
Paper—Software Development Framework for Real-Time Face Detection and Recognition in Mobile…

Software Development Framework for Real-Time Face

Detection and Recognition in Mobile Devices

https://doi.org/10.3991/ijim.v14i04.12077

Laxmisha Rai (), Zhiyuan Wang,

Amila Rodrigo, Zhaopeng Deng, Haiqing Liu
Shandong University of Science and Technology, Qingdao, China

laxmisha@ieee.org

Abstract—With the rapid use of Android OS in mobile devices and related

products, face recognition technology is an essential feature, so that mobile de-

vices have a strong personal identity authentication. In this paper, we propose

Android based software development framework for real-time face detection

and recognition using OpenCV library, which is applicable in several mobile

applications. Initially, the Gaussian smoothing and gray-scale transformation

algorithm is applied to preprocess the source image. Then, the Haar-like feature

matching method is used to describe the characteristics of the operator and ob-

tain the face characteristic value. Finally, the normalization method is used to

match the recognition of face database. To achieve the face recognition in the

Android platform, JNI (Java Native Interface) is used to call the local Open CV.

The proposed system is tested in real-time in two different brands of smart

phones, and results shows average success rate in both devices for face detec-

tion and recognition is 95% and 80% respectively.

Keywords—Authentication, Image processing, Wearable, Framework, JNI,

OpenCV, Personal identity, Smart phones.

1 Introduction

In the recent years, devices running on Android platform, and smart phones are be-

coming increasingly ubiquitous. However, as most of these devices carry personal,

and sensitive information, they demand biometric authentication [1]. The application

of biometric authentication systems is countless. In these kinds of biometrics, physio-

logical or behavioral characteristic are analyzed and their applications can be extend-

ed to several applications starting from industry to education, medicine, marketing,

immigration centers, playgrounds, theatres, government offices, transportation sys-

tems, airports, and border security control systems, etc [2]. The common biometric

authentication methods used for confirming user identity are face and fingerprints [3].

Considering face detection and recognition, applications can be extended to services

such as better customer satisfaction verification, where the advertisers can make deci-

sions more accurately and favorably based on the features derived from actual human

faces, rather than depending on anonymous searches, and unverified data collected

iJIM ‒ Vol. 14, No. 4, 2020 103

https://doi.org/10.3991/ijim.v14i04.12077
mailto:ssr@online-engineering.org

Paper—Software Development Framework for Real-Time Face Detection and Recognition in Mobile…

over the Internet. Face recognition technology is an emerging biometric technology,

mainly used in intelligent robots, smart homes, and military security systems etc. The

major challenges of face recognition system are the identification problem; where the

human face has dynamic biological features, such as the similarities of face structures

and the face variation caused by different observation angles [4]. In addition, the fac-

tors such as the masking and the degree of user cooperation while authentication also

makes it difficult during face recognition. As a kind of human intrinsic attribute, face

features have strong individual differences and easy to collect. The facial features are

the basis of identity and authentication, which is safer and more reliable than tradi-

tional methods. Using face recognition and authentication process is useful is several

applications related multimedia processing, where camera, and mobile devices are

widely used. This can save valuable time and resources with better user experience

especially during cumbersome registration process, and logging into mobile terminals

remotely.

In several cases, a simple variation in the facial condition affect the accuracy of the

systems through which the facial recognition is performed especially while using

highly populated databases. This is why the facial recognition systems are not widely

used in security systems as compared to other biometric systems such as fingerprint or

iris recognition systems. The face recognition technology is based on physiological

characteristics of identification method, where through the computer to extract facial

features, and according to characteristics obtained authentication is determined. In the

past several years, researchers have developed large applications for real-time object

detection and face recognition, text recognition and currency bill identification [5,6].

In the earlier years, several researchers focused on popular methods available for of

object and face detection. Chen, and Yuille [7] described the object detection and

used cascade structure and AdaBoost classifiers based on Haar basis functions; Viola

and Jones [8] uses Eigenfaces based on the Turk and Pentland models [9]. Other re-

searchers implemented Principle Component Analysis (PCA) or Eigenfaces for face

recognition in order to perceive facial expressions, emotions and gesture. In addition,

researchers also focused on developing face detection and face recognition algorithms

to be used by visually impaired people in the recent years [10,11]. Most of the face

detection methods uses the algorithms proposed by Viola and Jones [8]. The Haar

Cascades functions and the Principal Component Analysis of the Eigenfaces algo-

rithms were used in order to achieve the detection and recognition objectives.

Recently, the works related to real-time face detection, and their role in mobile ap-

plications is getting widely popular among programmers, developers, and researchers.

Authors in [12] proposed client-server-based framework, where face detection, and

tracking application is designed for Android mobile devices. In [13] an algorithm

designed to identify facial features on an android mobile platform. This algorithm is

based on anthropometric face model and box-blur filtering. Similarly, other research-

ers also proposed the methods of emotion recognition in Android smart phones based

on heart rates and the talk users obtained using built in camera, and microphones

respectively [14]. An emotion recognition framework to analyze the facial expres-

sions is presented in [15]. The main focus of this work is to identify emotions in com-

plex environments such variation in lighting, and device movements. A related appli-

104 http://www.i-jim.org

Paper—Software Development Framework for Real-Time Face Detection and Recognition in Mobile…

cation to recognize and analyze the user's audio and characteristics on smart phones is

presented in [16]. This application is developed on Android platform for the primary

goal of emotion recognition efficiently in real-time. Considering the development

environment, since early 2010, several researchers developed applications on Android

platform. An experience report of development environment for Android applications

along with Eclipse IDE and open source tools can be found in [17]. A development of

a face detection and recognition application developed into Raspberry Pi and Android

is described in [18]. However, most of the earlier works related to Android, face

recognition, and emotion recognition etc., are fail to generalize the approach towards

developing Android based software framework for face recognition, which can be

applied to several applications and devices for the privacy protection, user security,

user authentication, and fraud detection. Considering these developments, in this pa-

per, we explore the tools and methods necessary for implementing generalized An-

droid based software development framework for real-time face detection and recog-

nition in mobile applications. Initially, the face detection based on Adaboost face and

the Haar feature is performed. Then the eigenface extraction algorithm of OpenCV is

used to extract the features, and the extracted eigenface is compared with the saved

eigenface. If the similarity exceeds the threshold, the face is identified as belong to the

same person.

The paper is organized as follows. The Section 2 introduces the proposed system

framework and detailed design. The image preprocessing, Gaussian smoothing, gray

transformation, and binarization steps are described in this Section, along with Haar-

like features and point graph. The details of specific face recognition are also present-

ed here. The Section 3 presents the development environment with details of imple-

mentation, where details of building of Android development environment is present-

ed, along with details OpenCV, JNI, and NDK. Section 4 presents the results obtained

after face detection and recognition. Finally, the conclusion is presented in Section 5.

2 System Framework and Detailed Design

The face recognition system proposed in this paper include steps as shown in Fig-

ure 1 and Figure 2. Firstly, the image is captured by a camera, which either is capable

of capturing videos or photographs. However, the camera which captures photographs

is more suitable for accurate recognition. Secondly, as the face detection is a complex

process in general, the system will try to standardize the image captured with the

similar characteristics with the previously stored images in the gallery. This is re-

quired because most of the captured images have some random background or other

images of other faces. Thirdly, feature extraction and mathematical representation

named biometric reference is achieved. This step is the essential step which form the

basis for face recognition. Final step is about process of comparison of models, where

biometric reference is compared with the other models of familiar faces in the gallery.

Declaring identity is establishing the close connection and affinity between two refer-

ences, which is often carried out by the human factor. The flowchart of the overview

of the proposed system is provided in Figure 1.

iJIM ‒ Vol. 14, No. 4, 2020 105

Paper—Software Development Framework for Real-Time Face Detection and Recognition in Mobile…

Image Capture

using Camera

Android based

Mobile Phone
Java Program

Result Display

on Screen

OpenCV

Library

Fig. 1. Flowchart describing overview of system framework

The Figure 2 shows the flowchart for steps involving in face recognition and detec-

tion. The process of image detection and recognition includes several steps starting

from capturing a dynamic image and making it as a static image using system camera.

Afterwards, the system locates the face position to the obtained image based on the

contour symmetry detection method. The image containing the effective face is fil-

tered out, and several steps follows after this step. These steps include processing and

adopting Haar-like feature matching method to extract the facial feature information

[19], comparing the extracted feature data with the face database information, and

then using the normalized square difference matching method in the OpenCV library

to perform specific face recognition as shown in Figure 2.

Image

Acquisition

Face Detection

and

Positioning

Image

Preprocessing

Feature Data

Extraction

Specific Face

Recognition
Results

Harr-feature

Extraction

Normalized

Variance

Algorithm

Fig. 2. Flowchart describing overview of system framework

2.1 Image preprocessing

In order to reduce the image noise, which may hinder the image extraction, detec-

tion, and recognition in the later stages, the image preprocessing method is selected as

a combination of different algorithms to process the image step by step (Figure 3).

The image preprocessing involves four steps, namely Gaussian smoothing, gray-scale

transformation, contrast enhancement, and binarization. Using the Gaussian smooth-

ing filtering and weighted average methods, the image is de-noised along with gray-

scale transformation after the conversion by local mean and standard deviation algo-

rithm to realize the contrast enhancement. Finally, the local adaptive binary method is

used for binary processing after the processing of the grayscale image.

106 http://www.i-jim.org

Paper—Software Development Framework for Real-Time Face Detection and Recognition in Mobile…

Gaussian

Smoothing

Gray-scale

Transformation

Contrast

Enhancement
Binarization

Fig. 3. Steps involved in image preprocessing

The reasons behind choosing Gaussian smoothing technique can be described as

follows. Because of the interference of various external factors such as irregularity

and noise which is highly inevitable during the process of acquiring video or image.

This also leads to lose the image information and data corruption while preprocessing,

and will affect the image quality during the subsequent steps such as image extraction,

detection, and identification. Therefore, image noise filtering is highly essential.

Compared with the smoothing method such as median filtering and adaptive filtering,

the Gaussian smoothing filter is used to eliminate the noise in the spatial and frequen-

cy domain. The Gaussian smoothing image not only enhances the significant low

frequency information, but also retains the image edge contour. The contrast en-

hancement method applied is as follows. According to the different brightness point

level measurements and different levels of pixel statistics, the pixel information is

compared at each point using clustering method. The method compares the differ-

ences between bright and dark points and improves the difference between the pixels,

the contrast is enhanced. By using the selection of local mean and standard deviation

algorithms to complete contrast enhancement, the excessive contrast in other high-

frequency parts is avoided. Haar feature recognition algorithm, SIFT and SURF are

based on grayscale, but generalized Hough transform is more suitable for the detec-

tion of the whole face. The Haar more inclined to face detection, SIFT and SURF are

more complicated than Haar, thus the Haar feature algorithm is used for face recogni-

tion in this paper.

Gaussian smoothing: Image acquisition is easily distorted by various environ-

mental factors resulting from irregular noise. So, this needs to be processed by a

Gaussian smoothing filter. The smoothing process reduces the image noise using a

bilateral filter, while keeping the edges sharp. The formula for Gaussian smoothing

process for two-dimensional Gaussian function is shown as follows:

2

22

2

)(

2
e

π2

1
),(



yx

yxG





 (1)

Where x and y are defined as the pixel template coordinates, σ is defined as the

smoothness parameter. The larger σ is, the better the smoothness is. The resulting

kernel of the filter also exhibits Gaussian distribution characteristics, and the pro-

cessed image enhances the low-frequency information.

Gray-scale transformation: The principle of Grayscale conversion method is that,

the color image is converted to grayscale images for easier processing of images and

face detection. The principle is to convert the R (red), G (green), and B (blue) values

iJIM ‒ Vol. 14, No. 4, 2020 107

Paper—Software Development Framework for Real-Time Face Detection and Recognition in Mobile…

in the picture to gray values. The system conversion formula uses the weighted aver-

age method as shown in below:

 Gray=0.229*R + 0.587*G + 0.114*B (2)

Where, Gray is the gray value.

Contrast enhancement: The contrast enhancement is to separately process the

grayscale values of all the points in the image that have been smoothed. By compar-

ing the grayscale values, level calculation and difference comparison, the difference

in grayscale values among the points is more significant. The main application of

local mean and standard deviation algorithm is to computer local average of the low-

frequency part of the standard deviation, where the high-frequency part of the formula

is:











nj

njl

ni

nik

lkx
n

ji),(
)12(

1
),(m

2x

 (3)

The local variance is defined as below:

 












ni

nik

nj

njl

xx jxmlkx
n

ji 2

2

2)],(),([
)12(

1
),(

 (4)

Where δx (i, j) is the local standard deviation and f (i, j) is used to represent the in-

tensified pixel value corresponding to x (i, j), which can be expressed as follows.

)],(),()[,(),(),(jimjixjxGjxmjif xx 

 (5)

The function G (I, j) is not arbitrarily defined. Under normal circumstances, the

value of G (I, j) will be greater than 1 to enhance [x (I, j) – mx (I, j)], the high-

frequency component. Usually G (I, j) is defined as a constant, it is assumed to be C,

and generally C > 1, which will be transformed into:

)],(),([),(),(jimjixCjimjif xx 

 (6)

During the processing of any high-frequency part of the image which are basically

of the same magnification, does not rule out that some of the high-frequency compo-

nents will be over-enhanced or amplified.

Binarization: In the process of grayscale binarization, the values between 0 to 255

to represent grayscale values of the image pixels are used. The whole image has only

two colours of with black and white, so that the grayscale features can be handled

easily and quickly [20]. In this system, partial adaptive binary image processing is

selected, and the grayscale is mainly cut into N modules according to a specified rule.

A threshold T is set for each module, and each pixel in the module is respectively

adjusted according to a T assigned 0 or 255, thereby completing the binarization of

the module, and the remaining N-1 modules are also binarized in the similar way. In

108 http://www.i-jim.org

Paper—Software Development Framework for Real-Time Face Detection and Recognition in Mobile…

local adaptive binarization, each module threshold T according to a combination of

local characteristics formulated threshold calculation formula, as shown in Equation

7.

 T = a*E + b*P + c*Q (7)

Where a, b, and c are free parameters, E is the average of the module’s pixels, P is

the squared difference between the pixels, and Q is the root mean square between the

pixels so that the binarized image can be more pronounced.

Haar-like features: Currently, face detection methods are mainly divided into two

types: one is based on existing knowledge and other is based on statistics. Haar-like

feature belong to the latter category. In 2004, Viola and Jones proposed face detection

using the Haar-like feature and integral graph method [8]. Later, Rainer Lienhart and

Jochen Maydt extended the Haar-like feature and eventually formed the Haar classifi-

er which is currently used by OpenCV [21]. Haar-like features, have been commonly

used in several applications such as object detection, and face recognition [19]. Haar

includes four types of feature templates: edge features, linear features, centre features

and diagonal features as the basic elements of decision. The feature template consists

of black and white rectangles, and the eigenvalue F of a template is given by white

rectangular pixels and Sw minus black rectangular pixels and Sb. By setting the sub-

window template category, location and size of the rectangle, a large number of ei-

genvalues can be collected from the image. For example, using a detection window of

24 * 24-pixel size, the number of rectangular features that can be obtained will reach

over 160,000 features.

2.2 Image building algorithm

The integral image needs to pass the image traversal only once, then the pixel sum

of all the areas in the image can be calculated. This is a fast algorithm and greatly

improves the eigenvalue calculation efficiency. The construction principle of the inte-

gral image is that the value I (x, y) at the position (x, y) is the sum of all the pixels in

the upper left corner of the original image (x, y). The details of algorithm are as fol-

lows.

S(x, y) represents the sum of the row direction, initialize S(x, -1) = 0; an integral

image is represented by I (x, y), initialized by I (-1, y) = 0; By progressively scanning

the image, the summation S(x, y) and the integral image I (x, y) values in the row

direction of each pixel point (x, y) are respectively calculated by the following equa-

tions and expressions.

 S(x , y)=S(x , y-1)+I(x , y) (8)

 I(x , y)=I(x-1 , y)+S(x , y) (9)

To do a traversal of the image, it is clear that once the bottom right pixel is

reached, the construction of the integral graph I is declared complete. After comple-

tion of the integral graph construction, for any matrix area P in the image, the corre-

iJIM ‒ Vol. 14, No. 4, 2020 109

Paper—Software Development Framework for Real-Time Face Detection and Recognition in Mobile…

sponding four vertices are α, β, γ, δ, then the P pixels can be calculated by the follow-

ing formula:

 Psum = I(α)+I(β)-(I(γ)+I(δ)) (10)

The Haar-like feature value is essentially the difference between the sum of two

matrix pixels and therefore can be completed in a very short period of time.

2.3 Image building algorithm

The important method of face recognition in the system is the process of template

matching, which uses an algorithm provided in OpenCV, named normalized variance

matching method. Finding the most similar area in a source image with a known tem-

plate image is called template matching. The objective function is the Match Tem-

plate function. Its function is to find the similarity between each position of the source

image I and the template image T, and store the similarity result in the result matrix R.

The brightness of each point of the matrix represents the similarity with the Template

Matching degree. The normalized square difference matching algorithm formula is as

shown in Equation 11. Here, T is defined as a template image, I is defined as a source

image, and R is defined as a matching result.

 







22

2

)','(*)','(

)y'y, x'I(x -)y',T(x'
 y) xR(

yyxxIyxT
 (11)

3 Development Environment and Implementation

In this Section, the design details of development environment of the proposed sys-

tem are described. The steps in this design include building Android development

environment [22], using OpenCV libraries, using JNI (Java Native Interface) technol-

ogy [23], Android NDK (Native Development Kit) [24], and Android SDK [25] com-

ponents. The interconnection of these tools is shown in Figure 4.

110 http://www.i-jim.org

Paper—Software Development Framework for Real-Time Face Detection and Recognition in Mobile…

Android

Application

Android

SDK

Android

Java

Program

Dynamic

Link

Database

Android

NDK

Local C++

using JNI

O
p
en

C
V

Fig. 4. Overview of development environment

3.1 Building android based development environment

Android Software Development Kit (SDK) support Java and Android Studio pro-

vides the integrated development environment for developing Android based applica-

tions. In recent years, there are several researchers focused their attention on develop-

ing Android APPs and systems based on Android Platform [26,27]. The Android

NDK supports native development of C/C++ and allows programmers to develop

Android applications using C/C++, and call libraries such as OpenCV to Android

platform. So, to use OpenCV in the standard Android development environment, also

need tools such as Android NDK, and SDK. Android NDK is a tool set, integrated

Android cross compiler environment, and help developers to quickly develop C/C++

shared library. The face recognition algorithm is implemented by C language, and by

calling libraries available in OpenCV. This provides higher implementation efficiency

than using only the Java language. Android system acts as the application layer,

where the programs are written in Java language and it provides JNI interface, so that

a Android program can easily call the C language. The JNI interacts between the local

library and the Java framework as shown in Figure 4.

3.2 OpenCV library

OpenCV is an open source library of image processing algorithms based on C or

C++ programming. OpenCV libraries have the advantages such as: Cross-platform,

independent of operating system, hardware, and graphics manager; OpenCV is free of

charge for non-commercial or commercial applications; fast and easy to use; good

scalability including low-level and high-level application development kits for com-

mon image or video load, save and capture modules [21]. As the devices with An-

droid OS has the capabilities to obtain the benefits provided by OpenCV library

iJIM ‒ Vol. 14, No. 4, 2020 111

Paper—Software Development Framework for Real-Time Face Detection and Recognition in Mobile…

which also guarantee real-time, an image preprocessing algorithm is used to form a

face recognition system.

3.3 JNI framework

Currently, most of the Android developments are achieved through Java language,

and it supports the applications written in C/C++. As a local language C++, and Java

will be required to be run on the JVM (Java Virtual Machine) to as a driver software

to interact with the hardware directly. So, system libraries are completed in C/C++

and Java language is used to call several functions related multimedia, SQLite, and

OpenGL etc., where are they bundled as system packages. In this paper, the image

preprocessing, face detection, and face classification authentication algorithm are

accomplished in OpenCV class library function and compiled as a library, and JNI

framework is used to call them, and the steps involved in JNI call are shown as fol-

lows:

1) Create a new JNI folder in the project’s root directory.

2) Create a C file in the root folder and add the header file to the fold-

er.

3) In the Java code, create a local method, such as the method named:

helloFromC (method body by the C language) such

as :

public native String helloFromC();

4) In JNI definition function to achieve this method, the function in

the form:

jstringJa-

va_com_itheima_helloworldl_MainActivity_helloFr

omC (JNIEnv* env,jobject obj);

This returns a string that defines a string in C language:

char*cstr= "hello from c";

The C language string into java language string:

jstringjstr= (*env)- >New-

StringUTF(env,cstr);return jstr;

5) In the JNI, create Android.mk and fill out the following in this for-

mat:

LOCAL_PATH:=$(callmy-dir)

include $(CLEAR_VARS)

LOCAL_MODULE:=""

112 http://www.i-jim.org

Paper—Software Development Framework for Real-Time Face Detection and Recognition in Mobile…

LOCAL_SRC_FLIES:=""

include$(BUILD_SHARED_LIBRARY)

6) In the JNI folder under the implementation of ndk-

build.cmd instructions, configure the ndk-build environment varia-

ble, and refresh the project lib under the armbi file.

7) Use java code to load the so class library, call the local method, by

setting the parameter string.

8) Set the support based on implementationarchitecture such as x86 ar-

chitecture, build it inside JNI, by setting APP_ABI parameter.

3.4 Android native development kit (NDK)

The Android NDK is a set of components based on C/C ++, which can be used to

write some of the modules through C/C++ code, and the code of these modules can

also run in the Android Virtual Machine. NDK can guarantee higher performance

requirements, and often used in applications that require higher security, because

these can prevent recompilation or de-compilation. Similarly, the NDK can easily

reuse the existing C/C++ modules and can call C++ library. In this paper C/C++ ver-

sion of OpenCV is used, and compared to OpenCV for android, NDK has more pow-

erful functions. NDK includes API, ARM, x86, MIPS cross compiler, debugger, Java

native, and build tools, with dynamic link library. The face recognition algorithm

presented in this paper is implemented using C language, and by calling OpenCV

library. This has a higher implementation efficiency than using the Java language

alone. Android system application layer use Java language, but the Android system

also provides JNI interface, so that the Android program can easily call the C lan-

guage. JNI is located between the local library and the Java framework layer, and this

is shown in Figure 4.

3.5 Implementation details

The implementation process is a is a two-step process with face detection as the

first step in face recognition. In this section, we will describe the algorithms behind

the face detection, and face recognition. Face detection is the first step in face recog-

nition, where it is important to decide whether the image captured is a face or contain

information related to human face. The implementation of this method is described as

follows. The OpenCV has its own org.opencv.android.JavaCameraView custom con-

trol tool, which cyclically crawls data from the camera. In the call-back method, we

can obtain the matrix data, and then by calling OpenCV native method. To detect

whether there is a face in the obtained image, we will enclose within a rectangle array

with face data as shown in Figure 5. The code responsible for this process is shown

below:

public MatonCameraFrame(CvCameraViewFrameinputFrame){

iJIM ‒ Vol. 14, No. 4, 2020 113

Paper—Software Development Framework for Real-Time Face Detection and Recognition in Mobile…

 mRgba = inputFrame.rgba();

 mGray = inputFrame.gray();

 if(mAbsoluteFaceSize == 0) {

 int height = mGraw.rows();

 if(Math.round(height* RELATIVE_FACE_SIZE)>0)

 }

 mAbsoluteFaceSize =

 Math.round(height*RELATIVE_FACE_SIZE);

 }

 }

 if(mJavaDetector !=null) {

 MatOfRect face = new MatOfRect();

 mJavaDetector.detectMultiScale(mGray,faces,1.1,10,

 |CV_HAAR_FIND_BIGGEST-OBJECT

 |CV_HAAR_DO_ROUGH_SEARCH

 |CV_HAAR_DO_CANNY_PRUNING,

new Size(mAbsoluteFaceSize, mAbsoluteFaceSize),

new Size(mGray.width(),mGray.height()));

 Rect[] facesArray = faces.toArray();

 for (RectaFacesArray : FacesArray){

Core.rectangle(mRgba, aFaceArray.tl(),

 AfacesAr

ray.br(),FACE_RECT_COLOR, 3);

 if(null !=mOnFaceDetectorListener){

mOnFaceDetectorListner.on

Face(mRgba.aFacesArray);

 }

 }

 }

 return mRgba;

}

Fig. 5. Initial results after detecting a face

114 http://www.i-jim.org

Paper—Software Development Framework for Real-Time Face Detection and Recognition in Mobile…

Face recognition is the major step in this process. The face recognition step evalu-

ate the similarity information by obtaining the eigenvalues of the face, and then by

comparing the two eigenvalues. In OpenCV eigenvalues are represented as a picture,

and after the face detection from the callback method of matrix data, we can extract

the eigenvalues and, then compare the eigenvalues. In order to improve the accuracy

of identification, face need to be detected, must be identified as a human face, con-

verted into a gray scale, and then normalized. The major sections of program code

responsible for this process is shown as below:

public static booleansaveImage(Context context, Mat Im-

age, Rectrect,StringfileName)

{

 Mat grayMat = new Mat();

imgproc.cvtColor(image, grayMat, Imgproc.

COLOR_BGR2GRAY);

 Mat sub = grayMat.submat(rect);

 Mat mat = new Mat();

 Size size = new Size(100, 100);

 Imageproc.resize(sub, mat, size);

return Highgui.imwrite(getFilePath(context, fileName),

mat);

}

The extracted facial features are compared with the facial features of stored in the

database. A face is accurately identified based on the most similarity that of the eigen-

face. The part of implementation coding of this step is shown as following:

public static double compare(Context context, String

fileName1, String fileName2){

 try{

String pathFile1=getFilePath(context, fileName1);

String pathFile2=getFilePath(context, fileName2);

IplImage image1=cvLoadImage(pathFile1,

CV_LOAD_IMAGE_GRAYSCALE);

IplImage image2=cvLoadImage(pathFile2,

CV_LOAD_IMAGE_GRAYSCALE);

 if(nul==image1|| null==image2){

 return -1;

 }

 int 1_bins = 256;

 int hist_size[] = {1_bins};

 float v_ranges[]={0,255};

 float ranges[][]={v_ranges};

 IplImage imagearr1[]={image1};

iJIM ‒ Vol. 14, No. 4, 2020 115

Paper—Software Development Framework for Real-Time Face Detection and Recognition in Mobile…

 IplImage imagearr2[]={image2};

CvHistogram Histogram1=CvHistogram.create(1,hist_size,

CV_HIST_ARRAY, ranges, 1);

CvHistogram Histogram2=CvHistogram.create(1,hist_size,

CV_HIST_ARRAY, ranges, 1);

 cvCalcHist(imageArr1,Histogram1,0, null);

 cvCalcHist(imageArr1,Histogram2,0, null);

 cvNormalizeHist(Histogram1,100.0);

 cvNormalizeHist(Histogram2,100.0);

double c1 = cvCompareHist(Histogram1,Histo

gram2,

CV_COMPCORREL)*100;

double c2 = cvCompareHist(Histogram1,Histogram2, CV-

COMP_INTERSECT);

 return (c1+c2)/2;

 } catch(Exception e){

 e.printStackTrace();

 return -1;

 }

}

4 Testing and Results

Testing is done with two different smart phones to evaluate the accuracy and ac-

ceptability of face detection and recognition methods implemented. In the first case,

the testing is carried out on Huawei Mate9 Android 7.0 smart phone, which has a 20-

megapixel camera, and Kirin 960 CPU. In the second case, the testing is carried out

on Xiaomi 5 Android 6.0 smart phone, which has a 16-megapixel camera, and

MSM8996 CPU. Face information of ten individuals are added to the database, and

testing the face detection and face recognition is carried out in real-time.

Table 1. Test results in Huawei Mate 9 smart phone

 Frame size Success rate Time(ms) RAM usage (MB)

Face detection 1280*720 95% 15 26

Face recognition 1280*720 80% 181 30

We have extracted different facial eigenvalues and compared their similarity. It is

found that the similarity of face eigenvalue of the same person is significantly higher

than that of different human face. The Table 1, and Table 2 shows the results obtained

in Huawei Mate 9, and Xiaomi 5 smart phones respectively. We have also shown the

overall success rate, time taken for face recognition, and RAM usage in megabytes.

116 http://www.i-jim.org

Paper—Software Development Framework for Real-Time Face Detection and Recognition in Mobile…

The success rates in each case shows successful matching of the images while testing

with 20 images. Figure 6 shows the sample display of face recognition results ac-

quired from Huawei mate 10 smart phones. As shown, the similarity level is 88.15%

and 88.97% during successful matching, and 31.14% during unsuccessful matching.

Table 2. Test results in Xiaomi 3 smart phone

 Frame size Success rate Time(ms) RAM usage (MB)

Face detection 1280*720 95% 37 28

Face recognition 1280*720 80% 276 34

We have extracted different facial eigenvalues and compared their similarity. It is

found that the similarity of face eigenvalue of the same person is significantly higher

than that of different human face. The Table 1, and Table 2 shows the results obtained

in Huawei Mate 9, and Xiaomi 5 smart phones respectively. We have also shown the

overall success rate, time taken for face recognition, and RAM usage in megabytes.

The success rates in each case shows successful matching of the images while testing

with 20 images. Figure 6 shows the sample display of face recognition results ac-

quired from Huawei mate 10 smart phones. As shown, the similarity level is 88.15%

and 88.97% during successful matching, and 31.14% during unsuccessful matching.

(a)
(b)

(c)

Fig. 6. Sample face recognition results, (a) and (b) shows successful matching with similarity

rate of 88.97% and 88.15% respectively, whereas (c) shows unsuccessful similarity rate

of 31.14% for wrong face.

iJIM ‒ Vol. 14, No. 4, 2020 117

Paper—Software Development Framework for Real-Time Face Detection and Recognition in Mobile…

5 Conclusion

Currently, cameras and microphones are miniature in nature, and can be easily in-

tegrated into wearable devices. For the efficient security of the devices from hackers,

and confirming authorized users is very important for personal data protection, and to

avoid misuse of such information from third parties. So, there are different methods

such as speech recognition and face identification methods are very essential. These

methods have better advantages over password-based authentication systems, and

make only the user to access such devices. Face recognition systems perform well in

the limited circumstances, although they exhibit better performance with frontal im-

ages and constant illumination. Currently, majority of face recognition algorithms

fails in different conditions in which people need to use the idea of this technology.

The next generation facial recognition systems should have tools to recognize human

face in real-time and in limited and unexpected circumstances.

In this paper, a software development framework for real-time face identification

system for mobile devices based on Android platform using OpenCV is presented.

We have used supporting software tools such as Java Native Interface (JNI), and

NDK (Native Development Kit) along with OpenCV for implementation of the pro-

posed system. For the face detection and recognition, the Gaussian smoothing and

gray-scale transformation algorithm is applied to preprocess the image. Then, the

Haar-like feature matching method is used to describe the characteristics of the opera-

tor and obtain the face characteristic value. The proposed system is tested in real-time

in two different brands of smart phones, and results shows average success rate in

both devices for face detection and recognition is 95% and 80% respectively.

6 References

[1] Belkhamza, Z., and Niasin, M.A.F (2017). The Effect of Privacy Concerns on Smartphone

App Purchase in Malaysia: Extending the Theory of Planned Behavior. International Jour-

nal of Interactive Mobile Technologies, 11(5): 178-194. https://doi.org/10.3991/ijim.v11i5.

6961

[2] Sato, A., Imaoka, H., Suzuki, T., Hosoi, T. (2005). Advances in Face Detection and

Recognition Technologies. NEC Journal of Advanced Technology, 1: 28–34.

[3] Patel, K., Han, H. & Jain, A. K. (2016). Secure Face Unlock: Spoof Detection on

Smartphones. IEEE Transactions on Information Forensics and Security, 11(10): 2268–

2283. https://doi.org/10.1109/tifs.2016.2578288

[4] Jafri, R. &Arabnia, H. R. (2009). A Survey of Face Recognition Techniques. Journal of In-

formation Processing Systems, 5(2):41–68.

[5] Chen, D., Odobez, J. M. & Bourlard, H. (2004). Text detection and recognition in images

and video frames. Pattern Recognition, 37(3): 595–608. https://doi.org/10.1016/j.patcog.

2003.06.001

[6] Parlouar,R., Dramas, F., Macé, M. & Jouffrais, C. (2009). Assistive Device for the Blind

Based on Object Recognition: an Application to identify Currency Bills. 11th International

ACM SIG Access Conference on Computers and Accessibility, Pittsburgh, PA. pp.227–

228. https://doi.org/10.1145/1639642.1639688

118 http://www.i-jim.org

https://doi.org/10.3991/ijim.v11i5.6961
https://doi.org/10.3991/ijim.v11i5.6961
https://doi.org/10.1109/tifs.2016.2578288
https://doi.org/10.1016/j.patcog.2003.06.001
https://doi.org/10.1016/j.patcog.2003.06.001
https://doi.org/10.1145/1639642.1639688

Paper—Software Development Framework for Real-Time Face Detection and Recognition in Mobile…

[7] Chen, X. & Yuille, A.L. (2005). A Time-Efficient Cascade for Real-Time Object Detec-

tion: With applications for the visually impaired. IEEE Conference on Computer Vision

and Pattern Recognition, San Diego, CA. pp. 28–28 https://doi.org/10.1109/cvpr.2005.399

[8] Viola, P.& Jones, M. (2004). Robust Real-Time Face Detection. International Journal of

Computer Vision, 57(2):137–154. https://doi.org/10.1023/b:visi.0000013087.49260.fb

[9] Turk, M. & Pentland, A. (1991). Eigenfaces for Recognition. Journal of Cognitive Neuro-

science, 3(1): pp. 71–86.

[10] Neto, L. S.B., Maike, V.R.M.L., Koch F.L., et.al. (2015). A Wearable Face Recognition

System Built into a Smartwatch and the Visually Impaired User. 17th International Con-

ference on Enterprise Information Systems, SCITEPRESS, pp. 5–12. https://doi.org/10.

5220/0005370200050012

[11] Marco, M.D., Fenu,G , Medvet, E. & Pellegrino, F.A. (2017). Computer Vision for the

Blind: A Comparison of Face Detectors in a Relevant Scenario. In: Gaggi O., Manzoni P.,

Palazzi C., Bujari A., Marquez-Barja J. (eds) Smart Objects and Technologies for Social

Good. GOODTECHS 2016. Lecture Notes of the Institute for Computer Sciences, Social

Informatics and Telecommunications Engineering, Springer, Cham, 195:145–154. https://

doi.org/10.1007/978-3-319-61949-1_16

[12] Elrefaei, L.A.,Alharthi,A., Alamoudi, H., Almutairi, S.& Al-rammah, F. (2017). Real-time

face detection and tracking on mobile phones for criminal detection. 2nd International

Conference on Anti-Cyber Crimes (ICACC). pp. 75–80. https://doi.org/10.1109/anti-cyber

crime.2017.7905267

[13] Mawafo, J.C.T., Clarke, W.A. & Robinson, P.E. (2013). Identification of facial features on

android platforms. IEEE International Conference on Industrial Technology (ICIT), Cape

Town. pp. 1872–1876. https://doi.org/10.1109/icit.2013.6505962

[14] Zhang, W., Meng, X., Lu, Q., Rao, Y. & Zhou,J. (2013). A Hybrid Emotion Recognition

on Android Smart Phones. IEEE International Conference on Green Computing and

Communications and IoT and Cyber, Physical and Social Computting, Beijing. pp. 1313–

1318. https://doi.org/10.1109/greencom-ithings-cpscom.2013.228

[15] Sudha,V, Viswanath, G., Balasubramanian, A., Chiranjeevi, Basant, K P. & Pratibha, M.

(2015). A fast and robust emotion recognition system for real-world mobile phone data.

IEEE International Conference on Multimedia and Expo Workshops (ICMEW), Turin, pp.

1–6. https://doi.org/10.1109/icmew.2015.7169787

[16] Eyben, F., Huber,B.,Marchi,E., Schuller, D., & Schuller, B. (2015). Real-time robust

recognition of speakers'’emotions and characteristics on mobile platforms. International

Conference on Affective Computing and Intelligent Interaction (ACII), Xian. pp.778–780.
https://doi.org/10.1109/acii.2015.7344658

[17] Grgurina, R., Brestovac, G. & Grbac, T.G. (2011). Development environment for Android

application development: An experience report. 34th International Convention MIPRO,

Opatija. pp. 1693–1698.

[18] Chillaron, M., Dunai, L.,Fajarnes, G.P. & Lengua, I.L. (2015). Face detection and recogni-

tion application for Android. 41st Annual Conference of the IEEE Industrial Electronics

Society, Yokohama. pp. 3132–3136. https://doi.org/10.1109/iecon.2015.7392581

[19] Nasrollahi, K. & Moeslund,T.B. (2013). Haar-like features for robust real-time face recog-

nition. IEEE International Conference on Image Processing, Melbourne. pp. 3073–3077.
https://doi.org/10.1109/icip.2013.6738633

[20] Chaki, N., Shaikh, S.H. & Saeed, K. (2014). A New Image Binarization Technique Using

Iterative Partitioning. In Chaki, N et. al (Ed.), Exploring Image Binarization Techniques,

Springer, 560: 17–44. https://doi.org/10.1007/978-81-322-1907-1_3

[21] OpenCV (2018). OpenCV Library.https://opencv.org/

iJIM ‒ Vol. 14, No. 4, 2020 119

https://doi.org/10.1109/cvpr.2005.399
https://doi.org/10.1023/b:visi.0000013087.49260.fb
https://doi.org/10.5220/0005370200050012
https://doi.org/10.5220/0005370200050012
https://doi.org/10.1007/978-3-319-61949-1_16
https://doi.org/10.1007/978-3-319-61949-1_16
https://doi.org/10.1109/anti-cybercrime.2017.7905267
https://doi.org/10.1109/anti-cybercrime.2017.7905267
https://doi.org/10.1109/icit.2013.6505962
https://doi.org/10.1109/greencom-ithings-cpscom.2013.228
https://doi.org/10.1109/icmew.2015.7169787
https://doi.org/10.1109/acii.2015.7344658
https://doi.org/10.1109/iecon.2015.7392581
https://doi.org/10.1109/icip.2013.6738633
https://doi.org/10.1007/978-81-322-1907-1_3
https://opencv.org/

Paper—Software Development Framework for Real-Time Face Detection and Recognition in Mobile…

[22] Android Studio (2018). https://developer.android.com/studio/install.html

[23] Java Native Interface (2017). https://docs.oracle.com/javase/8/docs/technotes/guides/jni/

[24] Android NDK. (2018). https://developer.android.com/ndk/index.html

[25] Android SDK. (2018). http://developer.android.com/tools/sdk/ndk/

[26] Huang, H. (2018). Design and Implementation of a College English Listening Learning

System Based on Android Platform, International Journal of Emerging Technologies in

Learning (iJET): 13(7): 43-56. https://doi.org/10.3991/ijet.v13i07.8779

[27] Feng, L., Yang, C., Zheng, W, and Fu, P. (2017). Android APP Development of Remote

Wireless Automatic Meter Reading System based on 3G. International Journal of Online

and Biomedical Engineering, 13(12): 18-33. https://doi.org/10.3991/ijoe.v13i02.6439

7 Authors

Laxmisha Rai received Ph.D from Kyungpook National University, South Korea

in 2008. From 2008 to 2009, he was a Postdoctoral Researcher with Soongsil Univer-

sity, South Korea. He is a Professor with the College of Electronic and Information

Engineering, Shandong University of Science and Technology, Qingdao, China. His

research interests include software engineering, real-time systems, embedded systems,

autonomous mobile robots, expert systems, wireless sensor networks, MOOC, and

Bilingual Education. He has published over 50 research papers and currently serving

as Associate Editor of IEEE Access Journal. He is a Senior Member of IEEE, and

Member of ACM.

Zhiyuan Wang is currently pursing his Master’s degree in College of Electronic

and Information Engineering at Shandong University of Science and Technology,

Qingdao, China. His research interests are mobile application development, image

processing, and real-time systems.

Amila Rodrigo is currently pursing his Master’s degree in College of Electronic

and Information Engineering at Shandong University of Science and Technology,

Qingdao, China. His research interests are real-time systems, antenna applications,

and Internet of Things (IOT).

Zhaopeng Deng received his Bachelor’s and Master’s degrees from Shandong

University of Science and Technology, China in 2010 and 2013 respectively. His

major research interests include image processing and machine vision. Currently pur-

suing his Ph.D studies at Shandong University of Science and Technology, China.

Haiqing Liu received the bachelor’s degree in automation from Central South

University, China, in 2008, the Ph.D in system engineering from Shandong Universi-

ty, China, in 2015. From 2015 to 2017, he was a Postdoctoral Researcher with the

Postdoctoral Work Station, Hisense Group, China. He is a lecturer in Shandong Uni-

versity of Science and Technology. His current research interests include traffic engi-

neering and control, cooperative vehicle infrastructure system and traffic intelligent

perception.

Article submitted 2019-10-28. Resubmitted 2019-12-16. Final acceptance 2019-12-17. Final version

published as submitted by the authors.

120 http://www.i-jim.org

https://developer.android.com/studio/install.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://developer.android.com/ndk/index.html
http://developer.android.com/tools/sdk/ndk/
https://doi.org/10.3991/ijet.v13i07.8779.
https://doi.org/10.3991/ijet.v13i07.8779.

