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Abstract—This research puts forth an optimization- based analog 
beamforming scheme for millimeter-wave (mmWave) massive MIMO systems. 
Main aim is to optimize the combination of analog precoder / combiner matrices 
for the purpose of getting near-optimal performance. Codebook-based analog 
beamforming with transmit precoding and receive combining serves the purpose 
of compensating the severe attenuation of mmWave signals. The existing and 
traditional beamforming schemes involve a complex search for the best pair of 
analog precoder / combiner matrices from predefined codebooks. In this research, 
we have solved this problem by using Particle Swarm Optimization (PSO) to find 
the best combination of precoder / combiner matrices among all possible pairs 
with the objective of achieving near-optimal performance with regard to 
maximum achievable rate. Experiments prove the robustness of the proposed 
approach in comparison to the benchmarks considered. 

Keywords—Millimeter-wave, Beamforming, Massive MIMO, PSO optimiza-
tion 

1 Introduction 

The ever-increasing number of users and the demand for improved quality of service 
requires the development of new and better standards in wireless telecommunication. 
The new 5th generation systems (5G) appear to be a promising step in such a direction 
that can reliably meet the ever-increasing consumer demand. Next Generation Mobile 
Networks Alliance [1, 2] has put forth the following list of requirements for 5G: 

• Increased data rates 
• Decreased latency rate 
• Ability to handle large number of connected devices 
• Increased dependability. 

As compared to 4G, the recent 5G networks claim to have the ability to increase 
capacity by 1000 times before 2020 [2, 3]. There are many methods that can increase 
capacity; for example, by increasing spectral efficiency using physical layer (massive 
multiple-input-multiple-output (MIMO) and advanced channel coding [4, 5]). Area 
spectral efficiency can be increased by deploying Network densification that includes: 
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• Permitting device-to- device (D2D) communications [6] 
• By deploying small cells [7, 8] 
• By enabling advanced cooperation, such as Cloud-RANs [9, 10]. 

It is not possible to increase capacity of the existing telecommunication systems 
further because of the inherent restriction constraints. Utilization of the hereby 
underutilized  frequency spectrums thus looks like a promising way out of this 
predicament [3]. 

The hereby underutilized spectrum of millimeter wave (mmWave) frequency band 
is now being considered for the very purpose to design broadband cellular 
communication networks of the future [11]. The frequency range used by it is within 
30 GHz to 300 GHz. Present between microwave and infrared spectrum range, this 
spectrum can be used for efficient wireless communications. This band until recently 
was only used as a medium to transmit indoor high-resolution multimedia streams [12] 
and for open-air point-to-point backhaul links [13]. Recent research has now shed light 
on the suitability of mmWave for open-air telecommunication [11, 14]. 

The main reason behind the growing interest in mmWave spectrum is that the 
amount of available bandwidth is gigantic as compared to that of 4G and its predecessor 
wireless telecommunication frameworks. 

Its carrier frequency is ten times more than its predecessors, making its wavelength 
subsequently smaller. On one hand it is a plus-point because: 

• It enables mmWave precoding to combat large scale transceiver antennas for 
providing large beamforming gains to counter path loss and to create highly 
directional beams 

• They exploit polarization well along with other new spatial processing techniques, 
such as adaptive beamforming and massive MIMO [15] 

On the other hand this very characteristic of smaller wavelength poses a challenge 
to its adaptability because of the huge path loss and rain attenuation that results from it 
[14]. 

In traditional MIMO systems, all antenna elements are linked to a baseband 
processor. This calls for the use of a dedicated mixer, analog to digital converter (ADC) 
/ digital to analog converter (DAC), filters and amplifiers per antenna. The series of 
elements that link an antenna to baseband are called radio frequency (RF) chains. 
Digital precoders in traditional MIMO systems are located at baseband. They adjust 
signal magnitude as well as signal phase. Directional signal transmission and reception 
is achieved by the technique of beamforming. Beamforming fundamentally steers the 
signal in a particular direction. Its elemental principle is to modify the amplitude and 
phase for power variation and beam steering. Different antenna arrays with different 
provision and arrangement for amplitude and phase variation are used in beamforming 
for transmission and reception. 
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Fig. 1. Architectures of traditional low RF-complexity technologies: a) antenna selection; b) 

analog beamforming [16] 

In fully digital precoders, analogue to digital converters (ADCs) and radio frequency 
(RF) chains should be same in number as the total antenna elements. 

The large frequencies of mmWave channel permit using large number of antennas 
but with the increase in antenna elements, the number and cost of RF chains would also 
increase, thus posing a constraint, rendering digital precoding infeasible in mmWave 
spectrum. 

A recently proposed hybrid precoding model on the other hand requires only a small 
number of RF chains interfaced between a low dimensional digital pre coder and a high 
dimensional analog pre coder [17]. High dimensionality of analog pre coders makes it 
infeasible to be used in RF domain where it is required to use mega power variable 
voltage amplifiers (VGAs) [10]. 

This calls for a trade-off between low cost phase shifters at analog pre coder side and 
the reduced ability to adjust the magnitude of RF signals. 

MmWave massive MIMO systems typically perform analog beamforming. Analog 
phase shifter (PS) network is used to change phase and has quite low hardware cost [14, 
18, 19]. There are two main types of analog beamforming schemes: 

• Non-codebook-based beamforming 
• Codebook-based beamforming  

Non-codebook beamforming methods have the ability to get superior optimal 
performance but they need exact channel state information (CSI) at Base Station (BS)- 
which is not feasible when the number of expensive RF chains is kept low [10]. On the 
contrary, codebook-based beamforming can function even without perfect CSI 
information. It involves predefined codebooks of all possible analog precoder and 
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combiner matrices and the algorithm searches for such a pair that gives best 
performance. Only downside is that this technique of beamforming incurs a large 
computational cost that occurs when iteratively exchanging information between BS 
and user to search for the optimal pair. Also, with the increase in RF chains and 
quantified bits of the angles of arrival and departure (AoA/AoDs), complexity rises 
[20]. 

[21]in 2015 proposed a Turbo-TS analog beamforming approach that performs this 
search for best precoder and analog pair by using machine learning, i-e optimization. 
This eliminates the need for checking all possible combinations from the codebooks, 
hence reducing complexity. Their main approach is made up of two parts:  

• A Turbo-like joint search scheme based on continuous information exchange 
between user and BS 

• TS-based precoding/combining that uses local search to find the best precoder and 
combiner pair from among the predefined codebooks. 

Their simulation results proved that the complexity of this approach is linear with 
number of RF chains, and does not depend on quantified bits per angles of arrival and 
angles of departure. 

In this paper, we propose the use of Particle Swarm Optimization to perform this 
search. 

2 System Model 

 
Fig. 2. MmWave MIMO transmitter architecture [18] 

Consider a mmWave massive MIMO architecture as shown below: 
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(a) 

 
(b) 

Fig. 3.  (a) Beamforming of Massive MIMO at Transmitting end; (b) Beamforming of Massive 
MIMO at Receiving end 

A total of antennas are installed at base station in conjunction with  RF 
chains. 

 antennas are used at the transmission end, by which data streams are 

transmitted to a user having antennas on the receiver end. 
Maximum spatial multiplexing gain is achieved by setting: 

 𝑁!"# = 𝑁$"# = 𝑁% (1) 

tN
RF
tN

sN sN

sN
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The overall procedure goes like this:  data streams pass through  RF chains 
after which they are converted to analog signals. These signals are precoded by an 

analog precoder, , after which they are transmitted. 

x =  

Here, s is the  transmitted data which has normalized power 

. 
PA is based on a PS network with low hardware complexity [22] and all its elements 

satisfy the condition 

 

The signal vector received at the user side is of dimension . If denotes the 

total transmitted power and H represents the channel matrix then with 
narrowband block-fading massive MIMO channel [16], the received signal, r can be 
modelled as 

  (2) 

where n = [n1, · · ·, nNr]  is the additive white Gaussian noise (AWGN),whose 

values are based on the identical and independent distribution (i.i.d.) . 

The received signal r at the user end is processed by an  analog combiner 

. 

  (3) 
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3 Methodology 

The overview of methodology adopted to implement the proposed method is shown 
in the figure below. 

 
Fig. 4. Overall algorithm flow 

3.1 Channel modelling 

First step in the process is the modelling of the channel. We base our simulations on 
a geometric channel model with very limited number of significant scatters because of 
the existence of heavy antenna correlation in mmWave systems [23] Saleh-
Valenzuela channel [24] which is a widely popular channel model, was thus 
chosen. It is basically an extension of Turin model. 

It statistically explains the clustered property of calculated received power delay 
profiles in indoor setting. 

The Saleh and Valenzuela channel matrix H can be modelled by the following 
equation: 

  (4) 

Here the number of significant scatters is represented by L. in mmWave spectrum 

due to the sparse nature of scatters we have . 

lth path gain is . It includes path loss. 

Azimuth of AoDs/AoAs of the lth path are represented by  and respectively. 
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is the gain of the lth path including the path loss,  and  are the 
azimuth of AoDs/AoAs of the lth path, respectively. 

Antenna array response vectors are given by and respectively. These 
are governed by the antenna array structure of BS and user. 

For uniform linear arrays (ULAs) considered in this research:  

  (5) 

 (6) 

If wavelength of the signal is given by and antenna spacing is given by , then 

 

3.2 Generation of codebooks 

Each beam steering codebook [25] of mmWave channel consists of a matrix whose 
columns represent beamforming weight vectors. These contain information regarding 
beam direction. Each codebook has matrices such that the total beam patterns in the 
codebook are generated symmetrically throughout the 360 degrees around the antenna 
device. This ensures that the gain loss at the overlap of any two successive patterns is 
as low as possible. 

Suppose that the beam steering codebook of analog precoder is represented by F. It 

enlists all feasible analog pre coder matrices, represented by . 
Also suppose that the beam steering codebook of analog combiner is represented by 

W. It enlists all feasible analog combiner matrices, represented by . 
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If the number of bits to calculate AoD (AoA) is represented by , then 

each AoD will range from i= 1 to i= . So each computed AoD will have 
possible values. 

 = where n ∈ {1, · · · } 

Cardinality |F| of F will therefore be . 

Also, each AoA, will range from j= 1 to j= . So, each AoA will have 

possible values. 

 =  where n ∈ {1, · · · } 

Cardinality |W|. of W-will therefore be . 

3.3 Definition of cost function 

Each possible combination of precoder and combiner matrix will give a different 
achievable rate. We aim to search for such a pair that will maximize the achievable rate. 

The maximum achievable rate given by any combination of precoder  and 

combiner can be given as 

 

  (9) 

  (10) 

Here 

 ,is the covariance matrix of noise after combining. Hence the above 
equation can be expressed as: 
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In the next section is described the optimization algorithm that is used to maximize 
the achievable rate. 

3.4 Particle Swarm Optimization (PSO) optimized selection of pre coder and 
combiner matrices 

To maximize the achievable rate, the finest combination of pre  coder / combiner 
must be chosen from all possible combinations that were generated using equations 7 
and 8. For this objective, PSO is used. In this section we will give an overview of PSO 
and its mathematical formulation. 

PSO is a population-based metaheuristic that prevents a solution from being trapped 
to local optimum [26, 27] and can yield acceptable solutions in a reasonably practical 
time [28]. It is a popular method to solve different types of optimization problems 
related to engineering [13]. A potential solution is called a ‘particle’. Objective function 
gives the ‘fitness’ value of each particle. Particles are initialized randomly. Each 
particle moves in multidimensional search space with random velocities in search of a 
better fitness value. This update in the position of a particle takes place based on the 
information of its personal/ local best position and global best position. This process is 
repeated in each iteration. Inertia weights help update velocity. Boundary constraints 
are imposed on the particle to enforce that the particle solution stays within allowed 
range. 

Each candidate solution (or PSO ‘particle’) here is a possible pair of pre coder  

and combiner . Each particle can be represented by a point in D dimensional space, 
where D is the number of variables to optimize- which in our case is 2: first is the index 

from pre coder codebook (each index has a different matrix) and second one is the 

index from combiner codebook (each index has a different matrix). Any single 
combination of these indices can be mapped to a possible combination of pre coder and 
combiner matrices. 

In D dimensional space, a particle i can be represented as [29]: 

 𝑥& = [𝑥&'	, 𝑥&(	, 𝑥&)…………… , 𝑥&*]	 (12) 

Each swarm X consists of a population of N particles. 

 𝑋 = [𝑥'	, 𝑥(	, 𝑥)…………… , 𝑥+] (13) 

Particles of a population move in the search space by using the following equation 
to update their positions. 

 𝑥&(𝑡 + 1) = 𝑥&(𝑡) + 𝑣&(𝑡 + 1) (14) 

In the above equation, t and t+1 are two consecutive iterations. Vi is a velocity vector 
of ith particle along D dimensions. It controls how the particle moves in the search 
space. Velocity vector is made up of three components defined below: 

AP

AC

AP

AC
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• Inertia/ momentum-which forbids a particle from sharply changing direction. 
• Cognitive component c1-which forbids a particle from returning to its previous best 

position. 
• Social component c2-which ascertains the tendency of a particle to move towards 

best position of entire swarm. 
These components can be represented by the equation: 

  (15) 

Here, pi is the local best of a particle and g is the global best and 0≤ (c1, c2)≤4. R1 
and R2 are diagonal matrices of random numbers generated from uniform distribution 
in [0,1], so that both c1 and c2 randomly affect the velocity update. The same process 
is repeated for all iterations. 

 
Fig. 5. Pseudo code of PSO [29] 

4 Simulation Result 

Performance of Particle Swarm Optimization is analyzed for the purpose of 
maximizing the achievable rate in beam forming with increasing SNR conditions where 
SNR is defined as ρ / σ^2. 

We have compared results of our method with two standard benchmarks of this 
domain: 

Beamforming scheme [17] with continuous angles. It is the best achievable 
performance possible and we aim to bring our results as close to this as possible. 
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Turbo-Like Beamforming [20] based on Tabu Search Algorithm. It uses Tabu search 
to optimize the pair of analog precoder and combiner. 

We consider the antennas at transmitter and receiver ends to be Uniform Linear 
Arrays (ULAs) with antenna spacing d equal to π /2. Carrier frequency is set to 28 GHz 
and the number of scattering propagation paths (L) is kept 3. Total number of RF chains 
at transmission side is the same as the number of RF chains at receiver end, which is in 
turn equal to the total number of data streams transmitted- which is 2 in our case. 

 

It is assumed that AoAs/AoDs for generating channel matrix from [24] follow 
uniform distribution in the range [0, π]. Standard deviation of azimuth and elevation 
angles of both Rx and Tx is kept to be 10/180* π. The complex gain αl of the lth path 
follows αl ∼ CN (0, 1). Wavelength of transmitted waves is kept to be 2 mm. Particle 

swarm optimization is used to select such a pair of matrix (chosen from precoder 

codebook F) and matrix (chosen from combiner codebook W) that maximizes the 
achievable rate against an SNR range.  PSO parameters were set as mentioned in the 
table below. 

Table 1.  Parameters for PSO Algorithm 

PSO Parameters Values 
Number of iterations 100 
Population size 30 
Inertia weight 1 
Damping ratio of inertia weight 0.99 
Learning coefficient- Personal (c1) 1.5 
Learning coefficient- Global (c2) 2 
 

Experiments were conducted in two different scenarios. In the first one, Nr was kept 
to be 16 and Nt was 64. In the second scenario, Nr was kept to be 32 and Nt was 128. 
All other parameters of system model and PSO were kept constant as described above 
in this section. Results of both these cases were obtained for three different sets of 
quantified bits per AoAs/AoDs which are: 

 = = 4 

 =  = 5 

 =  = 6 

2RF RF
t r sN N N= = =
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In the figure below are presented the results for the case when Nr x Nt was 16 x 64. 
we can see that for each of the sets of considered quantified bits per AoAs, the results 
by PSO far exceed those of Turbo TS scheme and approach very closely to the 
performance by beam steering. 

For all considered SNR values, the performance of  =  = 6 was nearly the 

same as the performance by beam steering and for higher SNR values,  =  = 

5 approached beam steering benchmark as well. The performance at  =  = 4 
was off by the beam steering benchmark by about 1.5 bps/Hz but it was much higher 
than the performance of turbo TS method by nearly 3 bps/Hz. 

 
Fig. 6. Beamforming Using PSO with Nr*Nt=16*64 

The figure below shows the performance of the proposed system at Nr x Nt = 32 x 

128. It can be observed that for  =  = 4, achievable rate was higher than turbo 

TS for all values except the starting and ending values. For the other two cases of  

=  = 5 and  =  = 6 achievable rate was lesser than that of turbo TS in the 
initial few values of SNR, but after that it becomes better than Turbo TS by a adequate 
margin, thus mimicking the performance of the beam steering benchmark more closely. 
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Fig. 7. Beamforming Using PSO with Nr*Nt=32*128 

The general trend for both the cases of Nr  x Nt is that as the number of quantified 

bits per AoAs and AoDs (  and ) is increased, performance improves and 
both TurboTS beamforming and PSO based beamforming can achieve results which 
are much closer to the beam steering benchmark. As a whole, we can say that for 
majority of the cases, the performance of PSO outperforms that of Turbo TS 
optimization scheme. 

Comparing the above two figures, we can conclude that the performance of the 
proposed method can be improved by increasing the number of low-cost antennas rather 
than by increasing the number of expensive RF chains. 

5 Conclusion 

In this work, Particle Swarm Optimization is assessed for the purpose of choosing 
such a pair of analog precoder and combiner that gives highest achievable rate in mm 
wave channel for massive MIMO. Each possible combination of a precoder and a 
combiner matrix is a particle in the swarm. This optimization technique has fewer 
parameters to tune and is fast to arrive at a solution regardless of the initial solutions 
provided to it. 

First of all, massive MIMO system was modelled and Saleh-Valenzuela channel was 
simulated for transmission. Next, a pair of codebooks was generated for analog 
precoder and combiner. Each codebook had a list of all possible precoder/ combiner 
matrices. PSO was used to select such indices of precoder and combiner matrices in the 

RF
tB

RF
rB

iJIM ‒ Vol. 14, No. 5, 2020 189



Paper—Particle Swarm Optimization Based Beamforming in Massive MIMO Systems 

codebooks that maximize achievable rate upon being paired. Results were simulated 
over a wide range of SNR from -20 to 0 db. It was observed that results by PSO 
approached those by the beam steering benchmark much more closely than those by 
Turbo TS optimization [20]. 

This work is based on ULAs in a single user setup. Future work can check this 
methodology on UPAs (uniform planar arrays) systems [21] and also on multiple user 
systems. It can also be modelled for different channels of Massive MIMO [30, 31]. 
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