
A NOVEL CONCEPT OF A CARTOON-GENERATOR APPLICATION ON A MOBILE PHONE

A Novel Concept of a Cartoon-Generator
Application on a Mobile Phone

doi:10.3991/ijim.v4i2.1266

J. Stergar1, A. Šulić1 and B. E. Rodrigues Silva2
1 University of Maribor, Maribor, Slovenia

2 Instituto Politécnico do Porto, Portugal

Abstract—In this work the development and deployment of
a new concept of cartoon-generation on a mobile phone is
presented. An interactive multimedia application was
designed for a push-approach of sending short e-cartoons
from a mobile phone to a central WEB server. The concept
of a unique cartoon-generator will be discussed. The
multimedia Authoring Environment Flash was used for the
interactive application design and implementation. The
architecture and the design process of the interactive
cartoon-generator application will be presented including
storyboarding with final testing of the application on a
Nokia mobile phone.

Index Terms—content generation, Flash Lite, multimedia
authoring, mobile phones, interactive multimedia
application.

I. INTRODUCTION

With the advent of powerful new mobile phones
running on more advanced networks, wireless carriers,
content developers, and handset manufacturers are
bringing to market a range of new content and devices.
Mobility companies see great opportunities but also face
significant challenges in deploying these products [1].

Key among these challenges is the ability to quickly
and easily create, deploy, and manage content and
applications ranging from the mobile phone user interface
to vibrant and user-demanded rich applications.
Worldwide mobile phone shipments reached over 1.19
billion units in 2009. It is critical that wireless carriers,
content developers, and handset manufacturers have the
tools they need to quickly respond to challenges of this
complex and growing mobility market [2].

The inclusion of a proven tool such as Adobe Flash
CS3 with improved Flash Lite capabilities will assist in
lowering the technological barriers to creating dynamic
mobile applications and real-time content. Flash Lite also
benefits from leveraging an existing Flash development
community of over 1.3 million Flash developers
worldwide [3].

With only minor adjustments to accommodate the
unique specifications and needs of handsets, developers
already skilled in Flash can easily bring their skills and
expertise to the mobile space. By allowing for an easy
transition from Flash development on another platform to
Flash development in the mobile environment, Flash Lite
further shrinks the barriers to adoption. The key barrier
among these is the substantial difficulty involved in
efficiently creating time-sensitive content that fully

leverages the mobile phone’s unique and powerful
always-on, always-connected capabilities. While WAP
and Web browsing functionality is increasingly prevalent
on mobile phones, those platforms severely limit the form
and type of data capable of being displayed and therefore
slow adoption by consumers and enterprises alike. Instead
of a rich platform complete with interactive multimedia,
background downloading, and applications that integrate
and respond to user-configured data, the mobile phone is
still, by and large, a statically driven, one-dimensional
platform with limited navigation and display options as
well as exasperating data usage experiences [2].

Flash Lite allows for the efficient and rapid creation and
deployment of content and interfaces to mobile phones,
enabling mobility companies to customize their devices
with powerful user interfaces, content, and applications.
Flash Lite also enables over-the-air management of
content, creating the possibility for the dynamic creation
and modification of new content and campaigns even after
the device has been purchased – further increasing the
ability of the carrier to differentiate itself from its
competitors [4], [5].

II. THE MULTIMEDIA AUTHORING ENVIRONMENT

Adobe Flash Lite is a lightweight version of Adobe Flash
Player, a software application published by Adobe
Systems. This version is intended for mobile phones and
other non-phone, portable electronic devices. It allows
users of these devices to view multimedia content and
applications developed using Adobe's Flash tools, which
had previously been available only on personal computers.
Flash Lite is a development technology implemented at
the client-side, or user interface layer. In this realm Flash
Lite competes with other technologies like Qualcomm's
uiOne markup language and Sun's JavaFX Script. Recent
changes to ActionScript allow Flash Lite to better
integrate with and even compete with device-layer
technologies like Java ME and BREW. Flash Lite should
not be considered a mobile operating system like Symbian
OS, Windows Mobile, Mac OS X for mobile: it is a
technology for developing applications that run on a
mobile operating system [6], [8], [10].

A. Arguments for Flash Lite
Using Flash technology on a mobile phone provides the
same advantages as using Flash on the desktop. Rich,
interactive, compelling user experiences can be created
that have a consistent display across a range of platforms.
Developing applications with Flash Lite can also result in

34 http:www.i-jim.org

http://dx.doi.org/ijim.v4i2.1266�

A NOVEL CONCEPT OF A CARTOON-GENERATOR APPLICATION ON A MOBILE PHONE

a quicker time to market and lower developer costs than
using J2EE or C++ [1].
One of the major strengths of the Flash platform on the
desktop is the one million-plus developer community that
has years of experience designing and developing user
interfaces, games, animations and e-learning applications.

B. The used version of Flash Lite
Flash Lite 1.1 supports Flash 4 ActionScript. Flash Lite
2.0 and 3.0 support Flash’s ActionScript 2.0. All three
versions also support the World Wide Web Consortium's
Standard SVG Tiny, a mobile profile of the consortium's
Scalable Vector Graphics (SVG) recommendation. Unlike
SVG, Flash Lite can add audio and interactive elements
without the use of other technologies such as JavaScript.
As with Flash, Flash Lite is able to read and redraw
external XML content.

C. Features and Functionality
Flash Lite offers the same timeline based features that are
implemented in the regular PC based Flash platform:
MovieClips, Buttons, Vectors, Gradients, Bitmaps, User
Input, digital audio and Scripting language.
As this version has been designed for use on mobile
devices that have much less processing power and
memory than desktop computers, it has a reduced feature
set when compared with Flash 7 and upper. In fact, Flash
Lite is based on the Flash 4 scripting engine. Macromedia
has gone for distribution rather than functionality with the
release of version 1.1.
One of the features of version 1.1 is the ability to access
native device properties. From within the designed
application it is possible to: get battery level status, send
SMS messages, get network connectivity status, dial
phone numbers and launch other applications.
These new capabilities enable content creation that can
interact with the host device giving the users a much better
“mobile” experience.
One of the most important features of Flash Lite 1.1 is the
ability to send and receive data over HTTP. This enables
to load data (and SWF's) into applications from a web
server, giving the benefit of dynamic content in an
installed application.

D. Flash Lite 1.x ActionScript
ActionScript is used to add programming logic and
interactivity to Flash Lite applications. The version of
ActionScript in Flash Lite 1.0 and Flash Lite 1.1 software
from Adobe - referred to collectively as Flash Lite 1.x
ActionScript - is a hybrid of Adobe’s Adobe Flash 4
ActionScript, plus additional commands and properties
specific the Flash Lite player, such as the ability to initiate
phone calls or text messages, or get time and date
information from the device.
Flash Lite 1.x ActionScript consists of the following parts:
Flash Player 4 ActionScript: This includes operators (for
example, comparison and assignment operators), movie
clip properties (for example, _height, _x, and _y),
Timeline control functions (for example, gotoAndPlay()
or stop()), and network functions, such as the
loadVariables() and loadMovie() functions (Flash Lite 1.1
only).
Phone integration commands and properties: Flash Lite
provides commands that let you, for example, query the

date and time information from the device, initiate a
phone call or short message service (SMS) text message,
or start external applications installed on the device.
Platform capability variables (Flash Lite 1.1 only): These
properties provide information about the capabilities of
the device or Flash Lite runtime environment. For
example, the _capLoadData variable indicates the
applications capability to load data over the network.
Host environment communication function: The
fscommand2() function provides enhancements to
fscommand(), including the ability to pass an arbitrary
number of arguments and to retrieve immediate return
values (rather than having to wait until the next frame, as
with fscommand(). Like the fscommand() function, the
fscommand2() is used to communicate with the host
environment or system – in this case, the mobile phone or
device.

III. THE FRAMEWORK FOR APPLICATION

DEVELOPMENT AND TESTING

It's crucial that the tools to create content and experiences
on mobile devices are being delivered to both designers
and programmers, alike as suggested by [12]. The Adobe
Flash CS3 was used as the multimedia authoring
environment. It is the first version of Flash since Adobe
acquired Macromedia. This is significant because it is the
first version of Flash that is integrated tightly and
intuitively with the other tools that designers of digital
experiences have been using all along – specifically
Photoshop and Illustrator.
The authoring environment still shows these roots by
making any designer feel immediately at home. The tools
that are most immediately apparent obviously enable the
creation of visual elements. Flash is also a comfortable
environment for developers. The Actions panel where
developers write their ActionScript code is newly
improved.
Creating and testing mobile content has one key difficulty
that desktop software doesn't – the large quantity of
devices that can be targeted and therefore must be tested.
Adobe has provided a Flash emulator the so called
“Adobe Device Central” to greatly help creators of mobile
content all the way through the life cycle of a mobile
application (Figure 1.). Designers and developers can
now test their mobile content of these types: Flash Lite,

Figure 1. Choosing the device parameters in Adobe Device Central.

iJIM – Volume 4, Issue 2, April 2010 35

A NOVEL CONCEPT OF A CARTOON-GENERATOR APPLICATION ON A MOBILE PHONE

raster images (bitmaps of different types), mobile web, as
well as video content targeted at mobile devices.
Choosing the target device, previewing layout, monitoring
memory usage, and previewing the performance that can
be expected on the target device are all features of Adobe
Device Central (Figure 4.). Since the mobile market
moves so quickly, Adobe publishes device profile updates
on a regular basis.

IV. THE DESIGN OF THE INTERACTIVE CARTOON-
GENERATOR APPLICATION

A. The Environment Setup
In the beginning of the application design process for the
Flash Lite application one has to decide which handsets
will be targeted. Flash technology has been shipped on
over 400 millions of Nokia phone across the globe. Flash
technology has become broadly available, because it is
supported across all Nokia platforms and is widely
integrated with Nokia’s mobile WebKit browser. That was
one of the key elements in choosing our mobile device [4].
Mobile phones vary quite extensively in features and input
methods. Therefore we should emphasize the following:

 screen size,
 input devices (five-way navigation, touch screen,

etc.),
 processor speed (important for animation and

complex graphics) and
 sound support.

Mobile phones usually lack a keyboard or mouse therefore
the interface had to be designed in a way that is intuitive
and easy to use with the input methods supported by the
respective device. Obviously navigational keypads are the
proposed solution.
Flash Lite can take input from joysticks, touch screens and
navigational keypads. Also functions can be assigned to
key press events (0-9,* and # keys). There is also the
possibility to map "Soft Keys" present on some mobile
phone types, to key press events.
Thus, after this few assumptions the setup (main target
device from Adobe Device Central) and development of
the Application can be started. This is the first step on the
development of any application.

B. The Storyboard
As stated in [7] storyboards are a natural representation
and they can be used to simulate functionality without
worrying about how to implement it. When designing a
visual interface, rough pictures of the screen layouts are
sketched to design the concepts of functionality and
interactions. The screens are then usually tied together by
storyboarding techniques: the designer annotates the

sketches to illustrate sequences of system responses to
end-user actions. Despite the process can be performed by
suitable tools we used a standard approach when
designing the user interface (Figure 2.).

C. Verical Design and Structure – The Layers
The main timeline has six different layers (Figure 3.):
 Action Layer
 Labels Layer
 Cartoon and CartoonHolder Layers
 KeyCatcher Layer and
 Scenes Layer

1) The “Action” Layer
In this layer all of the actions (scripting language
ActionScript) that occur on the main timeline and that
make the work interactive are integrated. Thus here the
variables are initialized counting the numbers of cartoon
characters. The “fscommand2” function is executed
(systems calls) to put the application on full screen. Also
Soft Keys are configured in the Action Layer.

2) The “Labels” Layer
Here the names for groups of frames intended to be
managed are identified. Movement in the timeline can be
controlled by other means for example with frame
numbers. Nevertheless with group frames the work stayed
more intuitive and a better overview is achieved.

3) The “Strip Cartoon” Layer
With strips we’ll be referring different cartoon characters
used in the carton-generator application. In the Strip
Cartoon layer the strips are implemented for selection of
different characters: the beings, the bubbles and the
objects. One can see these strips animated here almost as
they will appear live in the “main scene” of the running
application after selection.

4) The “Strips Holder” Layer
In this layer all the strips exactly as in the “Strips layer”
are included. The major differences are the size and the
position that differ, because this layer has a different
function. When the user selects any cartoon characters
from the Strip Cartoon layer any of the MovieClip
instances is duplicated and forced to appear on the main
scene. With other words, the Strip Cartoon layers function
is to show the strips to the user in an optimal way (screen
size) whereas the function of the Strip holder layer is to

Figure 2. A cut out of the storyboard sketching process.

Figure 3. Main timeline with emphasized “Keycatcher”layer.

36 http:www.i-jim.org

A NOVEL CONCEPT OF A CARTOON-GENERATOR APPLICATION ON A MOBILE PHONE

duplicate the selected strip cartoon in the sense of real
appearance.

5) The “Keycatcher” Layer
In the “KeyCatcher” layer all the key catchers are
included. The necessity of using the key catchers is for the
reason that different situations can occur in the running
application. Therefore the same key could have different
meanings in different scene scenarios of the application.

6) The “Scenes” Layer
Here the design part is more visible. Different kind of
scenes for the different cartoon scenarios along the main
timeline appear in this layer. All included strips are
intended for the main scene with menus and selection
scenes.

D. Horizontal Design and Structure – The Frames
In the foregoing section the main timeline in the vertical
way was explained, thus layers were the main topic. In
this subsection the frames and group of frames on the
timeline will be discussed (Figure 3.).
The only frames in the application not having label names
are the first three. They are essential for the different
application states which will be explained next.
First the similarities – the design is the same for all three
frames. It is constituted from the border that does not
change in all scenes of the application and two buttons –
one for the insertion of strips and the other one for the

belonging options. One button is applied to the left and the
other one to the right soft key.
All the three frames have different actions. Therefore they
are split into three frames and also three different key
catchers. The first frame function is dedicated for making
the system calls, variables initialization and it is also
programmed for distinguishing between buttons. The
second one is to make the characters appear if selected (in
the menus part they have to disappear). The functionality
is important for strip editing.
The third frame differs from the second merely in the key
catcher. Here the user can edit all elements, for example
changing their position, resizing them, etc. This action is
possible because of the different types of key catchers. For
editing we used the 4-way keypad press events with the
“Enter” press event.
The second frame functionality is to select elements
(characters), and the third ones functionality is to edit
some properties. Both are used with the 4-way keypad and
Enter press events (Figure 5.).

1) The “Insert” frame label
Here in this part, the Insert menu is implemented. It
certainly supports all three types of strips implemented:
the beings, the objects and the bubbles. One can choose
among them and then chooses the respective selection
part. The Design part has like we already mentioned the
border (appearing unchanged through the whole
application) and four buttons. Three of them are designed
for choosing among the strips and one to return into the
main scene. Basically this part only has the objective of
the strips selection one can choose for insertion into the
main scene.

2) The “Options” frame label
This label is very similar to the one mentioned before. It
represents another menu. Here we choose among the
options of the application, for example the “clear all”
option that deletes the entire main scene instead of
deleting characters one by one. The “Help” and the

Figure 4. Testing the application on the Adobe Device Central

Figure 5. The “Insert”, “Text Insert” and “Editing Options” graphical

user interfaces.

iJIM – Volume 4, Issue 2, April 2010 37

A NOVEL CONCEPT OF A CARTOON-GENERATOR APPLICATION ON A MOBILE PHONE

“Send” options don’t make anything yet. Their functions
are reserved for future use for publishing the content to a
WEB server. Finally the “exit” option exits the
application.

3) The “Menu1” frame label
This label belongs to the same category as the last two
frame labels mentioned before. Like the other two this
label has the same design. It represents a menu where one
can choose the options related with the properties of the
strips, like “position”, “rotate”, “resize”, “delete”, “to
front”, “to back”, “vertical flip” and “horizontal flip”.

4) The “Menu2” frame label
In this menu we solved the differences that the select
arrow has in accessing the same strip properties already
mentioned in the foregoing Menu1 label. This menu is
fundamentally different from the other menus because it is
intended solely for the bubbles strips. Here the text is
inserted by the user adding dialogs, comments and other
information into selected bubbles. After the insertion
procedure the user has to confirm the text input using the
“Submit” button. Then the text will be shown inside the
bubble. Another difference is the implemented key
catcher. It enables the user to change from the current
menu (Menu2) to a different one (Menu11). That is
because of the same properties the bubbles have compared
to other non-text strips after the text input. After text input
competition the cartoon characters must support all the
editing functions mentioned in the Menu1 subsection.

5) Menu11” frame label
This menu is a copy of “Menu1”. The differences here are
with a different key catcher which additionally enables the
user to change from this menu to “Menu2”. The option
was added with the goal of simplifying the user interaction
with more intuitive changes between menus.

6) The “Beings”, “Bubbles”, “Objects” frame labels
Because of the similarities in structure of the three strip
cartoon types we will focus just on the core and the
differences in their structure. Each strip cartoon is
characterized by its graphical environment – the frame
and the soft keys. Its core consists of two MovieClips with
the respective timeline and layers for the ActionScript. An
additional invisible button is added for interactivity in a
separate layer for each cartoon character (the blue
transparent surrounding of the character, Figure 6.).
The characters can be altered by activating the key catcher
therefore pressing the “Enter” button. The two
MovieClips are necessary because of the implemented
editing concept. The usually minimized MovieClip the so
called “beings holder” is an altered copy of the original
“beings” MovieClip. We used this concept to maximize
the capabilities of visual representation of the cartoon
elements on the mobile phone screen. We could also
explain the “beings holder” frame label as the pointer to

the preview option and the “beings” frame label as the
pointer to the final view of the cartoon character. The
cartoon character properties are therefore not edited on the
final screen but prior to their selection in a separately
editing screen.

V. APPLICATION TESTING

Despite that it’s often easier to interact with an emulator
than with an actual device, the tester doesn’t get a true
sense of application usability. Emulators will normally
allow for the use of mouse and keyboard, while actual
devices obviously do not. While this doesn’t directly
affect functional testing, it’s always a good idea to do
some amount of testing on the actual device to evaluate
its usability [9], [11].

A. Workflow for authoring Flash Lite applications
The process for creating Flash Lite content is an

iterative one that involves the following steps (Figure 7.):

1) Identify target device(s) and Flash Lite content
type

Different devices have different screen sizes, support
different audio formats, and have different screen color
depths, among other factors. These factors may influence
the application’s design or implementation. In addition,
different devices support different Flash Lite content
types, such as screen savers, stand-alone applications, or
animated ring tones. The content type for which we are
developing also determines the features that are available
to our application.

2) Creating and testing applications in Flash
Adobe Flash CS3 includes a Flash Lite emulator

(Adobe Device Central) that lets the developer test the
application without having to transfer it to a device. The
developer uses the Adobe Device Central to refine the
application design and fix any problems before testing it
on the mobile device (Figure 4.) [13].

3) Testing the application on a target device or
devices

This step is important because the emulator doesn’t
emulate all aspects of the target device, such as its
processor speed, color depth, or network latency. For
instance, an animation that runs smoothly on the emulator
might not run as quickly on the device, due to its slower

Figure 6. The two step altering process of cartoon characters.

Figure 7. The interactive development and testing process using

Adobe Device Central

38 http:www.i-jim.org

A NOVEL CONCEPT OF A CARTOON-GENERATOR APPLICATION ON A MOBILE PHONE

processor speed. Or a color gradient that appears smooth
in the emulator may appear banded when viewed on the
actual device.

After testing the application on a device, the designer
may find the need to refine the application’s design in the
Flash authoring tool. This it what we followed since the
beginning of development of the application – when we
changed or redesigned something in the work, we tested it
in the Device Central. In our opinion this is a very good
program for application testing to verify and accordingly
modify the information about the file information,
memory usage, performance, output messages, etc.
The figure above a scenario of our final application on the
mobile phone is shown. Once we performed the necessary
tests on the Adobe Device Central with guidelines from
[13], the application was additionally tested on the Nokia
N80 Mobile Phone (Figure 8.). Thus the true sense of the
application usability was tested because it is often easier
to interact with an emulator than with an actual device
[11]. Therefore we really got a better approximation how
the application works in practice.

VI. CONCLUSION

Although Flash Lite 1.1 was used with its limitations we
managed to design a user friendly interface for cartoon
creation and push-publishing on mobile phones. We
designed the user interface and created three types of
cartoon elements for the cartoon-generator. Every element
can be edited regarding time and spatial composition. Text
can be additionally added and altered. Also options for
push-publishing on a WEB server are supported. The
application could be further improved in the design aspect
or at least could have much more characters included to
make the application wealthier with histories or more
critics or even more jokes to reach almost all age bands.
Nevertheless our objective was to test the concept of the
strip-generator based on the proposed framework on a real
mobile phone without targeting a specific group or
individuals.

REFERENCES
[1] J. Stergar, D. Miletić, “Rapid development and deployment of

content for mobile devices”, A. Hudobivnik, I. Humar, B. Vlaovič,

Eds. Content and networking: proceedings of the International
Symposium on Telecommunications, 2006, Ljubljana, Slovenia.

[2] D. Linsalata, A. Slawsby: Addressing Growing Handset
Complexity with software Solutions. IDC,
http://www.adobe.com/mobile/news_reviews/articles/2005/idc_w
hitepaper.pdf, 2005.

[3] R. Brady, S. Tonzi, New Flash Technology From Adobe Enables
High-Impact User Experiences For Consumer Devices. Adobe
Systems Incorporated.
http://www.adobe.com/aboutadobe/pressroom/pressreleases/ 2005.

[4] Flash Lite Development for Nokia Devices, Adobe Developer
Connection, Mobile and Devices Developer Center,
http://www.adobe.com/devnet/devices/nokia.html.

[5] J. Ulm, “Designing Engaging Mobile Experiences”,
http://www.adobe.com/devnet/devices/articles/designing_engagin
g_mobile_experiences/designing_engaging_mobile_experiences.p
df, Adobe Systems Incorporated, 2007.

[6] E. Elrom, S. Janousek, T. Joos, AdvancED Flash on Devices:
Mobile Development with Flash Lite and Flash 10, Friends of ED,
2009.

[7] J. A. Landay, B.A. Myers, “Sketching storyboards to illustrate
interface behaviors”, Conference on Human Factors in Computing
Systems, pp. 193 – 194, 1996, Vancouver, British Columbia,
Canada.

[8] J. Rasmusson, F. Dahlgren, H. Gustafsson and T. Nilsson,
“Multimedia in mobile phones – The ongoing revolution”
Ericsson Review no. 01, 2004.

[9] J. Harty, A Practical Guide to Testing Mobile Smartphone
Applications, Morgan & Claypool Publishers, M. Satyanarayanan
Eds., 2010.

[10] T. Jokela: Authoring Tools for Mobile Multimedia Content. Nokia
Research Center. IEEE International Conference on Multimedia &
Expo. pp. II-637 – 640. 2003.

[11] R. S. Barber, “Automated Testing for Embedded Devices”,
Software Testing Innovations Series, PerfTestPlus, Inc.,
http://www.perftestplus.com/resources/EA.pdf, 2006.

[12] D. Carroll, “Packing Lite: A mobile media interface design
primer”,
http://www.adobe.com/devnet/devices/articles/packing_lite.html,
Adobe Developer Connection Mobile and Devices Developer
Center, 2007.

[13] W. Wang, “Overview of Adobe Device Central”,
http://www.adobe.com/devnet/devices/articles/introducing_device
_central.html, Developer Connection Mobile and Devices
Developer Center, 2008.

AUTHORS

J. Stergar is with the Digital and Information Systems
Laboratory, Institute of Electronics and
Telecommunications, University of Maribor, Faculty of
Electrical Engineering and Computer Science, Smetanova
ulica 17, 2000 Maribor, Slovenia, (e-mail:
janez.stergar@uni-mb.si).

A. Šulić is a co-worker of the Digital and Information
Systems Laboratory, Institute of Electronics and
Telecommunications, University of Maribor, Faculty of
Electrical Engineering and Computer Science, Smetanova
ulica 17, 2000 Maribor, Slovenia (e-mail:
andrija.sulic@rockpixel.si).

B. E. Rodrigues Silva is a Socrates Erasmus exchange
student from Portugal, Instituto Politecnico do Porto. (e-
mail: 1010587@isep.ipp.pt).

Submitted March 12th, 2010. Published as resubmitted by the authors
March 18th, 2010.

Figure 8. The final implementation of the Cartoon-Generator on the

Nokia N80.

iJIM – Volume 4, Issue 2, April 2010 39

http://www.adobe.com/mobile/news_reviews/articles/2005/idc_whitepaper.pdf�
http://www.adobe.com/mobile/news_reviews/articles/2005/idc_whitepaper.pdf�
http://www.adobe.com/aboutadobe/pressroom/pressreleases/�
http://www.adobe.com/devnet/devices/nokia.html�
http://www.adobe.com/devnet/devices/articles/designing_engaging_mobile_experiences/designing_engaging_mobile_experiences.pdf�
http://www.adobe.com/devnet/devices/articles/designing_engaging_mobile_experiences/designing_engaging_mobile_experiences.pdf�
http://www.adobe.com/devnet/devices/articles/designing_engaging_mobile_experiences/designing_engaging_mobile_experiences.pdf�
http://www.perftestplus.com/resources/EA.pdf�
http://www.adobe.com/devnet/devices/articles/packing_lite.html�
http://www.adobe.com/devnet/devices/articles/introducing_device_central.html�
http://www.adobe.com/devnet/devices/articles/introducing_device_central.html�

