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Abstract—Mobile apps have penetrated the market and are being used eve-

rywhere. Companies developing apps face increasing challenges such as short 

time to market or demand for high quality. Furthermore, the success of an app 

also depends on how users perceive its quality. Feedback provided by users in-

fluences other potential users and provides new opportunities for identifying 

features. Consequently, it is a valuable source of input for app developers with 

respect to product improvements. One form is textual feedback. This kind of 

feedback is usually distributed across various data sources. Therefore, it must be 

captured from these sources and put into one single pool of data before it can be 

analyzed. The analysis must take into account the peculiarities of the short re-

lease cycles and high change rate of features for mobile apps. In this article, we 

present User Echo Service (UES), which was built to address heterogeneous da-

ta sources.  The aim of UES is to allow product managers to be able to be al-

ways up to date with the latest feedback data. Therefore, we have created an ex-

tensible architecture aimed at supporting different data sources and present the 

feedback collection scheduling system. This forms the prerequisite for subse-

quent analyses of the collected data. We discuss our solution and provide ideas 

for future development. 

Keywords—Quality Assurance, Apps, User Feedback, Architecture, Product 

Improvement, Quality Monitoring 

1 Introduction 

Mobile apps have become an essential part of our daily life. For many people, their 

smartphone has become their primary electronic device. For app-developing compa-

nies, key challenges are high market pressure, the diversity of devices, and the often 

limited resources during development. However, users demand high quality (includ-

ing great user experience) as well as features that support their tasks in a meaningful 

way. 

Various approaches and techniques support the development with regard to some 

of these challenges, such as the use of MVPs for quick market entry, agile and lean 

development practices [1], increased automation of quality assurance activities, or 

different web services. In our research, we focus on analyzing and using user feed-
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back to assure and improve app quality. Such feedback is often not considered sys-

tematically by developers, but can offer great value in terms of enabling a better un-

derstanding of customers, their real needs, and bugs discovered by users. In recent 

years, the role of user feedback for development has increased [2]. This also means 

that developers of apps need to consider feedback, as users and potential users are 

influenced by it. Bad feedback can have an impact on other potential users who are 

not using this app yet and may prevent them from using it. To make it easier for de-

velopers to consider feedback, we have developed an approach that captures usage 

feedback and textual feedback – the latter being the focus of this article. 

For such an approach to be used, textual feedback must be gathered systematically 

and quickly. Artur Strzelecki [3] notes that ratings and reviews play an important role 

as success factor for mobile apps in the stores. Users frequently give feedback and 

also change their minds based on recent changes of the product [4]. Therefore, data 

should be continuously gathered and evaluated in order to enable reaction to fast 

trends and implementation of changes within short release cycles [5]. As many differ-

ent sources exist nowadays where users can provide feedback (e.g., app stores, social 

media), another central requirement is that different sources must be taken into ac-

count. Research has shown that considering just one type of source lacks a significant 

portion of feedback [6]. As far as textual feedback for apps is concerned, these could 

be the Apple App Store, Google Play, or social media sources like Twitter. The data 

from these sources must be unified to create a holistic view of the users’ perspective 

on the product. In the best-case feedback would be captured and analyzed continuous 

by considering all relevant data sources.  

In this article, we therefore focus on the following research question: 

How to continuously gather feedback from different sources in order to pro-

vide a foundation for user feedback analyses representing a holistic view on this 

feedback? 

In this article, we introduce User Echo Service (UES), which implements these re-

quirements. This means that we focus on data acquisition and not on subsequent feed-

back analysis steps. UES offers continuous user feedback monitoring and includes 

new sources such as different app stores and social media. Our tool was further devel-

oped to cope with the new requirements. We embed our work into the current state of 

the art (Section 2) and discuss our solution in Section 3. Section 4 provides a mapping 

of our data model to different sources, while Section 5 discusses our solution. Section 

6 closes with a summary and an outlook on follow-up work. 

2 Foundations and Related Work 

2.1 User feedback and the crowd 

The rise of central app stores and smartphone platforms has enabled users to sub-

mit reviews that can be viewed by other (potential) users and developers and to view 

the entries of other users. As a result, app store reviews and ratings have become an 

important factor for a product’s success. At the same time, the use of social media has 
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become a society-wide phenomenon. These two factors have accelerated the spread of 

the concept of crowd requirements engineering (CrowdRE). With the help of Crow-

dRE, requirements engineers are no longer limited to performing only traditional 

requirements engineering to create the requirements for a product – they are now also 

supported in paying attention to the information provided by its potential user base. In 

contrast to giving tasks to the crowd, CrowdRE gives the crowd its own voice [7]. 

In this context, requirements researchers have started to investigate the potential 

benefits of performing app store and social media mining to gather new requirements. 

Broadening the idea beyond requirements, we are not only able to validate, verify, or 

identify requirements for a product. Applying such mining in a continuous fashion 

also allows identifying potential bugs in a product. Projects like SUPERSEDE [8] or 

Opti4Apps [9] focus on the potential of product improvement by systematically con-

sidering the crowd and user feedback. 

In order to systematically gather, analyze, and provide feedback, different classifi-

cations or taxonomies exist. For example, Groen et al. [10] introduced five dimen-

sions: Awareness, mode, data type, intention, and homogeneity, each with two to 

three sub-categories. This taxonomy was developed with respect to CrowdRE and is 

based on a literature analysis. Elberzhager and Holl [11] provide another classification 

with a strong focus on mobile app feedback. This classification was mainly developed 

to identify different feedback channels and to understand the different kinds of feed-

back. Considering these classifications, textual feedback, which is the focus of this 

article, can be understood as explicit feedback. It provides concrete content, for ex-

ample as written text or through emojis in the text. Textual feedback can be directed 

at the developers (or the app-developing company in general) but can also be used to 

share one’s experience with other users. Finally, feedback can be very general (e.g., 

“nice app”), which gives an idea about the general perception, but also very concrete 

(e.g., “I’d like to have feature X”). These characteristics already show that textual 

feedback can be of great value for app developers. 

2.2 Existing approaches for textual user feedback collection and analysis 

In recent years, a lot of publications have focused on textual feedback analysis, its 

potential, as well as opportunities for analyzing such texts [12]. Within this field, 

many technical concepts relate more to natural language processing (NLP) than to 

feedback analysis in parallel with software development. In NLP, sentiment analysis, 

where (parts of) texts are classified between positive and negative, is a central con-

cept. Another technique is topic modeling, for example to extract features of an app. 

Groundbreaking work in sentiment analysis for user feedback was done by Guz-

man and Maalej [13]. They created an automated approach that analyzes user feed-

back data from the Apple App Store and Google Play. They applied a mixture of 

sentiment analysis and topic modeling to extract the features users are talking about. 

Their goal was to create an analysis solution that shows how people perceive certain 

features. However, their approach suffers from the problem that infrequently men-

tioned features are not properly detected. In addition, according to the authors, the 

third-party lexical sentiment analyzer they used suffers from limitations [13]. 
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Martínez-Cámara et al. [14] created a sentiment analysis for Twitter that combines 

different sentiment analysis approaches. The combinations used and the way they 

combine the results of each sentiment analyzer show that multiple classifiers can 

increase the quality of the result compared to the use of a single one. As their ap-

proach also includes machine learning, the proposed ensemble classifier needs to be 

properly trained. Depending on the app that needs to be analyzed, this training must 

be repeated. 

Vu et al. [15] present PUMA, an approach for extracting user opinions in a phrase-

based way. For PUMA, a phrase is “a sequence of consecutive words corresponding 

to a grammatically correct phrase, clause, or sentence in English” [15]. The authors 

mention the problem that their approach suffers from the low language quality found 

in online texts. To detect negative and positive phrases, they assign star ratings to the 

identified phrases. 

In addition to these approaches, many other approaches for analyzing feedback 

from app stores exist. These approaches can mostly be differentiated by the form of 

sentiment analysis they apply or by the approach they use for topic modeling; exam-

ples are [16], [17], [18], and [19]. 

Morales-Ramirez et al. [20] proposed a concept for making use of user feedback 

for the requirements prioritization process. Their aim is to evaluate user feedback in 

multiple prioritization dimensions and not only by one prioritization type. To realize 

this concept someday, the authors provide a characterization of the properties of user 

feedback, including ideas on how the different properties could be extracted from 

feedback. 

In 2017, Guzman et al. [21] proposed ALERTme, an approach that analyzes textual 

user feedback on software from Twitter. This was one of the first studies focusing on 

gathering requirements from tweets sent to support accounts of software systems. 

ALERTme is only capable of classifying, grouping, and ranking tweets. Other social 

media sources are not supported, nor does the system cover app stores. 

An investigation done by Nayebi et al. [6]  compares app store feedback and Twit-

ter feedback. As reported by the authors, when evaluated for the same app, these two 

sources have substantially unique feedback provided in just one of the sources. This 

means that neither using social media feedback only nor app store feedback exclusive-

ly can show the broad picture of user feedback. Considering Twitter in addition to 

Apple App Store feedback led to 22.4% additional feature requests and 12.89% addi-

tional bug reports. This shows that the picture of user feedback becomes more com-

plete when multiple sources are considered. 

Palomba et al. [22] present an approach called CRISTAL. The goal is to link user 

reviews to git commits. In contrast to the approaches mentioned above, CRISTAL 

does not focus on or provide an analysis of the feedback. The proposed solution is 

rather intended as a starting point for perceiving feedback as a continuous process to 

be considered during development. 

The analysis of the work being performed in this field shows that many approaches 

focus more on aspects of automation support for analyzing textual feedback than on 

software development decision support. This leads to a focus on natural language pro-

cessing (NLP). This clearly pushes the boundaries of NLP further, but leads to the 
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problem that most studies merely consider a single data source to explore their capa-

bilities in NLP. Unfortunately, research has shown that even though a lot of research 

has been performed, e.g., in the area of sentiment analysis, the quality of these results 

still varies to a large extent [23] [24]. Nayebi et al. [6] clearly showed that multiple 

sources must be considered if feedback analysis is to be embraced in software devel-

opment practices. In an ideal world such a System should support any source of feed-

back information. 

In addition, it is necessary to consider user feedback not only as a static data set to 

be analyzed. Due to the nature of mobile development, updates are issued frequently, 

features are added and changed; the same is the case for user feedback, which is pro-

vided continuously by the user base. Scherr et al. argue in [5] that feedback should be 

captured and analyzed side by side with continuous software evolution. Furthermore 

Scherr et. al. propose to include emotions of the end user for user feedback analysis 

[25]. Therefore, feedback analysis is a continuous process. This requires permanent 

acquisition of feedback to to match iterative changes of the product. 

We argue that in order to apply textual user feedback analysis in practice, ap-

proaches have to be flexible in terms of data sources. In addition, they have to be able 

to detect trends and events in data that are related to subsequent changes in a product 

(other researchers such as Palomba et al. [22] and Hassan et al. [4] also support the 

goal of continuous feedback gathering). 

3 Technical Solution for Feedback Gathering 

We propose User Echo Service built with the needs of developers and product 

managers in mind. It provides the ability to use heterogeneous data sources and peri-

odic data updates to form a data-source-agnostic basis for further analysis of the gath-

ered feedback data. The overall vision is that it should be capable of collecting any 

kind of textual user feedback independent of where it came from. In addition, this data 

collection has to be as easy as possible. Therefore, we introduced the concept of 

crawlers for popular data sources, which can automatically fetch data, and an API for 

dynamically adding feedback from more individual data sources. These individual 

data sources could be, for example, a set of private data that is not available publicly, 

like customer support data. As such data can provide very valuable feedback, it has to 

be considered in order to get a holistic view on the opinions of the user base. 

From a high-level perspective, the UES consists of the data collection infrastruc-

ture, the analysis backend, and the web-based front end for real-time analyses and 

visualization of the analysis results and the collected feedback, as depicted in Fig 1. In 

the following, we will explain our data collection infrastructure, which is the founda-

tion for the subsequent user feedback analysis not discussed in this article. We will 

explain how the system copes with the heterogeneous nature of user feedback and the 

different data sources as well as with permanent monitoring of user feedback. 

The data collection infrastructure can support different data sources, from which it 

can automatically capture textual user feedback. To achieve this, we designed a plugin 

system where different crawlers can simply be added or exchanged without having to 
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rebuild and deploy the whole system. Therefore, we created an API for crawlers and a 

data model representing feedback in an abstract manner. An overview of the different 

components involved in UES is shown in Fig 2. In the next sections, we will present 

the three major aspects of our data collection infrastructure: the feedback data model, 

the API for the crawlers, and our scheduling mechanism. 

 

Fig. 1. System overview 

 

Fig. 2. Functional decomposition of the data collection infrastructure 

3.1 Common feedback data model 

First, we created a common feedback data model, which is used throughout all 

components and is therefore located in a shared library. Our main challenge regarding 

the data model was to support all kinds of possible data sources without losing any 

relevant data. To come up with this data model, we first examined what kinds of data 

could be extracted from an initial set of data sources. Data sources explicitly consid-

ered for the initial creation were Apple App Store, Google Play, Amazon Market-

place, and Twitter. In addition, one of our requirements was that it should be possible 

to include different kinds of feedback, meaning individual feedback items like cus-

tomer support data should be supported. We also considered different analysis possi-

bilities involving these data points. The result was an abstract model containing all the 

data we need for these analyses, like feedback text or rating. We created a mapping 
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between the crawlable data points and this model in order to maintain traceability to 

the data source and the semantics. Then we included other data sources and verified 

that the data model was still compatible with them. 

As we want to collect user feedback, the central data structure is the Review, which 

contains the textual feedback of the users on the product (depicted in Fig 3 ). Some 

other feedback metrics are also available in the data source, like the five-star rating in 

the app stores. Such metrics are modeled as the data structures Rating and RatingSet-

ting. The RatingSetting stores information on what kind of Rating this is (enumeration 

RatingType). RatingTypes encompasses star rating (which is basically any rating 

where a value between a defined minimum and maximum can be chosen), posi-

tive/negative (including neutral), and reaction (which can be, for example, a tag, a 

sentiment, or an emoji). The actual value is stored in the Rating, which references the 

corresponding shared RatingSetting. RatingSettings are defined for each data source. 

Each Review can have several (or no) Ratings depending on the data available from 

the specific data source. 

 

Fig. 3. Data-source-agnostic feedback data model – Review view 

Another set of metrics resulted in the data types Confidence and ConfidenceSet-

ting. 

These are very similar to Rating and RatingSetting, but do not represent a user’s feed-

back on a product; rather, they give an indication of how reliable or important this 

user’s feedback is considered by others. An example is Amazon’s “helpful review” 

72 http://www.i-jim.org



Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources 

functionality, where other Amazon customers can mark a review as helpful and there-

fore it can be assumed that the review seems convincing, which improves confidence 

in the review. This kind of confidence measure is represented by the ConfidenceType 

DoubleCounter, with the value being the helpful count and the counter being the total 

number of votes (helpful + not helpful). Other possible confidence indicators are, for 

example, the number of retweets or comments on Twitter, which are examples of the 

ConfidenceType Counter. These metrics give an indication of the visibility of the 

feedback to other users. Facebook’s new like-system with different emojis instead of a 

plain counter is modeled as the Reaction ConfidenceType, with the StringValue speci-

fying the reaction and the value specifying the number of occurrences. 

In many sources, different types of replies to Reviews are also possible. We mod-

eled three different types of replies as relationships between Reviews. First, we have 

replyToParent, where the reply references the original Review. Second, there is reply-

ToSibling, indicating a relationship between two Reviews on the same hierarchical 

level, e.g., citing a previous comment in a forum thread. Finally, we have the 

shareReply relationship, which models references to a Review without content of its 

own, but, e.g., with its own set of Confidence metrics. 

With Review, Rating, RatingSetting, Confidence, and ConfidenceSetting, we have 

several means for modeling the user’s feedback. However, as we want to have full 

traceability from the analysis results to the actual feedback on the data source, it is 

necessary to add references to the data sources and to further structure the feedback. 

This would also enable us to recrawl specific reviews in case we need to extend the 

feedback model in the future. Fig 4 depicts the data model used to address this issue. 

Product represents an entity for which users give feedback in one or more data 

sources. An example is the Facebook app, which is available in different stores, such 

as the Apple App Store, Google Play, or the Microsoft Store. All Reviews for this 

entity are linked to Product, so reviews can be found easily by Product. Product also 

has a ProductCategory. We compared the different categories of multiple app stores 

and homogenized them into a joint tree of categories. 

As we also need to distinguish the data sources from which the feedback is gath-

ered, we introduced ProductSource and SourceType. SourceType models a data 

source, like the Apple App Store in the United States in English. The language is 

relevant for conducting some language-dependent analyses. ProductSource connects a 

Product with a SourceType and holds information on the URL and the identifier of the 

product in the specific data source, e.g., the package identifier in Google Play 

(“com.facebook.katana” for Facebook). We further introduced ReviewSource, which 

associates a Review with a ProductSource and has a URL and an identifier to directly 

reference the feedback in a data source. 
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Fig. 4. Data-source-agnostic feedback data model – Product view 

We chose Entity Framework and SQL Server as the technologies for creating the 

code-first data model described above. All changes to the model will be modeled as 

migrations to ensure data integrity and consistency when we want to extend the model 

without having to discard already collected feedback. 

3.2 Crawlers and crawler plugin API 

Once the data model is defined, we can build crawlers for different feedback 

sources. All crawlers are separate components and use different means to get the data 

of their data source (e.g., existing APIs from Twitter). Our crawlers also support dif-

ferent functionalities depending on the crawling method used for the source, like 

crawling a past timespan (start and end in the past), limiting how many reviews 

should be crawled at most, and approximating the progress of the current crawl. The 

different means of accessing the data sources, the necessary extensibility to support 

new data sources, and the need for a central component that controls all crawlers were 

our main challenges for coming up with a suitable system. Our solution is a plugin 

system with a specified API for crawlers and a plug-and-play crawler plugin API, 

which is depicted in Fig 5. 

The crawlers can be used by other components via the plugin API, which is pack-

aged as a library and used by the crawlers as well as by the consumers of the plugin. 

This enables us to work independently on creating different crawlers using different 

technologies without having a central component that needs to reference all of them. 

74 http://www.i-jim.org



Paper—Establishing Continuous App Improvement by Considering Heterogenous Data Sources 

 

Fig. 5. Fig 1Crawler API and plugin 

The API specifies that a crawler can be asked whether it supports the input, and it 

can be told to start crawling the source, using optional parameters to further limit the 

crawl, like the start and end timestamps or the maximum number of reviews to crawl. 

The input can differ a lot and depends on the crawler; it can be, for example, a product 

ID or a URL on Amazon, or search terms and hashtags on Twitter. As an additional 

feature, crawlers also send regular updates of the crawl’s status and the reviews 

crawled up to that time using events. If the crawl is aborted, information on the reason 

and on the progress the crawler has made until it was aborted are returned to the call-

er. A crawler might abort a crawl, for example, if the data source repeatedly blocks 

attempts to access data or if usage limits are exhausted. If a crawler is used for a 

product that does not exist yet, it will also extract all necessary information and create 

Product and ProductSource before starting to crawl Reviews and related entities. 

If no APIs exist, parsing HTML is an alternative. This comes with the risk that the 

crawler may stop working or may crawl incorrect data, e.g., if the layout of the 

crawled website changes. To handle this problem, the crawlers perform some checks 

and will abort if these fail. When using unofficial APIs, we designed our crawlers in a 

way that should not introduce exceptionally high loads on the target site, e.g., by 

slowing the crawls down and waiting between single requests to the data source.  
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As some sources have low usage limits for APIs or start blocking the crawls after 

some time, it has become apparent that manually starting crawls every couple of days 

on different products is not effective. The aforementioned measures taken to avoid 

high loads on the target site have alleviated the problem, but have not completely 

solved the issue of getting blocked. If we could spread out the crawls for different 

products on the same data source, our crawls would be much more likely to be suc-

cessful. We also want to assure that we are gathering all feedback from a source with-

out any gaps, meaning we have to regularly crawl new feedback. 

3.3 Scheduling mechanism for periodic crawls 

The last remaining major challenges for the data collection infrastructure are relat-

ed to regularly crawling data for all products we are interested in. We have to consider 

the request limits of the different data sources and the varying rates between products 

of new collectable feedback per data source, and we must be able to handle aborted or 

unsuccessful crawls. We tackled these problems by designing a scheduling mecha-

nism that enables periodic crawls. Our crawl scheduling service lets us define which 

product should be crawled on which data source how often, so we can fine-tune the 

schedule to the rate of new feedback. This extends the previous ability of manually 

starting a crawl for a delta update on the data. To have a history of the crawls, we 

introduced the CrawlRun data type, which stores information on when a crawler has 

started and finished, what it crawled, and what the result of the crawl was. The 

CrawlSchedule data type defines the ProductSource (and thus the Product) to work 

on, the maximum number of reviews to crawl, and the timespan between the start 

times of the crawls in minutes. It also holds the next scheduled crawl time, which can 

be modified to spread out crawls on the same data source. The CrawlerConfiguration 

type holds the information on the connection and the setting for the crawler itself. 

Location and IsRemote determine the local path or URL of the crawler. 

CooldownMinutes defines the minimum time after each crawl of the referenced 

crawler before it can crawl again, delaying crawls scheduled for it. MaximumCount 

defines the maximum number of reviews to be crawled at once. SupportedSource-

TypeName refers to the SourceType.Name from the common feedback data model 

and is the connection between the CrawlSchedule and the CrawlerConfiguration via 

the ProductSource. This model is shown in Fig 6. The scheduler stores its data in its 

own database, which is not directly connected to the database holding the common 

feedback data model. 

To make it easier to optimize the crawls, we introduced a functionality to distribute 

them for given timespans. Crawls to different data sources may be executed in paral-

lel, as these crawls do not influence each other. The scheduling service runs continu-

ously and utilizes a task scheduling mechanism set to the next execution time of any 

crawl to start the respective crawl. 

To be able to deploy the crawlers on several different machines, we created a 

standardized web service executable that uses the aforementioned crawler plugin API 

to utilize any crawler’s capabilities. Conceptually similar to the web service approach, 

we also developed a command line interface for the crawlers that is more convenient 
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to use if crawling on a local machine. We use this, for example, when crawling a new 

product that does not have a CrawlSchedule yet or does not need one. 

Our crawl-scheduling service is a web service that offers a REST API to manage 

schedules and provide information on connected crawlers. It furthermore provides a 

web-based set of forms for creating, listing, modifying, and deleting schedules and 

upcoming run times. The crawlers can be accessed using the aforementioned web 

services, whose URLs are configured in the scheduling service. 

 

Fig. 6. Fig 2Crawl scheduler model 

As we explored several data sources, we also came across sources that cannot be 

effectively and efficiently crawled by machines, but might still be interesting for in-

clusion in our data collection. Some of these sources are, for example, custom web-

sites and forums, but also graphical content like pictures and videos. For such cases, 

another tool was developed to provide a simple UI for manually entering data into the 

database according to our model. Such entries are marked, so if we later develop a 

crawler for that source, we can distinguish them from automatically crawled entries. 

All this has resulted in a growing collection of feedback on several products in our 

database. However, this collection has to be processed further to provide further in-

sights. To enable continuous analysis of the crawled feedback, we extended the crawl-

scheduling service in order to be able to notify other components that new feedback 

has been crawled so they can start analyzing it. We have already begun to develop an 

extensible analysis infrastructure for the tool, which will support continuous process 

feedback by applying different, partly interdependent, analysis steps while always 

preserving traceability to the source data. 
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4 Evaluation 

In this section, we will present the evaluation of our data acquisition approach. We 

will first show how we map our data model to different data sources. Then we will 

provide an example of how UES can be used in practice to make product owners 

aware of the latest data.  

4.1 Mapping data sources to our data model 

In the following, we will show that our data model (see Fig 3) is capable of han-

dling different data sources. Currently we have added support for the stores Amazon 

Marketplace, Google Play, and Apple App Store. In addition to that, we have an im-

plementation for the social media data sources Twitter, Instagram, and Facebook, 

including a former crawler to the now closed Google+. We will conceptually cover 

how we have currently mapped the data sources implemented as crawlers and the 

crawlers under development, and describe the manual pasting functionality of the 

system. This will show that even though the model is general and abstracted from 

concrete data sources, we are able to host different data sources while keeping the 

detailed data they provide for user feedback. We will skip the attribute Id for each 

entity as it is only used by our database to maintain primary keys and foreign key 

relationships. 

Project, Product, and ProductCategory are independent of any data source as they 

are purely related to the app or set of apps whose feedback is being monitoring. Prod-

uctSource, SourceType, and ReviewSource are entities that are set based on the data 

source and are only used to identify the data being retrieved; they do not contain the 

actual feedback data. 

The mapping of the data provided by a data source to the data model itself starts 

with the Review entity, as this entity is our foundation for representing feedback. For 

the Apple App Store, Amazon Marketplace, and Google Play, the mapping of the 

attributes is similar and covers all attributes. We get a non-unique identifier for the 

Author from the Apple App Store and Google Play, which preserves the anonymity of 

the user, but from Amazon Marketplace, we get the actual user id. The data we get 

from the source for Date only contains the date but not a time component for the app 

stores. Text and Title for Review are set in a straightforward manner. 

Our social media sources Twitter, Instagram, and Facebook behave differently. 

They provide a unique identifier for the Author, and the Date of the posting also con-

tains the exact timestamp. As these sources only allow texts without titles, the title 

attribute is always empty and only the text is set. In the case of a multimedia posting, 

we are not able to capture the multimedia content of the source, only the textual de-

scription. Manually added feedback supports all entities, but the degree of specificity 

depends on the data. An email to customer support might contain data with all attrib-

utes fully set, but feedback derived from a phone call might just contain a date and a 

textual summary. It is mostly up to the developer or customer support team how they 

fill out the form. 
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For the Language entity, Google Play provides this information, as the store itself 

is divided by language codes. Therefore, the language is fixed with the crawl. As the 

Apple App Store as well as Amazon Marketplace are divided by country, we could 

assume that the language of the feedback is the primary language of that country. To 

get a more precise classification, however, it is more appropriate to use language de-

tection frameworks based on the text and titles submitted in a review and set the op-

tional Language in the Review accordingly. The latter is necessary for all social media 

sources as they do not offer any division by language or country at all. 

The ratings available for a review are individual for each data source. First of all, 

social media sources currently in use have no means of providing a direct rating for a 

product. Ratings exist primarily in store scenarios. Apple App Store, Amazon Market-

place, and Google Play currently have a five-star rating system. Our system maps this 

rating as shown in the following example. A Review only has one Rating, with a Val-

ue between one and five. The corresponding RatingSetting shows that this is a Rating 

with a Max of five and a Min of one. The name is “five-star-rating” and the Rat-

ingType is set to StarRating. Manually added data in the form of our inserter also 

supports ratings, although it depends on the kind of feedback entered whether there is 

relevant data. 

For the Confidence entity, the Apple App Store does not provide any information. 

Amazon Marketplace contains a feature showing whether a review was helpful or not. 

We capture this as DoubleCounter Confidence, with the counter combining the help-

ful and unhelpful votes and the value containing the helpful votes. In Google Play, 

only helpful votes are counted, so this is only a normal Counter. 

Social media sources come with several potential confidence metrics. Twitter, for 

example, offers the ability to express likes with a heart or share the same thought in 

the form of a retweet. The number of likes and retweets shows how many people 

potentially agree with the posting. Therefore, we capture both in the form of Confi-

dence expressed as a Counter. In addition, Twitter offers commenting on posts (re-

plies), which also indicates the interest of people in a posting. In contrast to likes and 

retweets, however, comments do not directly signal agreement or disagreement. In the 

end, the number of comments is implemented in the form of Counter Confidence. The 

same is the case for the comment counts on Facebook and Instagram. 

Like Twitter, Facebook shows the number of shares of a post. Instagram does not 

offer such a counter. Both platforms also support forms to express one’s attitude to-

wards a posting. In the case of Instagram, a like feature is available similar to the one 

on Twitter. For Facebook, this form of confidence is more complex, expressed in the 

form of Reactions, including Love, Haha, Wow, Sad, Angry, and the traditional Like. 

The replyToParent relationship can be found in forums (thread start and replies), 

on Facebook, and on Instagram as comments/replies to a post and on Twitter as re-

tweets with the user’s own commentary (“RT <Twitter-url>”). The replyToSibling 

relationship is mostly present in forums, where in a reply to a thread one can usually 

cite multiple comments in a thread. The shareReply can be found in all social net-

works, e.g., on Twitter as a retweet (without the user’s own commentary) or on Face-

book as a share. 
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The mapping shows that we can currently express the two most popular app stores, 

Google Play and Apple App Store, with our model. In addition, Amazon Marketplace 

is a third store offering Android apps and apps for Kindle Fire. From the perspective 

of social media, we have mapped postings from Facebook, Twitter, and Instagram. 

Looking at the number of users on these platforms, we should cover a total of more 

than 3.5 billion active users [26]. This shows not only the flexibility of the approach 

but also the fact that we support a huge share of the social network market. 

4.2 Using the data collection infrastructure in practice 

One major goal of our solution is is that the end user does not interact directly with 

the data collection infrastructure. Instead, we added the management capabilities for it 

to our web-based visualization. This makes it easy to use, as the product manager 

does not need to use the REST API directly, but can use it in a browser. The design 

aims at providing a simple user interface for management, as the product manager 

should be able to focus on the analyzed data for their product and not on configuring 

the tool. A new product can be easily added directly on the landing page. The only 

elements that have to be specified at this stage are the name and the category of a 

product (Fig 7). 

 

Fig. 7. Adding a product to our tool 

The product sources and the corresponding schedules can be maintained in the set-

tings tab of each product. Here, product sources can be added or altered. Once a prod-

uct source contains raw data, it cannot be deleted anymore. On the same screen, the 

product manager can create, alter, and delete schedules for the product sources in 

order to get the latest data at the desired intervals.  

The details section of a schedule shows information on when the next crawl for this 

source is scheduled and what the desired interval is (Fig 8). Both values can be altered 

here. However, no immediate manual update of the data right from the dashboard is 

possible. Changing the next interval shifts the schedule. An ‘update now’ feature is 

planned for inclusion in a future release. 

Next to the details, the user sees the history of frequent crawls. Information is 

shown on when the crawl took place and from which timeframe the feedback was, as 
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well as the total amount of feedback collected, divided into successfully crawled, 

crawling failed, and number of errors. This history gives the user insights into whether 

a higher frequency of updates would make sense. 

 

Fig. 8. Crawl schedule status and editing view 

5 Discussion 

With our data collection infrastructure, we have created a flexible solution that is 

able to handle very different data sources. Our approach introduces and combines 

several new aspects for collecting data, like having the described flexibility, our data-

agnostic understanding of the data, and the means to continuously process new data. 

The current implementation supports the Apple App Store, Google Play, and Amazon 

Marketplace as store sources. In addition, we have added the social media data 

sources Facebook, Twitter, and Instagram. We also had a crawler for the social net-

work Google+, which is now shut down. Crawlers supporting YouTube and phpBB 

are currently under development and will also suit the API and data model. In addition 

to automated crawlers, we have also added a module where developers can manually 

insert feedback, e.g., from customer support. The range of sources currently supported 

and the ease of including new sources shows the flexibility of this approach. 

If the approach presented here is embedded into the software engineering process, 

it can lead to continuous collection and analysis of user feedback. Due to its ability to 
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handle data sources in the form of installable plugins as well as the ability to manually 

add raw data, acquiring a broad range of feedback is possible. By enabling a continu-

ous and comprehensive stream of feedback, we offer a way to collect feedback from 

many sources continuously in order to improve the product under development. 

Continuous analysis of user feedback is facilitated by UES right from the crawling 

step, as well as for each data source and query in a data source. Once the crawling 

intervals have been set up initially, the system handles the updating of the data. When 

new data is received, the product manager sees immediately the updated data. The 

same can be done for the analysis. By extending the system with an analysis frame-

work that can continuously analyze newly collected data, we can provide faster and 

more complex insights into the user feedback. Such a framework should support dif-

ferent steps of interdependent analyses to provide flexibility while keeping the system 

complexity low. By continuously streaming new data into such a framework or analy-

sis pipeline the degree of automation is increased substantially. 

When collecting feedback continuously, the data set will grow so much that an ex-

perience database emerges. Teams will learn from past events and be able, for ex-

ample, to identify failure patterns, which can then be checked in their test runs. These 

patterns can be derived from lessons learned about the analyzed detected events. In 

the case of bug and crash reports, developers have a growing database of checks they 

can introduce to prevent issues from being reintroduced in subsequent releases. 

Switching the perspective from issues to events, showing ideas for feature requests 

or change requests as well for appreciating feedback, enables developers to extend, 

update, verify, and validate their requirements. Such an event detection can be imple-

mented as one of the analyses embedded in the analysis pipeline. By doing this con-

sistently in the development process, a product will subsequently match the users’ 

expectations better. This should lead to a higher product acceptance rate. 

As our approach allows collecting and detecting feedback in an automated way, it 

offers benefits for developers without creating additional effort for them. The ability 

of our web-based dashboard to fully customize when each data source of a product 

should be updated as well as the history of recent crawls give the product manager full 

control and transparency of the data acquisition process. 

One limitation of our approach is that developers have to ensure that they are lis-

tening to the right feedback channels. Collecting feedback from app stores is straight-

forward, as it is given directly on the app. As soon as social media or online forums 

come into play, however, feedback is spread around the data source. It is not sufficient 

to just collect the feedback sent directly to the developer’s social media account. In 

addition, a collection of hashtags – at least the product name – often also contain 

relevant feedback. Therefore, developers have to carefully set up the terms they are 

interested in on social media. The better they deal with the selection of the search 

terms, the more complete the picture of the feedback will be. 
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6 Conclusion 

In this article, we presented parts of User Echo Service. We developed a data col-

lection infrastructure that can handle various data sources by maintaining a single data 

structure. The data model abstracts from the actual data being retrieved and clusters it 

into different entities. New data sources can be added by creating a library following 

our plugin API for crawlers. In addition, the infrastructure supports changing the data 

sources as well as updating the data from a data source in an automated way by using 

a scheduling mechanism. As data sources are exchangeable for us, the crawling states 

have to be maintained for each data source rather than for the entire product. In addi-

tion to the six different crawlers available so far, we can manually add feedback not 

captured by our crawlers. This is used, for instance, to manually add customer support 

requests and allows us to capture feedback in the sources where the users of a certain 

app are giving it. This feature will be extended even more, as additional crawlers are 

currently under development to access additional social media sources. Even though 

the schedulers provide a comfortable way to get the latest data at the desired interval, 

it might be necessary to get a data update immediately. A future release of the dash-

board will contain a trigger for the crawling system to manually update a data source. 

This will be done by scheduling a one-time crawl as soon as possible. 

As apps are usually developed in fast and highly iterative development cycles, 

changes are introduced within short periods. Instead of trying to perform a full analy-

sis, our approach focuses on the detection of trends. These trends can be detected with 

our event detection. To be able to catch short-term trends as well as longer ones, we 

apply different granularities for the time range to be considered. This keeps develop-

ers always up to data with the latest changes in the data. Analyzing feedback continu-

ously along with performing event detection also allows comparing different releases 

and features. This makes it easier to detect how a series of changes to a product over 

multiple releases is perceived by the end users of the application. Future work will 

focus especially on increased automation of the trend detection. 
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