
PAPER
DESIGNING A NEW ASSERTION CONSTRAINTS MODEL FOR MOBILE DATABASES

Designing a New Assertion Constraints Model
for Mobile Databases

http://dx.doi.org/10.3991/ijim.v6i2.1836

Belal Zaqaibeh1, Firas Albalas1, A. W. Awajan2
1 Jadara University, Irbid, Jordan

2Al-Balqa’ Applied University, Jordan

Abstract—In this paper a new assertion constraint model is
proposed and implemented. The model is designed to en-
force and maintain the integrity constraints in mobile
databases and object data model environments. The object
assertion model for integrity constraints is used to create
classes and collected attributes and their constraints that
are derived from multiple compositions and inheritance
hierarchies. Also it has a compile-time model which keeps
the derivation path along with the attributes’ relationships.
Furthermore, the run-time model enforces integrity con-
straints and the logical integrity constraints during the run-
time. And a new technique is designed to check the object
metadata to detect the object violation before it occurs.
However, the model is implemented and tested over set of
definitions that check attribute values validity and objects
for object-oriented data model and mobile databases.

Index Terms—Constraints violation, Mobile database,
Mobile database model, Object data model.

I. INTRODUCTION

Recently, there has been an increasing interest in mo-
bile computing due to the rapid developments in wireless
communication and portable computing technologies [1].
A general architecture of a Mobile Database (MDB)
environment consists of base stations and mobile hosts
[13]. The mobile host is the mobile component that moves
from one cell to another, and communicates with the base
stations through wireless networks where MDBs are
specialized class of distributed systems [10]. Due to
limited storage capabilities [1], the mobile host is not
capable of storing all data items in the network, thus it
must share some data item with a database in the used
network.

In Object Data Models (ODMs) regardless whether it is
Object-Oriented Databases (OODBs) or MDBs, data
accuracy, consistency, and integrity in are extremely
important for developers and users. Checking and main-
taining the Integrity Constraints (ICs) is a fundamental
problem [5], [15]. ICs are conditions that data within a
database must satisfy. Checking for ICs to maintain the
consistent state of MDBs is an important issue that needs
to be addressed [13].

This paper presents our contribution for this research, in
which it clarifies the proposed model properties and
specifications including Object Assertion Language for
ICs (OALIC), Object Metadata (OMD), and Detection
Method (DM). Furthermore, this paper presents the en-
forcement and maintenance technique of the Compile-
Time Model (CTM) for Structural ICs (SIC) [2] and also
the Run-Time Model (RTM) for Logical ICs (LIC).

This paper is organized as follows. Section II presents
the groundwork of our research. Section III presents the
related work. The proposed model framework is presented
in section IV. Also section V explores the OALIC and its
structure format and grammar. Consequently, the model
components are presented in section VI. Subsequently,
section VI.A presents the CTM for SICs, while the RTM
for LICs is presented in section VI.B and the DM in
sections VI.C also section VI.D presents the OMD fea-
tures, which includes three classes that are the constraint
optimization, constraint knowledge, and knowledge base.
The enforcing and maintaining of ICs is presented in
section VII. Naturally, we ended this paper by a conclu-
sion and future work in section VIII.

II. PRELIMINARIES

In advanced office automation systems the MDB and
OODB are used to handle hypermedia data. Image proc-
essing and designing systems use ODM technologies for
ease of use. All of these applications are characterized by
manage complex and highly interrelated information,
which is the strength of ODM. The increased emphasis on
process integration is a driving force for the adoption of
OODB systems [2], for example, the computer aided
design (CAD) area is focusing heavily on using OODB
technology as the process integration framework. Clearly,
relational database technology has failed to handle the
needs of complex information systems [3].

The MDB system is a distributed system based on cli-
ent-server diagram [6]. Checking ICs in MDB systems is
more complex compared to conventional database recov-
ery because of an unlimited geographical mobility of
mobile hosts. MDB uses database dependent information
such as metadata or use specific functions of database
server such as trigger and time stamp. These constraints
are critical weak points in ubiquitous environment because
various applications are running in various devices in
ubiquitous environment [13].

Integrity maintenance or constraint enforcement is a set
of activities that keeping databases in a consistent state
[11]. ICs in OODBs are maintained either by rolling back
transactions that produce an inconsistent state, or by
disallowing operations that may produce an inconsistent
state for the constraints [2], [4]. Existing ODM manage-
ment systems lack the capability for an ad-hoc declarative
specification of maintaining the ICs. An alternative ap-
proach is to provide automatic detection of inconsistent
states. For each constraint, a rule is used to detect con-
straints violation and to initiate database operations to
restore consistency.

iJIM – Volume 6, Issue 2, April 2012 39

http://dx.doi.org/10.3991/ijim.v6i2.1836�

PAPER
DESIGNING A NEW ASSERTION CONSTRAINTS MODEL FOR MOBILE DATABASES

Some ICs are represented and maintained naturally in
OODBs by capturing the violation using the type system
and the class hierarchy. Checking the ICs in OODBs is a
fundamental dilemma in database design [3], because
current OODB management systems lack the capability of
an ad-hoc declarative specification of maintaining ICs that
appear as a result of composition, inheritance, and asso-
ciation hierarchies. The constraints must be maintained in
the forward direction along the class composition hierar-
chy as well as in the backward direction. The model can
represent ICs and their relationships over the composition
and inheritance hierarchies [5].

The automated verification of ICs and their enforce-
ment provided by current OODB management system is
limited [5]. A database state is said to be consistent if the
database satisfies a set of statements, called semantic ICs
[8]. Handling semantic ICs is an essential premise to
manage semantically rich data [2], [3]. In addition, han-
dling ICs is an essential premise to managing semantically
rich data [3].

The new proposed model can handle structural integ-
rity (constraint base). Typically, we consider the ODM as
the underlying data model where it includes MDB and
OODB. The maintenance methodology here depends on
fixed values domain and attributes domain.

The fixed values domain is a finite (e.g., set of integers
between 2 and 7) or an infinite (e.g., set of characters) set
of values, and the domain of an attribute is a finite set that
includes data in a particular object. Attributes are mem-
bers in a class and they represent data components that
make up the content of a class. The term class refers to a
collection of all objects with the same internal structure
(attributes and methods) [7]. ODM is based on the concept
of a class. Within the OODB management system, the
class construct is normally used to define the database
schema. The OODB management system schema identi-
fies all the objects stored within the database, these objects
are known as instances of the class. These instances of
class carry once and for all, the data values of class attrib-
utes.

Two steps must be taken when a user request is submit-
ted. First, all constraints that may be violated by any
transaction must be specified. Specifically, we should
check if each constraint may be violated. Second, if IC
would be violated and will be in inconsistent state for the
OODB, then a proper action must be taken (e.g., aborting
or modifying the current user request) such that it will be
true in the new ODM state.

III. RELATED WORK

A framework is proposed by Dzolkhifli [13] for caching
relevant data items needed during the process of checking
ICs of MDBs. Dzolkhifli has analyzed the relationships
among the integrity tests to be evaluated for a given
update operation. This improves the checking mechanism
by preventing delays during the process of checking
constraints and performing the update, this model speeds
up the checking process.

The proper handling of ICs is essential to any data stor-
age and management. Handling ICs is an essential premise
to managing semantically rich data [3]. In OODBs, check-
ing the ICs is a fundamental problem in the database
design [3]. The automated verification of constraints and
their enforcement provided by current OODB manage-

ment systems is limited [3]. Many researchers have stud-
ied the problem of enforcing ICs in MDBs and OODBs
and many different approaches have been proposed, but
none of the approaches has addressed the issue of main-
taining User Defined Constraints (UDCs) in composition
and inheritance hierarchies.

A set of security vulnerabilities is identified by
Ghorbanzadeh [10] on MDB to apply appropriate tech-
nique to decrease side affects of MDB security by tacking
into account the ICs [10]. Also, an architectural model is
presented by Abiona [21] for wireless peer-to-peer file
sharing system for ubiquitous mobile devices. The pro-
posed model is based on a hybrid or semi centralized
architecture with the central database server acting as an
interface between the mobile devices.

Choi has proposed an algorithm [20] which is called the
synchronization algorithms based on message digest in
order to facilitate data synchronization between a server-
side database and a MDB. The OODB management
systems do not have adequate support for certain types of
constraints especially the ones defined in a class composi-
tion and inherence hierarchies [3], [9], [17], [18]. The ICs
must be maintained in the backward direction along the
class hierarchies as well as in the forward direction. It
seems to be no obstacles in extending the proposed model
to deal with constraints.

Maintaining constraints is not an easy process in inter-
constraint. The inter-constraint maintenance problem and
the contradiction or lack of proper functionality of a set of
constraints is addressed in [3]. Also, in [19] there is an
issue of commercial semantic databases that extensively
supports structural integrity enforcement and arbitrary
constraint checking. Other work in [2], constraints have
been done from the aspect of constraint satisfaction and
constraint logic programming languages, where the em-
phasis on using constraints propagation.

IV. THE MODEL FRAMEWORK

The proposed model framework is consisted of five
components namely: ODM, OMD, DM, rules, and appli-
cations as shown in Figure 1. To have a complete working
model, a modeling language is required. Therefore, The
OALIC which is illustrated in the next section is used to
create the classes and their attributes, methods, and con-
straints. The model gathers all attributes and constraints,
identifies the relationships, optimizes constraints, and
stores them in the OMD.

The attributes and methods represent entities and their
behaviors. A constraint can be defined on attributes. The
participating objects are represented by translating UDCs
into rules and storing them in the OMD. The user does not

Figure 1. The Model Framework

40 http://www.i-jim.org

PAPER
DESIGNING A NEW ASSERTION CONSTRAINTS MODEL FOR MOBILE DATABASES

have to specify detailed execution procedure for constraint
checking and propagation in the database. The constraints
are translated into rules and relationships regardless
whether the propagated constraints are derived from
composition or inheritance hierarchies.

The DM is used to update and retrieve information
from the OMD. The OMD is used to manage constraints
and also to store the attributes and their paths, constraint
knowledge, and constraint base. Furthermore, the OMD
provides operations that eliminate conflicts of constraints.

All the operations are based on the OMD contents. The
DM checks the constraints in the OMD when a user
request is received from applications. It is not easy to
enforce the ICs when composition or inheritance hierar-
chies exist. This is due to the fact that detecting con-
straints that appear as a result of inheritance and composi-
tion hierarchies requires backward and forward detection
method. The DM reads the OMD, finds the involved
constraints, checks the involved attributes that are needed
to be modified during the objects creations, and also
checks the objects.

When a transaction is received, the DM gets all infor-
mation about the involved attributes and their constraints,
and verifies the new changes that may happen due to the
user request. If there is no violation then the DM gets the
new changes and updates the OMD. But if the transaction
causes inconsistent state, the DM gets the required infor-
mation about the violation from OMD and stores them in
its variables then sends them to the databases management
system to abort the running transaction. Before the vio-
lated constraints are maintained, the model recognizes
which constraints may violate the database and what is the
repairable action. Therefore, the limitations of Do’s ap-
proach [9] are overcome by collecting the constraints
information in the OMD and call only the involved con-
straints when an event occurs. A practical working tech-
nique in maintaining the constraints when any violation or
unexpected circumstances occur is already implemented
and tested.

V. THE OALIC

The OALIC is the assertion language that is proposed
to handle classes and their attributes and constraints. The
OALIC is designed to simplify constraints to any ODM.

A. The Structure Format of OALIC
The general structure of the OALIC is illustrated in Figure
2. All attributes are gathered under the specifier AT-
TRIBUTE, behaviors or methods under the specifier
METHOD, and CONSTRAINT is added to gather con-
straints [15]. Also a new method called DM is introduced
to express the status of the constraints.
The user can manipulate (insert, delete, or modify) attrib-
utes, methods, and constraints. But he/she cannot see or
deal with the DM directly. The DM will be hidden from
the user because it supports the ODM management system
with the knowledge about the constraints, and only the
management system can read/access its value.

CLASS class_name
 ATTRIBUTE //user defined attributes
 METHOD // user defined behaviors
 CONSTRAINT // user defined constraints
 DM // hidden detection method
END CLASS

Figure 2. The General Structure of OALIC Format

The model has been designed to maintain redundant
(subset), inconsistent (conflict), and duplicate constraints,
also to enforce ICs and keep the database in a consistent-
state. The enforcement technique keeps the consistency
among the constraints, so if a violation is expected to be
occurred, several actions will be done as follows:
 Sending the current user requests and the constraint

derivation path to the maintenance technique.
 For each user request, the DM checks the OMD and

assigns the new values to the DM variables.
 The DM will be verified then the dependences

among constraints will be specified.
 If the constraints cannot be maintained then the error

handler technique keeps the violation path and type.
Moreover, the user request is aborted.

B. The OALIC Grammar
The EBNF grammar of OALIC as per the ISO/IEC

rules format [12] is shown in Figure 3.
<start> ::= class <identifier>
< identifier> ::= <classname> <description>
<classname> ::= <name>
<description> ::= [: (<classname> {,<classname>})] <member>
<member> ::= attribute <attmember>
<attmember> ::= {<field>}+ [<funmember>]
<funmember> ::= method <mthmember>
<mthmember> ::= {<operation> }+ [<conmember>]
<operation> ::= <funheader> <oprbody>
<funheader> ::= <name> ({<parameter>}) <datatype>
<parameter> ::= <variable> {, <variable>}<datatype>
<oprbody> ::= begin <usercode> end ;
<usercode> ::= <assign> | <condition> | <loops>
<condition> ::= if <cond> then <statement> else <statement>
<cond> ::= <numeric> | <variable> | <exprbinary>
<conmember> ::= constraint {<rule> ; }+
< field> ::= <attname> <datatype>;
<attname> ::= <name>
<exprbinary> ::= <expr> <operator> <exprbinary> | <expr>
 <oprbool> <exprbinary> | <expr>
<loops> ::= <forloop> | <whileloop> | <repeatloop>
<forloop> ::= for <expr> (to | downto) <expr> do <body>
<whileloop> ::= while (<cond>) do <body>
<repeatloop> ::= repeat <body> until <cond>
<body> ::= begin <statement> end;
<statement> ::= <usercode>
<assign> ::= <variable> := <expr>
<expr> ::= <term> { (+ | −) <term>}
<term> ::= <factor> { (* | /) <factor>}
<factor> ::= <expr | <variable> | <numeric>
<datatype> ::= <basictype> | <collection> | <classname>
<basictype> ::= integer | real | boolean | char | string | date
<attpath> ::= <variable> {. <classname>} . <attname>
<funpath> ::= <variable> {. <classname>} . <funname>
<rule> ::= {<ruleobj>}+ [<ruleext>]
<ruleobj> ::= <intraobj> | <interobj>
<ruleext> ::= (<operator> | <oprbool>) <rule>
<interobj> ::= <operand> <operator> (<attpath> | funpath) |
 <attpath> <operator> | <intercmlx>
<intercmlx> ::= <interobj> <oprbool> <intercmlx> | <interobj>
<intraobj> ::= <operand> <operator> <intraobj> | <operand>
<intracmlx> ::= <intraobj> <oprbool> <intracmlx> | <intraobj>
<operand> ::= <variable> | <attname> | <funname>
<variable> ::= <letter> { (<letter> | <digit> | _) }
<collection> ::= (<settype> | <bagtype> | <listtype> | <ar-

raytype>) <basictype>
<name> ::= <variable>
<arraytype> ::= array (<numeric> [,<numeric>])
<numeric> ::= {<digit>}+
<operator> ::= > | < | = | >= | <= | <>
<oprbool> ::= and | or | xor

Figure 3. The EBNF Grammar for the OALIC

iJIM – Volume 6, Issue 2, April 2012 41

PAPER
DESIGNING A NEW ASSERTION CONSTRAINTS MODEL FOR MOBILE DATABASES

Typically, objects are declared from classes. A class has
a name and a set of members. The inherited members
from the superclass become members in the subclass.
Members in a class can be attributes, methods, or con-
straints. Each attribute has a data type and domain. The
data type can be basic (e.g., integer, real, etc.) or structural
data type (e.g., set, bag, or class). The attribute domain
can be static (e.g. 1, 2, 7, etc.) or dynamic (e.g., attribute
values).

The constraints are the conditions that control attrib-
utes values. The constraint operands that enforce attribute
values in OALIC are constant value, literal, attributes,
expression, and aggregate function. Once a class is cre-
ated, all members are gathered and their relationships are
specified. The idea behind gathering class members is to
find the relationships, specify the dependences, and keep
the derivation path.

Typically, all relationships and the derivation path are
kept for each class member. Therefore, all constraints
(constraint base) and relationships (constraint knowledge)
will be collected, analyzed, optimized, and stored in the
OMD. The hierarchy model is used to keep the derivation
path, constraint base, and constraint knowledge.

VI. TTHE MODEL COMPONENTS

The model has the following main components as Fig-
ure 4 shows:
 CTM: During the compile-time, the CTM enforces

and maintains SICs where it is performed only once,
and the user who interacts with the system and sup-
plies it with added information, is referred to as the
constraint designer.

 RTM: During the run-time, the RTM enforces LICs
where it is performed whenever an update is submit-
ted for processing and the user who uses the real sys-
tem, is referred to as the end-user.

 OMD: It is an object data structure containing a re-
cord for each constraint and attribute, where it allows
to find the record for each identifier quickly and to
store and retrieve data from that record quickly too.

 DM: It is the interface between OMD and the object
data model, where it reads the OMD and allows or
disallows transactions to be performed.

A. The CTM
The CTM which appears in the upper part in Figure 4,

is responsible for enforcing and maintaining SICs [5].
The CTM starts from the user interface, which it forms

the interactive interface and handles the communication
between the constraint analyzer and the constraint de-
signer. The constraint analyzer is responsible for analyz-
ing constraints in order to discover its phrase structure,
and distributing the analyzed constraints to the constraint
parser in order to check the constraint syntax. The con-
straint parser takes the stream of tokens and uses them to
construct hierarchical structures called parse trees.

The parse trees represent the systematic structure of the
constraint. The error handler is responsible for handling
errors as it receives the invalid constraints and constraints
that cannot be maintained then reports the violation
knowledge. However, after detecting an error, the present
phase somehow deals with that error. The constraint
checker is responsible for checking the constraints and re-

Figure 4. The Model Architecture

cognizing the accepted and unaccepted constraints. Defi-
nition 1 illustrates the constraints status.

Definition 1: Let ς be a constraint that is derived from a
set of classes (cls). The ς might be an accepted constraint
ξ, or an unaccepted constraint ζ (redundant, inconsistent,
or duplicate constraint).

Definition 2: Let ζr be a redundant constraint, ζi be an
inconsistent constraint, and ζd be a duplicate constraint.
Therefore, if ζ exists in any form of (ζr, ζi, or ζd) then ζ
will not be accepted until it is maintained.

The constraint maintenance is responsible for maintain-
ing ζr, ζi, and ζd constraints. The constraint maintenance
has two types of functions which are maintaining the SICs
and the LICs. The dependency evaluation is responsible
for specifying the constraints’ domains, Antecedent Con-
straint (AC) (inherited constraint), and Supplement Con-
straint (SC) (derived constraint), then sends them to the
constraint optimizer. The constraint optimizer is responsi-
ble for reducing coupling, as it eliminates the unnecessary
relationships among the constraints. Therefore, this re-
duces the execution time, increases the execution speed,
increases the compilation time, and reduces the compila-
tion speed. Subsequently, the constraint optimizer in-
creases the model efficiency because of the fact that,
execution speed is more important than compilation speed
[14].

42 http://www.i-jim.org

PAPER
DESIGNING A NEW ASSERTION CONSTRAINTS MODEL FOR MOBILE DATABASES

B. The RTM
The RTM is responsible for enforcing the ICs, verifying

transactions (inserting, updating, and deleting objects),
checking constraint domains, and maintaining the unac-
cepted user request [15], [16], and its architecture is
shown in the lower part in Figure 4.

The RTM communicates with the DM to get the con-
straints and attributes information. However, all transac-
tions must remain the database in a consistent state. In the
RTM the user interface forms the interactive interface,
which handles the dialogue between RTM and its users.
Users may delete or insert objects and the RTM handles
their actions. The update analyzer uses the knowledge
about the constraints that are provided by the DM and
maps each update request into a set of domains then sends
them to the update checker with the involved attributes
and constraints. The update maintenance is responsible for
maintaining the unaccepted user requests, after detecting
an error the present phase must in somehow deal with that
error.

The DM has several functions that depend on the con-
nection phase. Subsequently, the DM receives update
analyzer requests and accesses the OMD to get the attrib-
utes and constraint knowledge that is stored by the CTM
during the compile-time [5] then sends them to the update
analyzer. Moreover, the DM receives the actions from the
UM if a user request needs to be maintained whereas the
UM does the maintenance.

The RTM receives user requests and then analyzes
them to determine the action type with the help of the DM
by sending requests and receiving knowledge about the
involved attributes and constraints. Moreover, after all
required requests information is collected the UA sends
streams for checking purpose.

C. The DM
The DM is the interface between OMD and the data-

base management system, and also an intermediate func-
tion between CTM and RTM. The DM reads the OMD
and allows or disallows transactions to be performed. The
DM is an overloaded method that can access and modify
the OMD[15]. The DM is designed for constraint valida-
tion checking purpose. Therefore, the DM has two func-
tions that are differentiated from each other by their argu-
ments as follows:
 DM (CID, AID, RCID, RAID, {AC}, {UDC}, {SC})
 DM (CID, AID)

The Constraint ID (CID) and Attribute ID (AID) are the
composite key for reaching the information about all
attributes in the OMD. This information includes con-
straints base, derivation path, domains, derived attributes,
and superclasses. The CID is a unique ID, this means the
CID cannot be repeated even if an object is deleted and
then declared. The AID represents the ID for an attribute
in a particular object, where the ID is unique under the
class level; this means the AID can be repeated under
different classes. The RCID represents the ID for the
superclass if the attribute is derived from inheritance or
composition hierarchies. The RAID represents the ID of
an attribute when the current attribute is derived from
other attribute.

D. The OMD
The OMD is the constraints map. It is responsible for

building the specific knowledge base of the constraints of
DBs and is built once by the CTM [5]. The OMD is a data
structure containing a record for each constraint and
attribute. The data structure allows to find the record for
each identifier quickly and to store or retrieve data from
that record immediately too. Each attribute has a domain,
which is the valid value that can be stored in a particular
attribute.

A domain attribute is the range of its data type or set of
values that are controlled by constraints in different ways
like constant values, literals, attributes or aggregate func-
tions. An essential step is that, simplifying the constraints
in domains, this means determine the attribute domain by
its data type and constraint. The attribute domain controls
the attribute values in the OMD. The OMD stores all
classes, attributes, constraints, and their relationships.

The OMD has been designed to manage constraints that
are in independent, inherited, composed, and associated
classes. The OMD consists of three classes as shown in
Figure 5, namely: OMD Constraint Optimization (OM-
DCO), OMD Constraint Knowledge (OMDCK), and OMD
Knowledge Base (OMDKB). The OMD classes are used to
describe objects structure. The OMD has all the required
information about the constraint base and constraint
knowledge.

The following sections describe the OMD classes,
where these classes are connected with association and
composition relationships.

E. Constraint Optimization Class
The OMDCO is the constraint optimization class that

optimizes the constraints and the domains. The OMDCO
includes the constraints, domains and Domain ID (DID).
The DID is the hashing key that creates a method for
searching as opposed to simply scanning a large data with
all the nodes. In addition to, it makes addition and re-
moval of nodes more efficient. Furthermore, the DID is
associated with the OMDCK class with M:N as shown in
Figure 5. Thus, the DIDs indicate domains for associated
attributes.

Figure 5. The OMD Structure

iJIM – Volume 6, Issue 2, April 2012 43

PAPER
DESIGNING A NEW ASSERTION CONSTRAINTS MODEL FOR MOBILE DATABASES

For the model optimization technique, the Directed
Acyclic Graph (DAG) is extended and an Optimization
Method (OM) is developed to support dynamic values,
objects, constraints, and domains. The advantage of DAG
is that it avoids redundant of sub-trees. Typically, a con-
straint can be merged into a single domain. While DAG
avoids redundant code, it can be inefficient and problem-
atic later on when changing values from time to time
(dynamic values). In order to implement a DAG, usually
the nodes are stored in an array and searched when a new
node is to be created. The OM is designed to handle
dynamic values and overcome the DAG drawback.

Definition 3: Let Ci be a constraint in C1, C2, …, Cn, Di
a domain in D1, D2, …, Dn, and dom(Ci) is the method that
generates Di of Ci. Typically,

Di = dom(Ci)
If dom(Ci) = Di and dom(Cj) = Dj where Di = Dj
 dom(Ci) = dom(Cj) = Di
 Dj will be eliminated
The constraints and their domains will be optimized in

the OMDCO during the CTM using the Algorithm 1:
Algorithm 1: Optimization

Input: Set of ξ {ξ1, ξ2, … ξn }
Output: OMD
Steps:
1 Start
2 SofC
3 While i n Do //n: number of ς in cls
4 SofC[i] ξi //extract constraints from cls
5 Increment i
6 End while
7 For SofC[i] = 1 to n
8 For OMD(j) 1 to d Do //d: number of domains in OMDCO
9 If dom(SofC[i]) = OMD.dom(ξj) Then
10 Find the equivalent domains
11 Eliminated dom(ξ) //Definition 3
12 Else
13 OMDCO dom(ξ)
14 OMDCO DID // continual DID
15 End If
16 End For // j
17 End For //i
18 End

F. Constraint Knowledge Class
The OMDCK is the class for collecting the attributes,

constraints, and domains knowledge. For each attribute in
the class there is a unique identifier called AID as shown
in Figure 6. Thus, the DM can access and control any
attribute using AID. The model can enforce attributes
integrity in classes that are result of association, composi-
tion, and inheritance hierarchies. However, to keep the
derivation path the OMDCK keeps the RCID and the RAID
that are derived into the present class.

Users can declare constraints, which are called UDCs
(e.g., parent.age > 16). Typically, a UDC may depend on
an ACs that are derived from superclasses, associated, or
composed classes. Thus, the ACs must be verified before
the UDCs verification (e.g., child.age < parent.age).
Subsequently, a SCs are constraints that depend on UDCs,
thus, the SCs must be verified after the UDCs verification.

Since the OMDCK has an association relationship with
the OMDCO, the AC, UDC, and SCs take their values from
the OMDCO. The AC and UDC are declared from se-
quence data type of DID, and SC from sequence data type
of DM. Whereas the AC represents the DID of the domain

Figure 6. An Instance of OMDCK

Figure 7. An Instance of OMDKB

of dependent attributes, so before any update is the do-
main in the OMDCO must be satisfied. The domains of the
DIDs in the UDC must be satisfied too to remain a consis-
tent state for the database. Accordingly, to prevent a
violation that may occur in other attributes, the DIDs in
the SC must be checked and satisfied. If a violation occurs
in any of AC, UDC, or SC the database management
system will abort the current user request.

Typically, if there is a constraint on a particular attrib-
ute, the DID of the constraint will be stored under the
UDC for that attribute. Subsequently, if there is a set of
constraints on a particular attribute, the DIDs will be
stored under the UDC for that attribute. Furthermore, if a
constraint is inherited by a particular attribute as a result
of inheritance hierarchy, the DID of that constraint will be
stored in the AC for that particular attribute. Also the
RCID and RAID indicate the derivation path. The SC
stores the DMs that depend on the present attribute.

G. Knowledge Base Class
The OMDKB is the structure for the OMD object. The

OMDKB includes knowledge about all attributes and their
relationships, constraints, and domains. Each class has a
unique internal identifier called Class ID (CID) and a
unique name. The OMDKB composes a sequence of
OMDCK in the CN attribute. The OMD is the instance of
OMDKB class as shown in Figure 7.

In the OMD the OMDCK is a composed object for the
CN attribute. Each object in OMD represents class knowl-
edge. So to enforce a particular constraint we need to read
only the related object for that constraint and only the
involved constraint will be verified, so this reduces the
execution time and avoids multitasking, accordingly, this
increases the model efficiency.

44 http://www.i-jim.org

PAPER
DESIGNING A NEW ASSERTION CONSTRAINTS MODEL FOR MOBILE DATABASES

VII. ENFORCING AND MAINTAINING ICS

Constraints can enforce a finite set of values for attrib-
utes in one class as well in many inherited and composed
classes. Relationships between classes inherit members
from superclasses to subclasses. In some cases, conflict
among constraints may occur. The CTM can enforce and
maintain ICs that are propagated from composition and
inheritance. Furthermore, CTM can also enforce and
maintain constraints that are derived from mixed of such
relationships.

Typically, detecting and checking this type of con-
straints is very important since the derivation path in
composition hierarchies cannot be detected. Enforcing ICs
in RTM occurs during the run-time, so the maintenance of
RTM is required whenever events are submitted. There-
fore, there are two general steps to be performed. First, all
constraints that would be violated must be found. Second,
determining what actions must be taken.

Generally, an object may have a set of attributes, so
when inserting a new object, all attributes and constraints
will be verified. If a constraint is not satisfied then this
will violate the database.

As mentioned earlier, the OMD will be generated in the
CTM. Therefore, the DM will be called to read the OMD
and verify whether the new update will violate the data-
base or not. The DM will call each attribute in the follow-
ing format:
 DM(CID, AID, RCID, RAID, AC, UDC, SC)

Then verifies whether the values are accepted in the
intended attributes or not. The DM verifies the AC, UDC,
and SC for each called attribute. The idea is to instantiate
the relevant constraint with the object to be inserted,
updated, or deleted. Then the processes are simplified by
eliminating unnecessary comparisons. The simplified
form of the constraint is evaluated before an object is
inserted to the database. The process before enforcing
LICs in RTM is to create the OMD that includes all the
knowledge about classes and their members. Since we
deal with UDCs regardless whether classes are designed
in a good or bad design, all constraints and domains are
verified, optimized, and collected in the OMD.
 Inserting Object: When inserting a new object, all

constraints in OMD that are related to that object
must be checked to verify the new data state.

 Deleting Object: Deleting object from independent
classes (intra-class constraints) does not require veri-
fications for any constraint. In the contrary, deleting
object from dependent classes (classes with composi-
tion, inheritance, or association relationships) re-
quires verifying the SCs only in the deleted objects
and also the ACs, UDCs, and SCs in the associated,
inherited or composed objects.

 Updating Object: It requires keeping the current da-
tabase state D until verifying the ICs in D+.

If the updating request is rejected then the cause of vio-
lation and its path will be known. And this is a clear
advantage of the model, as the current object-oriented
applications do not have the ability to support the viola-
tion path.

At this point, we concentrate on the ICs and data inte-
gration for satisfying a set of rules. We extend the formal
ODM with standard operators by including two aggrega-

tion operands. One of the most significant problems is the
incorporation of UDCs with the composition and inheri-
tance mechanisms in the ODM. We have overcome this
problem by layering the model over the ODM. This ap-
proach has several benefits:
 Represent complex relationships and relationships

that are propagated from association, composition,
and inheritance hierarchies.

 ICs can constrain the action of computationally
methods.

 ICs can be applied to arbitrarily complex objects in-
cluding hierarchy structures.

 ICs are at a higher level of abstraction and thus easier
for users to read and write.

 Support multiple processors to maintain the con-
straints simultaneously when sets of objects or con-
straints of different relationships are completely in-
dependent from each other.

 Can be integrated with any existing or specialized
constraint services.

 The violated constraints are to be maintained auto-
matically by the maintenance technique.

VIII. CONCLUSION AND FUTURE WORK

The proposed model has made a big challenge in the
ODM environment as it can represent constraints and
complex relationships among attributes and classes that
are derived from composition and inheritance hierarchies,
whereas the current ODMs are deficient in such proper-
ties. The model is implemented and tested over MDBs and
OODBs.

Since the ICs are conditions that data within a database
must satisfy, so database must have a set of activities that
enforce integrity and maintain constraints to keep the
database in a consistent state. This paper has shown the
proposed model properties and specifications including
CTM, RTM, and OM. The model has made a big chal-
lenge in the ODM environment as it can represent con-
straints and complex relationships among attributes and
classes that are derived from composition and inheritance
hierarchies. The model is able for enforcing and maintain-
ing ICs in SICs by CTM and LICs by RTM.

The OALIC grammar facilitate the usage of the model
and make it competent to be used by any existing ODM.
Also it can enforce the ICs for constraints with two oper-
ands that are not supported by the current MDBs. The
OMD has three classes namely: OMDCO, OMDCK, and
OMDKB, to keep track the constraint paths in the back-
ward direction as well in the forward directions. The
OMDCO has a special new technique that is built based on
DAG to reduce coupling among attribute relationships and
domains. The OMDCK keeps constraint knowledge to ease
accessing them. Furthermore, the OMDKB is designed to
include knowledge about all attributes and their relation-
ships, constraints, and domains by composing OMDCK
that are associated with OMDCO.

The CTM is implemented and set of definitions are
supported for checking whether a constraint is valid or
invalid, and also checking redundant, inconsistent, and
duplicate constraints. Furthermore, the RTM is imple-
mented too and clarified with its properties, specifications,
and architecture. A set of definitions is supported for
checking attribute values validity, database consistency,

iJIM – Volume 6, Issue 2, April 2012 45

PAPER
DESIGNING A NEW ASSERTION CONSTRAINTS MODEL FOR MOBILE DATABASES

and also a method for verifying attribute values when
inserting, deleting, and updating objects.

This model can be improved by developing more opti-
mization techniques for constraint compilation. ODMs
face new challenges to semantic integrity especially to
both constraint representation and constraint maintenance.
More work can be done when copying an object of a
superclass to another object of a subclass and vise versa.
For such problem down-casting and slicing must be taken
in account. Moreover, when a multiple inheritance occurs
and the same attribute name existed in more than one
superclass, then a virtual class is needed.

REFERENCES
[1] Dzolkhifli Z., Ibrahim H., and Affendey L., "Analyzing integrity

tests for data caching in mobile databases", ICDCIT, pp. 157-165,
Springer-Verlag, 2008.

[2] Zaqaibeh B., and Al-Daoud E., "The Constraints of Object-
Oriented Databases”, International Journal of Open Problems in
Computer Science and Mathematics (IJOPCM), Vol. 1, No. 1,
2008.

[3] Formica A., “Finite Satisfiability of Integrity Constraints in
Object-Oriented Database Schemas”. The IEEE Transactions on
Knowledge and Data Engineering, Vol. 14, No. 1, pp. 123-139,
2002. http://dx.doi.org/10.1109/69.979977

[4] Date C. J. An Introduction to Database Systems. 8th edition,
Addison Wesley, 2004.

[5] Ibrahim H., Zaqaibeh B., Mamat A., and Sulaiman M., “Enforcing
and Maintaining Constraints Base during the Compile-Time”, the
World Scientific and Engineering Academy and Society (WSEAS)
Transactions on Computers, Vol. 6, No. 2, pp: 373-379, 2007.

[6] Mahmoodi M., Baraani A., Khayyambashi M., "Recovery Time
Improvement in the Mobile Database Systems", International Con-
ference on Signal Processing Systems, pp: 688-692, 2009.

[7] Sarhan A., "A New Allocation Technique for Methods and
Attributes in Distributed Object-Oriented Databases Using Ge-
netic Algorithms", the International Arab Journal of Information
Technology (IAJIT), Vol. 6, No. 1, 2009.

[8] Ibrahim H., “A Strategy for Semantic Integrity Checking in
Distributed Databases”, Proceedings of International Conference
on Parallel and Distributed Systems, pp: 139-144, 2002.

[9] Do N. C., Choi I. J., and Jang M., “A Structure-Oriented Data
Representation of Engineering Changes for Supporting Integrity
Constraints”. The International Journal of Advanced Manufactur-
ing Technology, Vol. 20, No. 8, pp. 564-570, 2002.
http://dx.doi.org/10.1007/s001700200192

[10] Ghorbanzadeh, P.; Shaddeli, A.; Malekzadeh, R.; Jahanbakhsh,
Z.;, "A survey of mobile database security threats and solutions for
it", 3rd International Conference on Information Sciences and In-
teraction Sciences (ICIS), pp: 676-682, 2010.

[11] Ibrahim, H., "Checking Integrity Constraints – How it Differs in
Centralized, Distributed and Parallel Databases”, Proceedings of
the 17th International Conference on Database and Expert Systems,
pp: 563-568, 2006.

[12] ISO, 1996. ISO/IEC 14977: 1996 (E).
[13] Dzolkhifli, Z.; Ibrahim, H.; Affendey, L.S.; Madiraju, P. "A

framework for caching relevant data items for checking integrity
constraints of mobile database", International Journal of Interac-
tive Mobile Technologies (iJIM), Vol.3, No.2; pp: 18, 2009.

[14] Aho A., Sethi R., and Ullman. “Compilers Principles, Techniques,
and Tools”. Addison Wesley, 1986.

[15] Zaqaibeh B., Ibrahim H., Mamat A., and Sulaiman M., “Enforcing
User-Defined Constraints during the Run-Time in OODB”, the In-
ternational Arab Journal of Information Technology (IAJIT), Vol.
5, No. 4, 2008.

[16] Zaqaibeh B., Al-Hanandeh F., and Al-Daoud E., "Development of
a Run-Time Model in OODB". Proceeding of the International
Conference on Software Engineering and Computer Systems
(ICSECS), Kuantan, Malaysia, pp: 135-141, 2009.

[17] Bagui S., “Achievements and Weaknesses of Object-Oriented
Databases”. Journal of Object Technology, Vol. 2, No. 4, pp: 29-
41, 2003. http://dx.doi.org/10.5381/jot.2003.2.4.c2

[18] Choi I., Bae S., Do N., and Yun M., “Backward Propagation of
Engineering Constraints in Active Object-Oriented Databases”.
Proceedings of the 22nd International Conference on Computers
and Industrial Engineering, Cairo, pp. 20-23, 1997.

[19] Jagannathan D., Ouck L., Fritchman L., Thompson P., and Tolbert
D., “A Database System Based in the Semantic Data Model,” Pro-
ceedings. ACM SIGMOD Conference, pp. 46-55, 1988.

[20] Choi M., Cho E., Park D., Bae J., Moon J, and Baik D., "A
Synchronization Algorithm of Mobile Database for Ubiquitous
Computing", 5th International Joint Conference on INC, IMS and
IDC, pp.416-419, 2009.

[21] Abiona O., Oluwaranti A., Anjali T., Onime, C., Popoola E.;
Aderounmu G., Oluwatope A., Kehinde L., "Architectural model
for Wireless Peer-to-Peer (WP2P) file sharing for ubiquitous mo-
bile devices", pp: 35-39, IEEE International Conference on Elec-
tro/Information Technology (EIT), 2009.

AUTHORS

Belal Zaqaibeh is with the Department of Computer
Science, Faculty of Science and IT, Jadara University,
Irbid, Jordan.

Firas Albalas is with the Computer Networks Depart-
ment, Faculty of Science & IT, Jadara University, Jordan.

A. W. Awajan is with Al-Balqa’ Applied University,
Jordan.

Received 29 September 2011. Published as resubmitted by the authors
30 March 2012.

46 http://www.i-jim.org

http://dx.doi.org/10.1109/69.979977�
http://dx.doi.org/10.1007/s001700200192�
http://dx.doi.org/10.5381/jot.2003.2.4.c2�

	CfP_ICL2012.pdf

