
AGENT-BASED MOBILE EVENT NOTIFICATION SYSTEM

Agent-Based Mobile Event Notification System
doi:10.3991/ijim.v4i4.1427

R.F. El-Gazzar, O. Badawy and M. Kholief
Arab Academy for Science and Technology and Maritime Transport, Alexandria, Egypt

Abstract—In recent years, the noticeable move towards
using mobile devices (mobile phones and PDAs) and
wireless technologies have made information available in the
context of "anytime, anywhere using any mobile device"
experience. Delivering information to mobile devices needs
some sort of communication means such as Push, Pull, or
mixed (Push and Pull) technologies to deliver any chunk of
information (events, ads, advisory tips, learning materials,
etc.). Events are the most important pieces of information
that should be delivered timely wherever the user is. Agent-
based technology offers autonomous, flexible, adaptable,
and reliable way of delivering events to any device,
anywhere, and on time. Publish/subscribe communication
model is the basic infrastructure for event-based
communication. In this paper, we define the need to
mobilize the event notification process in educational
environment and the possible categories of event
notifications that students can receive from their
educational institution. This paper also proposes a
framework for agent-based mobile event notification
system. The proposed framework is derived from the
concept of push–based publish/subscribe communication
model but taking advantage from software agents to serve in
the mobile environment. Finally, the paper provides a
detailed analysis for the proposed system.

Index Terms—Mobile systems, agent-based systems, event
notification systems, publish/subscribe model.

I. INTRODUCTION

Mobile devices are becoming popular in use nowadays
as mobile computing and supportive mobile
telecommunications network infrastructure (GSM, GPRS,
UMTS, EDGE, Wi-Fi, and WiMAX) have emerged and
rapidly evolve. A mobile device can be any device that is
small, autonomous, and unobtrusive enough to be carried
in everyday life with the user such as: (1) PDAs/smart
phones (blackberry, iPhone). (2) Digital phones (Nokia,
Sony Ericsson). (3) Non-telephony devices (Apple's iPod).
(4) Mobile computers (tablet PC, NoteBook, and Laptop)
[5]. However, the mostly carried mobile devices with
users nowadays are mobile phones and PDAs. With
mobile devices, users can have useful piece of information
while on bus, on train, at home, or having their leisure
time somewhere.

Pull communication requires users to initiate requests
for information. This causes network overload, but it
addresses privacy concerns associated with the Push
approach [12]. Push communication involves initiating the
delivery of needed information based on the users'
predefined preferences. Thus the load on network is
reduced [10]. Hence, Push technology is a great choice for
delivering important events to users in a timely fashion.

Events are very important pieces of information that
need to be known in the right time in order to be valuable,
because if such information is delivered late, it will be
meaningless. Events can be categorized into:

1. User-interest events: are related to the user's
predefined interests. In the case of university, the
user-interest events could be trips, conferences,
competitions, etc.

2. User-related events: are related to but not
predefined by the user; these events are often very
important and identified by the institution or the
community the user belongs to. In the case of
university, the user-related events could be
registration date, exams schedule, course
notifications, etc.

Besides timely Push service, events should be
delivered according to users' interests. Event-based
communication is mostly based on the notion of
publish/subscribe model through which publishers
publish events; these events are pushed to the subscribers
according to their interests. Such advantages need an
intelligent and reliable approach; hence, agent-based
technology is a good choice. Agent-based technology
offers autonomous, flexible, adaptable, and reliable way
of delivering events to any device, anywhere, and on
time.

Software agents are intelligent software programs that
perform certain tasks on the user's behalf in autonomous,
reactive, proactive and adaptive behavior [4]. Thus agents
know what to do, how to do it, and when to do it; this
promotes high level of autonomy, reactiveness, and
proactiveness [16]. The Foundation for Intelligent
Physical Agents (FIPA) provides standards for message
transport protocols, Agent Communication Language
(ACL), content languages, and interaction protocols for
the sake of interoperability [13].

Taking benefits from the four technologies mentioned
above (mobile computing, Push technology, software
agents, and publish/subscribe model) this research
proposes a framework for an agent-based mobile event
notification system. Section 2 discusses a literature review
on three advanced technologies used in the proposed
framework. Section 3 describes the requirements for
establishing event notification system in a mobile
environment. Section 4 defines the problem to be solved
in this paper. Section 5 describes the proposed framework
architecture and detailed analysis of the system. Section 6
provides conclusions on the framework.

iJIM – Volume 4, Issue 4, October 2010 25

http://dx.doi.org/10.3991/ijim.v4i4.1427�

AGENT-BASED MOBILE EVENT NOTIFICATION SYSTEM

II. LITERATURE REVIEW

As a result of inventing more advanced mobile devices
and the rapid evolution in wireless network infrastructure
[1], [15], the use of mobile devices started to be beyond
voice calls, video calls, text messaging (SMS), and
multimedia messaging (MMS) activities. Nowadays,
mobile devices are being used in many important
activities in many fields in our life such as m-learning, m-
banking, and m-advertising [1], [7]. Such mobile activities
are served according to the user's preferences, location,
and device limitation. Hence, the mobile computing
promotes flexibility, mobility, and adaptability through
small, light, and movable devices.

For establishing event-based communication, the most
popular push model is publish/subscribe communication
model. The motive for using such paradigm arises from
the need for an asynchronous, loosely coupled, and many-
to-many communication in the context of mobile and/or
large-scale distributed systems. Such model enables
subscribers to express their interests in event notifications;
these events are produced by publishers and delivered by
event service to subscribers only if events match their
interests. In general, publish/subscribe model consists of
publishers, subscribers, and dispatch or event service as
shown in Fig. 1. Subscribers issue subscriptions to express
their interests in events by calling subscribe() operation on
the event service without knowing the sources of these
events. Subscribers can terminate their subscriptions by
calling unsubscribe() operation. Publishers produce events
by calling publish() operation without knowing the
identity of subscribers who will be notified of that event.
Event service provides storage and management of
subscriptions, storage and filtering events, and efficient
delivery of event notifications to interested subscribers by
calling a set of operations such as updatesubacription(),
store_event(), perform_matching(), and route_event()
while event delivery could be through e-mail, SMS, or
WAP messages. An event is asynchronously propagated
to all subscribers who are interested in that event. Hence,
event service serves as a neutral mediator between
publishers and subscribers. Publishers are producers of
events and subscribers are consumers of events. The event
is delivered through route_event() operation that invokes
remotely the notify() operation at the subscriber end.

Fig. 1: Components of Publish/Subscribe Model

Hence, event service is responsible for four main

operations:
1. Managing subscriptions: assuming that

updatesubscription() operation is responsible for
managing subscriptions, by calling this operation,
event service can add, update, and delete
subscriptions. Those subscriptions are stored for later
filtering purposes. A single subscription contains
subscriber's profile and the selected interesting
events.

2. Managing incoming events: besides managing
subscriptions, event service handles the incoming
events from the publishers. These events are received
in the form of messages; each event message contains
event header and body. Events are stored using
store_event() operation and used for filtering
purposes.

3. Filtering events: event service calls
perform_matching() operation that is responsible for
filtering events. Filtering involves matching incoming
events to interested subscribers using various filtering
techniques such as fuzzy-logic, rule-based, semantics,
etc.

4. Delivering events: after filtering, event service
invokes route_Event() operation to deliver events to
interested subscribers in a timely fashion through an
appropriate communication channel.

The mantra for event-based publish/subscribe systems
is the "decoupling" between publishers and subscribers.
Decoupling is the key characteristic that distinguishes
publish/subscribe communication from the other alternate
communication paradigms such as message passing,
RPC/RMI, notifications, shared spaces, and message
queuing. Such paradigms have proved their inability to
support fully decoupled communication between
publishers and subscribers [11]. Decoupling can be
decomposed into four dimensions:

1. Space decoupling: sometimes called "anonymity"
where publishers do not need to know the address
and identity of subscribers and subscribers do not
need to know the identity of publishers as well.

2. Time decoupling: both publishers and subscribers
do not need to exist at the same time; publishers
can publish events while subscribers are
disconnected and subscribers get notified of an
event while the publisher of that event is
disconnected.

3. Synchronization decoupling: where subscribers
receive event notifications while being not
connected to the system or doing other concurrent
activities. The production and consumption of
events is decoupled from the flow of control of the
publishers and subscribers. Hence, publishers
publish events without waiting for results and
subscribers receive events without explicitly
waiting for these events, thus promoting
flexibility.

4. Data decoupling: in which subscribers only
receive data that they are interested in, and the
event service may modify data if needed. This

26 http://www.i-jim.org

AGENT-BASED MOBILE EVENT NOTIFICATION SYSTEM

avoids delivering uninteresting events to
subscribers and thus saves resources that would
process these uninteresting events.

Software agents have been integrated with
publish/subscribe model to come up with "Rendezvous-
Notify" framework that serves mobility requirements of
the mobile environment [13]. This framework is able to
maintain disconnected operations and manage
subscriptions efficiently. Rendezvous-Notify framework
involves using event service agents that are responsible for
maintaining subscriptions, buffering events, managing
event channels, and routing events.

Mobile agents have been used in the applications of
distributed events systems based on publish/subscribe
communication protocol [11]. This approach involves
using mobile agents as mediators between publishers and
subscribers of events. In such scenario, subscribers are
required to register in the system and define the events
they are interested in, and publishers create mobile agents
with the event to be published and dispatch them to the
event server in which the mobile agents find out the
interested subscribers to push the event to them. Thus
flexibility is promoted via asynchronous communication.

Publish/Subscribe model has contributed to delivering
information in the mobile context. Hence, a
publish/subscribe middleware was proposed to address the
requirements of mobile computing applications [3], this
middleware provides asynchronous communication as the
publishers needn't to have direct contact with the
subscribers, thus wireless connection failure is not a
problem anymore. Also many-to-many decoupled
interaction is provided as many publishers publish events
and these events are sent to many subscribers without
publishers being connected to the system. Anonymity is
supported by such a model as publishers do not have to
know the identity of the subscribers and vice versa.
Implicit determination of the event notification receivers
is provided rather than choosing them by the publishers.
Consequently, the system is capable of dealing with a
large number of mobile users. However, mobile
publish/subscribe applications have been classified into
two categories: (1) Static applications that reside in the
user's mobile device, as the user is moving, the application
can access the system network from different access
points. (2) Mobile agent based applications that are able to
execute autonomously on any host device to access the
system. The first category has been implemented to
support mobility service using client proxy [2]. This
mobility proxy is an interface medium between the client
and the publish/subscribe system while being in
disconnected mode.

III. EVENT NOTIFICATION IN MOBILE ENVIRONMENT

As we deal in our research with mobile environment,
the possible delivery methods for event notifications are
SMSs or WAP messages. Additionally, the mobile
pub/sub system should offer a set of benefits such as: (1)
timeliness that is achieved by pushing data to interested
subscribers once it's produced by the publisher. (2)
Asynchronous communication that enables delivering
notifications while the subscriber is not connected to the
system, thus reliability is guaranteed. (3) Anonymous
communication where publishers do not need to know the
identity of subscribers, thus flexibility is insured. (4)

Supporting logical mobility (the user can receive
notifications even if changed her/his mobile device) and
physical mobility (the user can be notified anywhere). (5)
Expressiveness that is the ability of event service to well-
define interests of subscribers. (6) Implicit matching
where the event service determines the target mobile
subscribers who will receive notifications based on their
subscriptions without needing publishers to choose
recipients. (7) The ability to manage a large number of
potential mobile subscribers allowing for manipulation of
their subscriptions (update, insert, and delete). (8) The
ability to manage a large number of publishers. (9)
Support for simultaneous delivery of notifications to
thousands of mobile subscribers. (10) Robustness
guarantees delivery of notifications to all target mobile
subscribers even in case of network failure while
subscribers are moving (that is a characteristic of mobile
network) by resending notifications to subscribers who
could not be reached previously [3]. The common
standard technologies for establishing mobile event
notification systems are Common Object Request Broker
Architecture (CORBA), Java Message Service (JMS), and
Wireless Message Transport Protocol (WMTP) [9].

IV. EVENT NOTIFICATION IN EDUCATIONAL

ENVIRONMENT

Educational environment, especially university, is
filled-up with various activities and events that are offered
for students. These events are usually announced orally or
posted paperly on the pin board. The problem is that
students have different class schedules, so they exist in
different time frames. Within these different time frames,
some events might be announced, started, and finished
without the student being notified. Also, students may
forget to check the pin board due to their busy day
schedule. Further problematic case, if a lecturer, for urgent
matter, needs to cancel a lecture in the same lecture day,
then the oral and pin board methods will be useless.
Consequently, there is no option to notify students early
and they will only know very late. However, events in
university context can be classified into:

 Social events: include notifications about
incoming trips, sport competitions, conferences,
and symposiums.

 Career events: include notifications about
incoming job opportunities, internships, and
scholarships.

 Academic events: comprise of registration
events (include notifications about registration
date, list of available courses for the new
semester, timetable of the registered courses)
and course notifications (include notifications
about announcement for new lecture, canceling
lecture, and exams schedule).

 Warnings: include notifications to students who
exceeded the allowed absence rate.

 Library events: include announcements about
new available resources, acknowledging student
that the requested resources are sent to her/his e-
mail, and notifying student to renew their
membership.

University should be active by choosing more flexible
method to convey the previously listed events to students

iJIM – Volume 4, Issue 4, October 2010 27

AGENT-BASED MOBILE EVENT NOTIFICATION SYSTEM

anywhere and timely. Hence, mobile event notification
system is the best choice. The remaining sections of this
paper issue a detailed explanation about the proposed
framework for agent based mobile event notification
system, scenario analysis and a discussion to analyze how
it meets requirements of the mobile environment.

V. PROPOSED FRAMEWORK FOR AGENT-BASED

MOBILE EVENT NOTIFICATION SYSTEM

The proposed ABMENS framework is an agent based
mobile event notification system that benefits from using
software agents to push interesting events to the target
students on their mobile devices. The framework
embodies the idea of publish/subscribe (pub/sub) Push
communication model but in a mobile context. The ideal
pub/sub model consists of: (1) Publishers who publish
events, (2) Subscribers who express their interesting
events by issuing subscriptions, and (3) Event service that
manages subscriptions and delivers events to subscribers.
The proposed framework as shown in Fig. 2 consists of
six main components:
1. Publisher: who produces the event data; the

publisher could be any member of university staff.
2. Event Agent (EA): is a light-weight agent resides in

the event provider's mobile device. EA serves as an
interface agent enabling event provider to enter
events.

3. Subscriber: who is a student subscribed for events
once she/he is admitted and registered in university
for the first time.

4. Personal Agent (PA): is a light-weight agent resides
in the student's mobile device. PA is identified by the
student ID. PA serves as an interface agent enabling
student to select interesting events, also PA displays
event notifications to student.

5. Agent-Based Mobile Event Notification System
(ABMENS): in the role of event service that serves
as a middleware between university database server
layer and both event providers and students. The
ABMENS receives events from staff through EA,
stores events and matches them with interested
students, and delivers event notifications to the target
students through their PAs. Also the ABMENS
allows for manipulating and storing students'
subscriptions. The ABMENS performs all these
functions through a set of four autonomous software
agents: (1) Detector Agent (DA) that receives event
data from the EA, gives a copy of event data to the
LA, and sends the event data to the DB A to be
stored into database. (2) Logic Agent receives event
data from the DA, retrieves the list of interested
students from the DB A, and sends [event data + list
of students] to the MA. (3) Manager Agent (MA)
receives [event data + list of students] from the LA
and deliver event notifications to the target students'
PAs, also MA receives subscriptions from the PAs
and sends them to the DB A to be stored into
database. (4) Trustee Agent (TA) monitors activities
of all agents in the ABMENS and ensures
synchronization between those agents.

Fig. 2: ABMENS System Architecture

6. Database Server: contains the database tables for

students, courses, and events and so on. The
incoming queries from the ABMENS agents are
handled by Database Agent (DB A) that resides in
the database server. The DB A receives the following
queries from the ABMENS agents: (1) INSERT and
SELECT event from the DA. (2) SELECT target
students from the LA. (3) INSERT and UPDATE
subscription from the MA.

In wireless networks, disconnection and failure to
deliver notifications is possible. In such cases, the MA is
responsible for resending the notifications to the PAs that
could not reach before and ensuring that all target
students' PAs have received notifications.

Notice that some events are produced by the event
providers (e.g. social events and career events) and some
others are propagated by the ABMENS (e.g. warnings and
available courses for new semester). The later ones are the
responsibility of the DA; the DA detects any new events
stored in the database by other subsystems (e.g. grading
system and registration system) and retrieves them
through the DB A, then sends them to the LA. However,
those propagated events are outside the scope of this
paper. Therefore, there are two types of subscriptions: (1)
Direct subscription: in which students subscribe
themselves to events like social and career events. (2)
Indirect subscription: in which students receive
notification with out issuing subscription like in course
notification case. The typical scenario for the proposed
system is composed into:
1. Subscription scenario: the involved agents are the

PA, MA, and DB A. The scenario starts when the
student uses the PA to select the interesting event
categories, and then the PA sends the selected events
to the MA that will send them to the DB A that stores

28 http://www.i-jim.org

AGENT-BASED MOBILE EVENT NOTIFICATION SYSTEM

them into database. Same scenario is applied for
unsubscription or updating subscription.

2. Event notification scenario: starts when the staff
uses the EA to publish an event by entering event
data (event category, event title, event date, event
place, and description). The EA sends event data to
the DA that will send a copy of event data to the LA,
also the DA will send event data to the DB A to store
it in database. After receiving event copy from the
DA, then LA sends SELECT query to the DB A to
retrieve list of students' IDs who are interested in that
event. The LA receives the query result (list of IDs
of subscribed students) from the DB A, then attaches
the event data with that list and sends them to the
MA that will disseminate the event notifications to
PAs of the target students. The PA displays the
notification to the student in friendly look.

Assuming that students already issued subscription, the
whole flow of activities through the system is depicted in
Fig. 3, starting from the staff that enters the event, each
agent's activities on the event, ending with the delivery of
event notifications to the target students. Note that the PA
is identified by student's ID as a global identifier. When
the staff enters an event, Event Agent collects event
details that consist of: Event Category (social, career,
academic, or library events), Event Title, Event
Date/Time, Event Place (optional), and Event Description.

Regarding the two following queries involved in the
matching process:

Q1:
SELECT StudentEvent.Student_ID
FROM Student INNER JOIN (Event INNER
JOIN StudentEvent ON Event.Event_ID =
StudentEvent.Event_ID) ON
Student.Student_ID = StudentEvent.Student_ID
WHERE Event_Category = 'Social';

Q2:

SELECT Registration.Student_ID
FROM Student INNER JOIN (Course INNER
JOIN Registration ON Course.Course_Code =
Registration.Course_Code) ON
Student.Student_ID = Registration.Student_ID
WHERE Course.Course_Name = 'MIS';

Logic Agent (LA) receives event copy from the DA,
and based on the event category, it matches the event to
the corresponding students, and prepares the appropriate
query to send to Database Agent. Thus the following logic
is executed:

 IF event category is social or career, THEN prepare a
query to retrieve students' IDs who are subscribed to
that category of event, and send it to Database Agent.

 IF event category is course notification, THEN
prepare a query to retrieve students' IDs who are
enrolled in that course, and send it to Database
Agent.

 After receiving query result from the Database
Agent, the LA attaches the event with the list of IDs
of students who will receive the notifications, and
sends them to the Manager Agent.

Fig. 3: System Workflow

Manager Agent looks for Personal Agents (PAs) whose

IDs match IDs of recipient students using the Directory
Facilitator (DF), then sends event notification to these
PAs.

Generally, typical publish/subscribe model consists of
two basic models (subscription model and publication
model) and two basic mechanisms (matching and routing).
Publication model defines the data model for publishable
event data; hence, events could be structured in various
forms (simple unstructured strings, record type, class type,
or XML document). Subscription model defines the
selection constraints on the published events. Subscription
model can be implemented in many forms (relational
model, rule definition language, XPath, object-oriented
languages, or fuzzy logic rules). Matching could be
performed by either XML queries or SQL queries.
Routing could be done by flooding, selective routing or
gossiping.

Accordingly, the proposed framework applies class
type structure to event publication model, relational
approach to subscription model, SQL queries to matching
events to corresponding subscribers, an agent discovery
for routing events to the matching subscribers' agents.

iJIM – Volume 4, Issue 4, October 2010 29

AGENT-BASED MOBILE EVENT NOTIFICATION SYSTEM

Agent discovery mechanism is provided by the agent
platform along with agent registration service.

VI. CONCLUSION

The paper proposed a framework for agent-based
mobile event notification system to deliver events offered
by university to students on their mobile devices. The
paper provided an analysis of the system scenarios and
functionalities. The system should promote flexibility,
intelligence, and reliability. The system helps university to
reach students and keep them updated with the incoming
and even the urgent sudden events. The system is
currently under development based on the analysis
produced in this paper. The chosen platform for design
and implementation is the JADE framework because it
enables developing light-weight agents using its extended
library JADE-LEAP [6].

REFERENCES
[1] A. Adi, Z. Denfgyin, L. Haibo, "M-learning in review:

Technology, standard and evaluation," Journal of Communication
and Computer, USA, Vol. 5, No. 11, pp. 1-6, Nov. 2008.

[2] M. Caporuscio, A. Carzaniga, A. Wolf, "Design and Evaluation of
a Support Service for Mobile, Wireless Publish/Subscribe
Applications", IEEE Transactions on Software Engineering, Vol.
29, No. 12, pp. 1059-1071, Dec. 2003. doi:10.1109/TSE.
2003.1265521

[3] G. Cugola, H. Jacobsen, "Using Publish/Subscribe Middleware for
Mobile Systems," ACM SIGMOBILE Mobile Computing and
Communications Review, Vol. 6, No. 4, pp. 25-33, Oct. 2002.
doi:10.1145/643550.643552

[4] Erlin, Y. Norazah, A. R. Azizah, "Overview on Agent Application
to Support Collaborative Learning Interaction," US-China
Education Review, Vol. 5, No. 1, Jan. 2008.

[5] Kineo and UFI/Learndirect (2009). "Mobile Learning Reviewed,"
Retrieved from
http://www.kineo.co.uk/documents/Mobile_learning_reviewed_fin
al.pdf [Accessed June 2, 2009].

[6] A. Moreno, A. Valls, A. Viejo, "Using JADE-LEAP to implement
agents in mobile devices," TILAB "EXP in search of innovation",
2003, Italy, http://jade.tilab.com/papers-exp.htm

[7] F. Mousumi, S. Jamil, "Push Pull Services Offering SMS Based
m-Banking System in Context of Bangladesh," International Arab
Journal of e-Technology, Vol. 1, No. 3, pp. 79-88, January 2010.

[8] H. Nwana, M. Wooldridge, "Software Agent Technologies,"
Intelligent Systems Research, Advanced Applications and
Technology, BT technology journal, 1996.

[9] P. Pietzuch, G, Muhl, L. Fiege, "Distributed Event-Based
Systems: An Emerging Community," IEEE Distributed Systems
Online, Vol. 8, No. 2, Feb. 2007. doi:10.1109/MDSO.2007.8

[10] P. M. Reddy, "Mobile Agents: Intelligent Assistants on the
Internet," Resonance: a journal of science education, published by
Indian Academy of Sciences, Bangalore, India, July 2002.

[11] O. K. Sahingoz, N. Erdogan, "Agvent: an agent based distributed
event system," Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.11
2.431 [Accessed April 11, 2010].

[12] X. Shen, F. Li, "The Application of Agent-Based Information
Push Technology in Mobile Learning," International Conference
on Information Technology and Computer Science, vol. 2,
pp.192-195, July 2009. doi:10.1109/ITCS.2009.178

[13] S. Tarkoma, "Distributed Event Dissemination for Ubiquitous
Agents," The 10th ISPE International Conference on Concurrent
Engineering (CE-2003), pp. 105-110, 2003.

[14] R. Unni, R. Harmon, "Perceived effectiveness of Push vs. Pull
mobile location-based advertising," Journal of Interactive
Advertising (Spring 2007), Vol. 7, No. 2, pp. 28-40, 2007.

[15] A. Vochin, "History of Mobile Phones," Retrieved from
http://gadgets.softpedia.com/newsPDF/History-of-Mobile-Phones-
3578.pdf [Accessed April 10, 2010].

[16] M. Wooldridge, "Agent-based computing," Interoperable
Communication Networks, Vol. 1, No. 1, pp. 71-97, January 1998.

AUTHORS

R. F. El-Gazzar is master student in information
systems with the Arab Academy for Science and
Technology and Maritime Transport. 1029 Alexandria,
Egypt (e-mail: rania.elgazzar@gmail.com).

O. Badawy, Prof. Dr., is with the Arab Academy for
Science and Technology and Maritime Transport. 1029
Alexandria, Egypt (e-mail: obadawy@aast.edu).

M. Kholief is with the Arab Academy for Science and
Technology and Maritime Transport. 1029 Alexandria,
Egypt (e-mail: kholief@aast.edu).

Manuscript received 16 August 2010. Published as submitted by the
authors September 27, 2010.

30 http://www.i-jim.org

http://dx.doi.org/10.1109/TSE.2003.1265521�
http://dx.doi.org/10.1109/TSE.2003.1265521�
http://dx.doi.org/10.1145/643550.643552�
http://www.kineo.co.uk/documents/Mobile_learning_reviewed_final.pdf�
http://www.kineo.co.uk/documents/Mobile_learning_reviewed_final.pdf�
http://jade.tilab.com/papers-exp.htm�
http://dx.doi.org/10.1109/MDSO.2007.8�
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.112.431�
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.112.431�
http://dx.doi.org/10.1109/ITCS.2009.178�
http://gadgets.softpedia.com/newsPDF/History-of-Mobile-Phones-3578.pdf�
http://gadgets.softpedia.com/newsPDF/History-of-Mobile-Phones-3578.pdf�
http://www.baltzer.nl/icon/1-1.html�
http://www.baltzer.nl/icon/1-1.html�

