User Echo Service. We developed a data col-

lection infrastructure that can handle various data sources by maintaining a single data

structure. The data model abstracts from the actual data being retrieved and clusters it

into different entities. New data sources can be added by creating a library following

our plugin API for crawlers. In addition, the infrastructure supports changing the data

sources as well as updating the data from a data source in an automated way by using

a scheduling mechanism. As data sources are exchangeable for us, the crawling states

have to be maintained for each data source rather than for the entire product. In addi-

tion to the six different crawlers available so far, we can manually add feedback not

captured by our crawlers. This is used, for instance, to manually add customer support

requests and allows us to capture feedback in the sources where the users of a certain

app are giving it. This feature will be extended even more, as additional crawlers are

currently under development to access additional social media sources. Even though

the schedulers provide a comfortable way to get the latest data at the desired interval,

it might be necessary to get a data update immediately. A future release of the dash-

board will contain a trigger for the crawling system to manually update a data source.

This will be done by scheduling a one-time crawl as soon as possible.

As apps are usually developed in fast and highly iterative development cycles,

changes are introduced within short periods. Instead of trying to perform a full analy-

sis, our approach focuses on the detection of trends. These trends can be detected with

our event detection. To be able to catch short-term trends as well as longer ones, we

apply different granularities for the time range to be considered. This keeps develop-

ers always up to data with the latest changes in the data. Analyzing feedback continu-

ously along with performing event detection also allows comparing different releases

and features. This makes it easier to detect how a series of changes to a product over

multiple releases is perceived by the end users of the application. Future work will

focus especially on increased automation of the trend detection.

7 Acknowledgements

The research described in this paper was performed in the project EnStadt: Pfaff

(grant no. 03SBE112D and 03SBE112G) of the German Federal Ministry for Eco-

nomic Affairs and Energy (BMWi) and the Federal Ministry of Education and Re-

search (BMBF). We thank Sonnhild Namingha for proofreading.

8 References

[1] L. W. Khong, L. Y. Beng, T. W. Yip and T. S. Fun, "Software Development Life Cycle

AGILE vs Traditional Approaches," in International Conference on Information and Net-

work Technology, Chennai, India, 2012.

iJIM ‒ Vol. 15, No. 10, 2021 83

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

[2] W. Maalej, M. Nayebi, T. Johann and G. Ruhe, "Toward Data-Driven Requirements Engi-

neering," IEEE Software, vol. 33, no. 1, pp. 48 - 54, 2015. https://doi.org/10.1109/ms.

2015.153

[3] A. Strzelecki, "Application of Developers’ and Users’ Dependent Factors in App Store Op-

timizatio," International Journal of Interactive Mobile TechnologiesOpen Access , vol.

134, no. 3, pp. 91-106, 2020. https://doi.org/10.3991/ijim.v14i13.14143

[4] S. Hassan, C. Tantithamthavorn, C.-P. Bezemer and A. E. Hassan, "Studying the dialogue

between users and developers of free apps in the Google Play Store," Empirical Software

Engineering, vol. 23, no. 3, pp. 1275–1312. https://doi.org/10.1007/s10664-017-9538-9,

2018. https://doi.org/10.1145/3180155.3182523

[5] S. A. Scherr, F. Elberzhager and S. Meyer, "Listen to Your Users - Quality Improvement

of Mobile Apps through Lightweight Feedback Analyses," in International Conference on

Software Quality, Vienna, 2019. https://doi.org/10.1007/978-3-030-05767-1_4

[6] M. Nayebi, H. Cho and G. Ruhe, "App store mining is not enough for app improvement,"

Empirical Software Engineering, vol. 23, no. 5, p. 2764–2794, 2018. https://doi.org/10.

1007/s10664-018-9601-1

[7] E. C. Groen, N. Seyff, R. Ali, F. Dalpiaz, J. Doerr, E. Guzman, M. Hosseini, J. Marco, M.

Oriol, A. Perini and M. Stade, "The Crowd in Requirements Engineering," IEEE Software,

vol. 34, no. 2, pp. 44-52, 2017. https://doi.org/10.1109/ms.2017.33

[8] S. N. Francesch, A. A. Gamazo, Ó. R. Moral and J. Varga, "Big data management chal-

lenges in SUPERSEDE," in Proceedings of the Workshops of the EDBT/ICDT 2017 Joint

Conference, Venice, Italy, 2017.

[9] S. A. Scherr, F. Elberzhager and K. Holl, "An automated feedback-based approach to sup-

port mobile app development," in Proceedings - 43rd Euromicro Conference on Software

Engineering and Advanced Applications, SEAA 2017, Vienna, 2017. https://doi.org/10.

1109/seaa.2017.45

[10] E. C. Groen, J. Doerr and S. Adam, "Towards crowd-based requirements engineering. A

research preview," in International Working Conference on Requirements Engineering:

Foundation for Software Quality, Essen, Germany, 2015. https://doi.org/10.1007/978-3-

319-16101-3_16

[11] F. Elberzhager and K. Holl, "Towards Automated Capturing and Processing of User Feed-

back for Optimizing Mobile Apps," Procedia Computer Science, vol. 110, pp. 215-221,

2017. https://doi.org/10.1016/j.procs.2017.06.087

[12] N. Jha and A. Mahmoud, "Mining User Requirements from Application Store Reviews Us-

ing Frame Semantics," in Requirements Engineering: Foundation for Software Quality,

2017, Essen, Germany. https://doi.org/10.1007/978-3-319-54045-0_20

[13] E. Guzman and W. Maalej, "How Do Users Like This Feature? A Fine Grained Sentiment

Analysis of App Reviews," in 2014 IEEE 22nd International Requirements Engineering

Conference (RE), Karlskrona, Sweden, 2014. https://doi.org/10.1109/re.2014.6912257

[14] E. Martínez-Cámara, Y. Gutiérrez-Vázquez, J. Fernández, A. Montejo-Ráez and R.

Muñoz-Guillena, "Ensemble classifier for Twitter Sentiment Analysis," in Proceedings of

the Workshop on NLP Applications: Completing the Puzzle co-located with the 20th In-

ternational Conference on Applications of Natural Language to Information Systems, Pas-

sau, Germany, 2015.

[15] P. Vu, H. V. Pham, T. T. Nguyen and T. T. Nguyen, "Phrase-based extraction of user opin-

ions in mobile app reviews," in 31st IEEE/ACM International Conference on Automated

Software Engineering (ASE), Singapore, Singapore, 2016. https://doi.org/10.1145/2970

276.2970365

84 http://www.i-jim.org

https://doi.org/10.1109/ms.2015.153
https://doi.org/10.1109/ms.2015.153
https://doi.org/10.3991/ijim.v14i13.14143
https://doi.org/10.1007/s10664-017-9538-9
https://doi.org/10.1145/3180155.3182523
https://doi.org/10.1007/978-3-030-05767-1_4
https://doi.org/10.1007/s10664-018-9601-1
https://doi.org/10.1007/s10664-018-9601-1
https://doi.org/10.1109/ms.2017.33
https://doi.org/10.1109/seaa.2017.45
https://doi.org/10.1109/seaa.2017.45
https://doi.org/10.1007/978-3-319-16101-3_16
https://doi.org/10.1007/978-3-319-16101-3_16
https://doi.org/10.1016/j.procs.2017.06.087
https://doi.org/10.1007/978-3-319-54045-0_20
https://doi.org/10.1109/re.2014.6912257
https://doi.org/10.1145/2970276.2970365
https://doi.org/10.1145/2970276.2970365

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

[16] W. Maalej, Z. Kurtanović, H. Nabil and C. Stanik , "On the automatic classification of app

reviews," Journal Requirements Engineering, vol. 21, no. 3, pp. 311-331 , 2016. https://doi.

org/10.1007/s00766-016-0251-9

[17] J. Huebner, R. M. Frey, C. Ammendola, E. Fleisch and A. Ilic, "What People Like in Mo-

bile Finance Apps: An Analysis of User Reviews," in Proceedings of the 17th International

Conference on Mobile and Ubiquitous Multimedia, Cairo, Egypt , 2018. https://doi.org/10.

1145/3282894.3282895

[18] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora and H. Gall, "How can

I improve my app? Classifying user reviews for software maintenance and evolution," in

IEEE International Conference on Software Maintenance and Evolution, Bremen, Germa-

ny, 2015. https://doi.org/10.1109/icsm.2015.7332474

[19] C. Iacob and R. Harrison, "Retrieving and analyzing mobile apps feature requests from

online reviews," in Proceedings of the 10th Working Conference on Mining Software Re-

positories, San Francisco, CA, USA, 2013. https://doi.org/10.1109/msr.2013.6624001

[20] I. Morales-Ramirez, D. Munante, F. Kifetew, A. Perini, A. Susi and A. Siena, "Exploiting

User Feedback in Tool-Supported Multi-criteria Requirements Prioritization," in IEEE

25th International Requirements Engineering Conference (RE), Lisbon, Portugal, 2017.

https://doi.org/10.1109/re.2017.41

[21] E. Guzman, M. Ibrahim and M. Glinz, "A Little Bird Told Me: Mining Tweets for Re-

quirements and Software Evolution," in IEEE 25th International Requirements Engineer-

ing Conference (RE), Lisbon, Portugal, 2017. https://doi.org/10.1109/re.2017.88

[22] F. Palomba, M. Linares-Vásquez, G. Bavota, R. Oliveto, M. Di Penta, D. Poshyvanyk and

A. De Lucia, "Crowdsourcing User Reviews to Support the Evolution of Mobile Apps,"

Journal of Systems and Software, no. March 2018, pp. 143-162. https://doi.org/10.1016/

j.jss.2017.11.043

[23] A. Hogenboom, M. Bal, F. Frasincar and D. Bal, "Towards cross-language sentiment anal-

ysis through universal star ratings," Advances in Intelligent Systems and Computing, vol.

172, pp. 69-79, 2013. https://doi.org/10.1007/978-3-642-30867-3_7

[24] F. N. Ribeiro, M. Araújo, M. A. Gonçalves and F. Benevenuto, "SentiBench - a benchmark

comparison of state-of-the-practice sentiment analysis methods," EPJ Data Sci, vol. 5, no.

1, 2016. https://doi.org/10.1140/epjds/s13688-016-0085-1

[25] S. A. Scherr, S. Polst, L. Müller, K. Holl and F. Elberzhager, "The Perception of Emojis

for Analyzing App Feedback," International Journal of Interactive Mobile Technologies,

vol. 13, no. 2, 02 2019. https://doi.org/10.3991/ijim.v13i02.8492

[26] "Most popular social networks worldwide as of October 2018, ranked by number of active

users (in millions)," Statista, 11 2018. [Online]. Available:

https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-

users/. [Accessed 30 01 2019].

[27] J. A. Chevalier and D. Mayzlin, "The Effect of Word of Mouth on Sales: Online Book Re-

views," Journal of Marketing Research, vol. 43, no. 3, pp. 345-354, 2006. https://doi.

org/10.1509/jmkr.43.3.345

[28] N. Hu, P. A. Pavlou and J. Zhang, "Can online reviews reveal a product's true quality?:

empirical findings and analytical modeling of Online word-of-mouth communication," in

Proceedings of the 7th ACM conference on Electronic commerce, Ann Arbor, Michigan,

USA, 2006. https://doi.org/10.1145/1134707.1134743

iJIM ‒ Vol. 15, No. 10, 2021 85

https://doi.org/10.1007/s00766-016-0251-9
https://doi.org/10.1007/s00766-016-0251-9
https://doi.org/10.1145/3282894.3282895
https://doi.org/10.1145/3282894.3282895
https://doi.org/10.1109/icsm.2015.7332474
https://doi.org/10.1109/msr.2013.6624001
https://doi.org/10.1109/re.2017.41
https://doi.org/10.1109/re.2017.88
https://doi.org/10.1016/j.jss.2017.11.043
https://doi.org/10.1016/j.jss.2017.11.043
https://doi.org/10.1007/978-3-642-30867-3_7
https://doi.org/10.1140/epjds/s13688-016-0085-1
https://doi.org/10.3991/ijim.v13i02.8492
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
https://doi.org/10.1509/jmkr.43.3.345
https://doi.org/10.1509/jmkr.43.3.345
https://doi.org/10.1145/1134707.1134743

Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources

9 Authors

Simon André Scherr is a senior engineer at the Fraunhofer Institute for Experi-

mental Software Engineering IESE in the field of UX. His current research interest is

how to increase long-term product acceptance by analyzing emotions found in feed-

back. With emoji-poll.de/en, his research has collected one of the largest data sets

about the perception of emojis.

Steffen Hupp is a senior engineer at the Fraunhofer Institute for Experimental

Software Engineering IESE in the field of User Experience and Requirements Engi-

neering. His current focus as full stack developer is on the development of mobile

software solutions, DevOps and backend development.

Frank Elberzhager is an expert for software quality at the Fraunhofer Institute for

Experimental Software Engineering IESE. He received his PhD in Computer Science

from the University of Kaiserslautern, Germany, in 2012. His research interests in-

clude software quality assurance, inspection and testing, software engineering pro-

cesses, and software architecture. He also transfers research results into practice.

Article submitted 2020-12-18. Resubmitted 2021-02-15. Final acceptance 2021-02-16. Final version

published as submitted by the authors.

86 http://www.i-jim.org

https://emoji-poll.de/en/

