
A PLATFORM FOR SUPPORTING MICRO-COLLABORATIONS IN A DIVERSE DEVICE ENVIRONMENT

A Platform for Supporting Micro-Collaborations
in a Diverse Device Environment

doi:10.3991/ijim.v3i4.1039

David Johnson
University of Reading, Reading, United Kingdom

Abstract—Collaborative software is usually thought of as
providing audio-video conferencing services,
application/desktop sharing, and access to large content
repositories. However mobile device usage is characterized
by users carrying out short and intermittent tasks
sometimes referred to as “micro-tasking”. Micro-
collaborations are not well supported by traditional
groupware systems and the work in this paper seeks out to
address this. Mico (pronounced mee-koh) is a system that
provides a set of application level peer-to-peer (P2P)
services for the ad-hoc formation and facilitation of
collaborative groups across a diverse mobile device domain.
The system builds on the Java Micro Edition bindings of the
JXTA P2P protocols, and is designed with an approach to
use the lowest common denominators that are required for
collaboration between varying degrees of mobile device
capability. To demonstrate how our platform facilitates
application development, we built an exemplary set of
demonstration applications and include code examples here
to illustrate the ease and speed afforded when developing
collaborative software with Mico.

Index Terms—mobile, peer-to-peer, collaborative work,
group communications software

I. INTRODUCTION
With the advances in computing technology and the

ever falling costs of computer hardware mobile devices
are becoming commonplace in all aspects of life. The
increasing availability of wireless networks has
contributed to this growth as many mobile devices are
wireless enabled. Consumer electronics such as mobile
phones and personal digital assistants (PDAs) are now
being used as mobile computing devices as the hardware
capability of such devices now allows for open application
development that is not restricted by the vendor or
manufacturer. Wireless connectivity has allowed mobile
devices to connect to the Internet in not just a consumer
capacity, but also as information providers.

Wiberg [1] describes the field of Mobile Computer
Supported Cooperative Work (Mobile CSCW) as when
people use mobile computing devices for collaboration,
where each user is not fixed by location and the users are
geographically dispersed. This should not be confused
with telework where people work at distance from their
usual workplace and a worker may still be constrained to
working in a single place. Kristoffersen and Ljungberg [2]
identified three modalities of mobile work: wandering,
travelling, and visiting. Wandering is working whilst
being mobile locally (local to other mobile users). One
such example may be a team of IT support staff each
using mobile devices to coordinate their activities.

Travelling is working whilst going from one place to
another in some form of transport, or travelling some
significant distance. Visiting is working in different places
for a relatively short amount of time. For example, a
building surveyor might visit several different sites
throughout a day’s work.

These different modes of mobile work bring new
challenges to how a distributed system would operate with
mobile computing devices. Compare Kristoffersen’s
notions of wandering and visiting. A distributed system
that supports wandering may involve communication
between local mobile users. This can be supported with a
wireless Local Area Network, or even by creating a pico-
net supported by Bluetooth connectivity. A system that
support visiting may involve wholly disconnected nodes
for the duration of a site visit, or short tasks carried out at
multiple locations without direct communication with
another user. Within each of these broad subsets of mobile
work, the way in which users perform activities differ
significantly from the traditional desktop user.

Many factors have a direct impact of how mobile
software is design and there has been much research into
how to increase productivity when using mobile devices.
Brandt et al [3] from the Stanford University HCI Group
surveyed a range of applications that can be used to
manage a user’s tasks including Microsoft OneNote,
Google Calendar, and Facebook. They also include in
their survey two of their own applications, 4l8r and
ButterflyNet, that are specifically designed around the
notion of assisting users with limited attention. The
authors coin the term tasklet to describe “a small portion
of an activity undertaken in situations characterized by
limited available attention.” They go on to discuss five
aspects to consider for designing for such users.

Variation in the value of time: For a given task, a
mobile user is not always able or willing to carry out the
task in the immediate context in which it prompts
attention. By analyzing usage patterns of their 4l8r mobile
application, the authors found that users performed
tasklets of recording reminders of events throughout the
day, and completed the full activity of writing diary
entries in a more convenient context, usually with less
constraint on their time.

Availability of information in context: Storing and
retrieving information becomes particularly important
when in time constrained situations. Being able to quickly
record information, including the context in which it was
saved, allows information systems to be built that can be
organized by user context. Retrieving the information can
be made easier by automatically organizing information
by time, location, and through user-defined context

8 http://www.i-jim.org

http://dx.doi.org/10.3991/ijim.v3i4.1039�

A PLATFORM FOR SUPPORTING MICRO-COLLABORATIONS IN A DIVERSE DEVICE ENVIRONMENT

descriptions. The authors identified that some tasks are
time-sensitive, and information can be organized for a
user to be readily presented with the most contextually
relevant data.

Social dynamics of tasklets: When activities involve
multiple people, social elements have to be considered.
Collaboration requires coordination, communication, and
sharing within a group. The authors observed that,
particularly in social networking applications, users rarely
take into consideration privacy issues when segmenting
activities with tasklets. For example, when micro-
coordinating, a typical tasklet would be to notify a group
of people of an as-yet unplanned event. Although not all
recipients of the notification are known to want to
participate in the tasklet (i.e. they may not want to be
notified), the value of time is such that the burden of
responsibility is pushed to the whole group. The tasklet of
removing oneself from the micro-coordination is seen as a
“cheap” enough to be acceptable practice in this kind of
micro-coordination.

Functionality versus Complexity: There are a range of
factors to consider in designing any software application,
each of which has direct influence on others. However the
authors discuss in particular the tradeoffs between
supporting multiple modes of interaction and how
complex each mode is to use. They found that having a
choice of modality is important to users, and the mode is
not determined by context as hypothesized, but simply by
user preference. The level of automation is also an issue,
where it is almost impossible to design for all behaviours
without having a structured and standard style of input.
An overriding problem with automation is with how a user
proceeds when automation fails. It is not always
straightforward to find a good balance between simplicity
for the user and encapsulating complexities with higher-
level functionality.

Levels of feedback: Appropriate feedback is essential in
any activity, however the authors identify that it is not
always necessary or desirable for feedback in all cases.
With tasklets, feedback can be cumbersome and interrupt
a user’s workflow, where the flow might augment with
tasklets outside of the software system and even outside of
the device itself (i.e. into the “real-world”). Within the
domain of tasklets, different tasklets might hold different
values to the user, a feature the authors also noted when
comparing evaluations of 4l8r and ButterflyNet.

One must note about each of the factors is that there is
an assumption that each application surveyed is
ubiquitously accessible. Many of these applications are
Web-based, with the WWW being a relatively pervasive
computing platform. However Roth [4] identified the
problem of diversity when considering mobile devices.
The network protocols for communication, the operating
system, and the hardware itself varies as the spectrum of
consumer mobile electronics is broad, more so than with
desktop platforms. The way to tackle diversity is by
adopting standards. If each and every device in a
distributed network can interpret the same machine code,
and understand the same network protocols, then only one
version of software would ever have to be compiled and
deployed ubiquitously. This reality however has not yet
been realized.

We submit that tasklets are a central theme to activity-
based mobile computing, where micro-tasking is a theme

that arises time and again in various works describing
mobile CSCW research. However researching the
collaborative aspects of designing for tasklet based
interactions still has a lot to be desired. This paper
describes our overarching aim of producing a software
library for micro-collaboration application development
that attempts to overcome the problems associated with
the diversity in mobile computing and placing an
emphasis on issues surrounding tasklet based
collaborations.

II. THE MICO MICRO-COLLABORATION PLATFORM
To tackle the issues surrounding heterogeneous devices

and networks, we build on existing technologies that
address different aspects of diversity in the mobile device
domain. To target a generalized mobile software platform,
we use Java Micro Edition as our underlying platform
agnostic mobile application environment. To aid in
handling unpredictable network configurations, we build
on the platform independent JXTA protocols to form our
collaborative groups.

A. Foundation Technologies
Project JXTA aims to enable the creation of networked

services and applications through a standard set of
protocols to allow computing devices to provide and
consume services, and to share resources. JXTA provides
a basic framework and set of services that allow peers to
form self-organized groups in a heterogeneous network
environment without the need for any central mediation or
management. Some of the key objectives of JXTA as
described by Gong [5] are described as follows.

Interoperability: JXTA provides a standard set of open
XML-based network protocols to facilitate peer-to-peer
(P2P) networking. When the project was originally
conceived, there was much fragmentation in the P2P
protocol domain. Although P2P applications and systems
were and still are prevalent, and account for a significant
portion of all Internet traffic, each of the different systems
developed uses its own proprietary protocol that is usually
application-specific. Project JXTA aims to overcome this
by providing an open and standardized protocol for highly
distributed computing.

Platform Independence: Apart from the diversity found
in the P2P application domain, a wider problem exists in
that there is a diverse ecosystem of computing
architectures, software programming languages, and
networking technologies. For example, one particular
system might provide an environment which favours the
development of applications on the Mac OSX operating
system written in the Objective-C programming language,
with network access over TCP/IP, while another might
only provide HTTP as a transport protocol in a Java-based
programming and operating environment. If a developer
wishes to serve both communities, significant effort is
required to be able to develop on both platforms and to
build a bridge between the two systems. JXTA is designed
to be independent of platform-specific elements and as
such seeks to be all embracing.

Ubiquity: A range of devices are prevalent in modern
distributed systems, and it is important to be able to design
applications that can interoperate between disparate kinds
of hardware. Many distributed systems are designed in a
rigid fashion usually targeting a single class of device,

iJIM – Volume 3, Issue 4, October 2009 9

A PLATFORM FOR SUPPORTING MICRO-COLLABORATIONS IN A DIVERSE DEVICE ENVIRONMENT

such as desktop PCs, or follow the client-server paradigm
where an enterprise server exclusively provides the
service to end-user client software. With a paradigm
where all devices are expected to provide and maintain
decentralized group services, JXTA looks to be a
technology that encompasses all kinds of computing
device including traditional enterprise servers and desktop
PCs, to small devices such as mobile phones and smart
cards. As a distributed technology enabler for any device,
JXTA provides an easier way to develop networked
services and applications that spans device boundaries.

Building on the features provided by Java Micro
Edition (Java ME) means that we can target a platform
environment that spans a range of capability device.
Targeting the Connected Limited Device Configuration
and Mobile Independent Device Profile (CLDC/MIDP)
platform combination encompasses low capability mobile
devices up to high-end smartphones and PDAs without
having to put in a large amount of effort in developing the
software to run across a broad range of devices. JXTA
having existing reference implementations for Java ME
means that JXTA can be used as the enabling technology
that builds a virtual overlay network on top of underlying
heterogeneous network infrastructures. With JXTA taking
care of enabling communication across multiple types of
network, and Java ME providing a platform capable of
supporting application development across multiple kinds
of mobile devices, we builds on these technologies to
provide a library of services that allow the easy
development of collaboration applications and services.

B. Architecture
Typically groupware is designed around a set of

common concepts, with different developers rehashing the
same core ideas. The concepts described in this section are
not necessarily novel, nor are they trivial as their
definition forms the basis for our collaborative system.
We designed Mico around the following core concepts:
Communication, Content, Users and Groups.

Communication: At least the most basic form of
communication between collaborators in a group should
be enabled. This means determining the lowest
denomination of communication that is possible from a
mobile device and providing additional functionality
where possible. In this case, the most basic form of
communication is by text, where a mobile application can
take basic input from what is usually an alphanumeric
keypad. By supporting text-based messaging as a first
step, we can guarantee all participants can communicate at
the very least this level. Mobile phone devices obviously
support voice communication, although applications
building on Mico will need to be able to utilize the voice
hardware functionality. Many more feature rich mobile
devices also support video recording and playback. The
Mico Communication Service is designed to support all
three modes of communication where possible.

Content: Facilitating communication between
collaborators can be augmented with a content sharing
service to allow collaborators to share data (which may
provide topics for discussion) and to generate data that
may be of interest to fulfilling the group tasks at hand.
Sharing of data is essential in any collaboration, where
sometimes communicating the data explicitly through
group discussion may not be easy due to the amount of
data or where data can not be easily described purely

through communicative description. The Mico Content
Service is designed to support search, retrieval, and
publishing of arbitrary content.

Users: In any collaboration, we must be able to identify
users in a meaningful way depending on the group's
context. In a system to support short-term group
collaborations, identities do not have to be persisted for
long periods of time. Building on this assumption, Mico is
designed to allow users to create their own arbitrary
names that should be useful within a group’s context. No
restrictions on how names are chosen are enforced to
allow groups as much freedom as possible to self-organize
autonomously. A user is viewed as a person using a single
device that is running a Mico service or application that is
in-turn running a single instance of the JXTA platform.

It is important to understand that although a user is
considered as a person using a single device it should not
be construed that a user is tied to a single device running
the JXTA platform. The JXTA specification detaches the
concept of a user from a peer, citing the reason that this
decoupling allows users to migrate from one peer to
another.

Groups: To represent each organized collection of
users, groups are utilized to manage and define partitions
within the wider community (groups within groups) such
as classes of students in a school, clubs within a
university, or project teams within a company. Mico
provides the mechanisms for allowing users to create and
join groups, directly based on JXTA Peer Groups that
provide scope and context for collaboration.

To support micro-collaborations, we make two
assumptions from a user perspective:
• All communications amongst collaborators is of

interest and of value to all other participants. There
should not be a need for any private communication
channels within the group, and Mico does not
explicitly support one-to-one channels.

• All content shared amongst collaborators is of
interest and of value to the whole group. Like with
communications among participants, there should not
be a need for private content within our group
collaboration scenarios, and the system therefore
does not explicitly support one-to-one content
sharing.

The rationale for making the assumptions that require
all participants to have ready access to all information
generated by the group is two-fold. First, the collaborative
scenarios and tasks that we aim to facilitate are assumed to
be in relatively small groups (groups of less than around
10 participants), so implementing a replicated content
repository is more easily realized since the size of the
shared repository should remain manageable. This also
provides a more responsive user experience in cases
where connectivity is lost and devices need to re-establish
connections to the network. Second, having a group
communication system whereby all participants
communicate over a single channel maps directly to how a
face-to-face group would communicate. When a group
needs to coordinate itself into subgroups or reorganize into
different groups, Mico allows the freedom to create and
manage multiple ad-hoc groups in situ.

10 http://www.i-jim.org

A PLATFORM FOR SUPPORTING MICRO-COLLABORATIONS IN A DIVERSE DEVICE ENVIRONMENT

Figure 1. The Mico Platform Architecture.

Figure 1 illustrates how the Mico Platform software has
been designed as a layered architecture, and is made up of
the following:
• Java/JXTA platform - The Java ME reference

implementations of the JXTA protocols, along with
two of the Java ME platform configuration and
profile combinations, make up the basis for the Mico
platform implementation for the range of mobile
devices that implement the CLDC/MIDP
configuration and profile combination, and that the
Mico project aims to address.

• Mico Platform Services - Composed of four basic
services, this layer provides the network and logical
functionality that mobile software developers can
build on to create collaborative applications. The
design includes services to enable content sharing,
user-level group communication, and identity
management. Each of these services is in turn built
on top of a core generic messaging service that
facilitates service-level group communication.

• Mico Platform Applications - A set of utility
applications are bundled into the Mico platform at
the application layer, where mobile software
developers can include these applications into their
own software projects to aid in the management of
their own collaborative applications. This set of
applications includes an identity manager, group
manager, and a platform configuration application.

• Mico-enabled Applications - This part of the
application layer consists of applications that build
on the Mico Platform Services, where any
applications that build on the Mico Platform Service
layer are referred to as being “Mico-enabled”. Mico-
enabled applications can be bundled with Mico
Platform applications into the same application
suites, and conversely are not required to be bundled
with the platform applications if they provide the
functionality themselves.

C. Platform Services
The Mico Platform Service layer shown in figure 1 is

made up of three basic services that application
developers can build on: the Communications Service, the
Content Service, and the Identity Service. The Simple
Messaging Service serves as a core service that the other
three build on. The intention of layering the services is to
give software developers the ability to access any level of
the service stack. Developers can therefore build on the
core Simple Messaging Service to create their own
services rather than being limited to building on the other

three services. In this section we describe each of the
Mico Platform services.

Simple Messaging Service: The Simple Messaging
Service is the core service that all other Mico services are
based on. Mico is designed to use a single shared
communication channel, provided by JXTA, to
communicate within a single group. To this length, the
Simple Message Service provides the messaging
capabilities for the higher-level services such as the
Communications and Content Services that are discussed
later. In order to correctly utilize the JXTA-based
communication channel, the Mico Simple Messaging
Service wraps JXTA messages as service specific
messages for developers building collaborative
applications, and provides a convenient sending
mechanism and appropriate event notification when
messages are received. The Simple Messaging Service
acts as a base for all other service implementations,
forming a universal messaging layer in the Mico service
stack.

Communications Service: The Communications Service
is designed to enable basic communication between users
that belong to the same collaborative group. Building on
the Simple Messaging Service, the Communications
Service provides a service that enables users to send
media messages to a group, and receive media messages
from other participants of the group. Instead of providing
a synchronous communications service, the Mico
Communications Service is designed to enable basic
forms of communication in short, fast, and asynchronous
bursts. By building on the Simple Messaging Service, the
Communications Service attempts to treat large messages
(e.g. audio and video messages) in an atomic manner.
Where an audio or video message starts sending over the
shared channel, any other peers trying to send at the same
time are not be able to do so. This allows all receiving
devices to have maximal bandwidth available since they
will not be sending data at the same time as receiving data,
resulting in propagation of audio/video messages to the
group being optimized across the underlying network
infrastructure.

Identity Service: The underlying messaging systems in
Mico rely on unique identification of each peer in a group.
Therefore arbitrary user-defined identifiers cannot be used
at the application level as there would be an increased
likelihood of duplicate names being used within each
individual Mico group, including the globally accessible
Mico root group. There needs to be a mechanism for
preserving the use of unique IDs for the purpose of
message routing and propagation, and still allow the use
of user-level IDs. According to Williams [6], IDs can be
considered as a kind of awareness or presence mechanism
in collaborative groups that allows participants can keep
track of individual’s actions. In Mico, peers are configured
with an arbitrary ID that can be set to any String value, as
determined by a user-level application that utilizes the
Mico Identity Service. To distinguish individual users, the
Identity Service provides a mechanism where users can
select their own IDs mapped on top of JXTA-specific
universally unique IDs (UUIDs) that are automatically
assigned to JXTA peers. These user-level IDs are stored in
a wholly replicated ID map, where each peer periodically
broadcasts to the group their current user ID to ensure the
ID maps are as current as possible.

iJIM – Volume 3, Issue 4, October 2009 11

A PLATFORM FOR SUPPORTING MICRO-COLLABORATIONS IN A DIVERSE DEVICE ENVIRONMENT

Content Service: To allow mobile users to share and
search for data in a Mico collaborative group, the platform
provides the Mico Content Service. There are three main
use-cases for a content service: Publishing content,
searching for content, and retrieving content. Building on
the Simple Messaging Service’s paradigm of
communicating all messages to all users, the Content
Service makes use of the broadcast of all messages to
keep a temporary cache of data not addressed to a peer,
with the assumption that by disseminating information on
what each user is searching for or retrieving, the group
context will more likely require access to the data being
cached. This may be useful since it keeps the cache in a
state where the most recently accessed or requested data is
made available in the caches throughout the peer group,
and therefore makes the data of most recent interest (to
someone in the group) the most readily available to the
rest of the group. To assist in the search mechanism where
the content service is entirely decentralized, we use a
replicated content metadata index so that only content
retrieval messages make up the bulk of content service
message broadcasts.

Figure 2. The relationships between the Mico Platform Services.

The class diagram shown in figure 2 illustrates the
relationships within the Mico Platform service set. Each of
the more application specific functionalities exposed by
the Communications, Content, and Identity services
directly utilizes an instance of the Simple Messaging
Service. The result is that all of the higher level services
communicate through a single common messaging
service. This reduces the underlying software complexity
in terms of the number of threads needed to maintain
network connections, and in the amount of memory
needed to maintain multiple service instances. Only the
Simple Messaging Service implements the JXTA specific
networking functionality used to maintain group
communication.

D. Platform Applications
In addition to the service layer provided by Mico, the

platform provides three application level tools to facilitate
configuration of the network settings, creation and
management of groups, and managing identities. Each of
these applications is implemented as a graphical Java ME
application that can be packaged into a developer’s
software project by bundling them into deployable
application suites, and also provides functionality
packaged in the Mico library to allow Mico-enabled
applications to hook into the tasks normally carried out by
these applications. The Platform Applications are
described as follows.

Configurator: Although packaged applications may
provide some default settings, possibly hard-coded, a
general platform configurator application is provided as
one of the Mico Platform Applications. This application
allows configuration of the Mico platform, including
setting up an access point to the underlying JXTA network
backbone, transport protocol preferences, and local cache
settings and policies. Normally these settings are hidden
from the user and defaults provided by the application
developer or deploying administrator.

Group Manager: Every Mico user needs the capability
to manage and manipulate collaborative groups. The
Group Manager application is a tool for carrying out these
tasks, and builds directly on the JXTA platform. The
Group Manager application provides a graphical interface
to create groups, find and join groups, and resign/leave
groups. Mico maps directly on top of JXTA Peer Groups,
and therefore the Group Manager is implemented to
interact directly with JXTA to maintain Mico groups.

Identity Manager: The Identity Manager application
allows users to select a human-readable identifier for
identifying themselves to other users in a Mico group.
Users can choose their own IDs using the Identity
Manager, which in-turn propagates the mappings using
the Identity Service. Mico users may have multiple IDs
which can be different in every Mico group that they are a
member of.

III. EXEMPLARY APPLICATIONS
To demonstrate using the Mico Service library in real

applications, a set of exemplary applications were
developed. These applications include a multimedia chat
messenger (MultiChat), a content sharing application
(Content Safari), and shared mobile web browser (Shared
Microbrowser). MultiChat and Content Safari’s features
build directly on Mico’s basic collaborative services,
namely the Communications Service, Content Service and
Identity Service, whilst the Shared Microbrowser
application builds on the Simple Messaging Service to
show an example of extending the Mico Platform with a
custom built service. Although there are many other
systems that provide similar functionality to these
examples, the applications described in the following
subsections aim to show how developers can easily build
similar collaborative applications with the Mico Platform
library using relatively few lines of code. The code
examples shown in the following subsections should only
be considered for illustrative purposes and should not be
considered as a complete instruction on the Mico library
and software’s usage.

A. Mico MultiChat
To show how the Communications Service can be used

to enable group communications, we created a multimedia
messaging application, Mico MultiChat. MultiChat does
not provide a real-time synchronous conferencing client;
one must remember that the Communications Service
only supports asynchronous messaging where the aim is to
provide a fast multimedia messaging system without
implementing real-time communications.

12 http://www.i-jim.org

A PLATFORM FOR SUPPORTING MICRO-COLLABORATIONS IN A DIVERSE DEVICE ENVIRONMENT

Figure 3. MultiChat: A group communications session running on a

Nokia N95 and 5500 Sport respectively.

Users can switch between the available media
messaging methods, where a consensus can be reached
within individual groups to which messaging modes are
most appropriate. By allowing groups to self-organize, we
aim to cater for unpredictable configurations of groups –
providing a messenger that is audio only or video only
may hinder progress if there are collaborators who are not
able to interoperate within those static configurations.
Apart from the technical configuration, we also aim to
cater for user preferences by providing the range of
options. On receiving a message, a notification is added to
a communications feed (figure 3). Text messages are
displayed directly in an on-screen feed. Notifications of
receipt of audio and video, along with who sent the
messages, are also shown. Where a media message needs
to be played back, a user can just select the entry in the
feed to start playback. The underlying data is discarded
after a single playback in order to keep memory usage a
low as possible.

The Communications Service is utilized by MultiChat
by getting an instance of the CommsService class with an
appropriate CommsServiceEventListener implementation
that hooks back into the application specific code. The
CommsService class provides a single method,
send(CommsMessage m), that takes any instance of a valid
CommsMessage. The different subclasses of CommsMessage
include the following different media messages:
TextMessage, AudioMessage, and VideoMessage. Having
a uniform interface for implementing different kinds of
multimedia communications hides much of the
complexity that underpins group messaging at a network
level. By implementing an event listener interface,
notification of receiving messages can also be dealt with
at the application level. The following code snippet
illustrates how to send and receive messages in only a few
lines of code.

Platform p = Platform.getInstance();
CommsService comms = (CommsService)p
 .getService("uk.ac.rdg.mico.CommsService");
comms.addListener(new CommsEventListener() {
 public void received(CommsMessage m)
 {
 if (m instanceof TextMessage) {
 // hook back into application here
 }
 }
 });
TextMessage t = new TextMessage("Good morrow!");
comms.send(txt);

In the code example, we create an instance of the Mico
platform which has already dealt with the underlying
JXTA initialization and connectivity to the backbone
network. We get an instance of the CommService,
supplying it with an event listener. The event listener
interface must be implemented here and is done so with an
anonymous class. In this case whenever a message is
received by the CommsService, the commsEvent method is
executed. How the method is implemented is entirely up
to the developer, and in this example, we check the class
type to filter out text only messages. The last two lines
illustrate how to send a message by creating a
TextMessage object and sending it with the
Communication Service simply by providing the object to
the send method.

B. Mico Content Safari
To demonstrate the use of the Content Service, we

developed a mobile content sharing application called
Mico Content Safari. This application lets users publish
any kind of files to a collaborative group, including
multimedia generated on the device with other
applications. Content Safari accesses the underlying phone
file system directly, and therefore does not need to build
into the Mico-enabled application the multimedia
gathering functionality such as audio recording, image
capture, and video recording. We can rely on a phone
being capable of capturing these kind of media based on
the onboard hardware already being accessed by native
pre-installed applications.

Figure 4. Content Safari: Searching for content near “my location” on

a Nokia N95, and publishing a photo on a Nokia 5500 Sport.

Content Safari also integrates with the Java ME
Location API which allows us to determine an estimate of
the current location when the application is running.
Within the application we can add location as metadata to
the files being shared. For example, and as illustrated in
figure 4, a user might want to publish a photo of a famous
landmark such as Tower Bridge in London. Another user
in the group may want to find Tower Bridge but does not
have any idea what it looks like or how far away it is.
Content Safari can order search results by distance from a
user’s location, organizing them according to location-
based contexts.

The Content Service is utilized by Content Safari by
getting an instance of the ContentService class with a
ContentServiceEventListener implementation that

iJIM – Volume 3, Issue 4, October 2009 13

A PLATFORM FOR SUPPORTING MICRO-COLLABORATIONS IN A DIVERSE DEVICE ENVIRONMENT

hooks back into the application specific code, in the same
way that was shown in the earlier CommsService example.
The ContentService class provides two methods to send
search queries and to request to retrieve content items. The
following example shows how to instantiate the Content
Service.

Platform p = Platform.getInstance();
ContentService content = (ContentService)p
 .getService("uk.ac.rdg.mico.ContentService");
content.addListener(new ContentEventListener() {
 public void queryResult(QueryResult r)
 {
 // do something with the result
 }
 public void transferEvent(TransferEvent t)
 {
 // do something when the
 // transfer completes
 }
 });

The Content Service’s event listener notifies with two

events. The queryResult(QueryResult r) event notifies
of results retrieved after making search queries. The
QueryResult objects contain information relating to
specific content including metadata and a unique identifier
which is used to retrieve content. The
transferEvent(TransferEvent t) method notifies about
different events that may occur during a content transfer.
Transfer events might include notifying of completed
transfers, erroneous events, or reports on the progress of a
transfer.

To publish content, the publish(String uri, HashMap
meta) method adds the resource pointed to by a URI to the
local user’s share list. The key-value pairs found in the
meta parameter map directly to application-defined
metadata.

String loc = "file:///TowerBridge001.jpg";
Map meta = new HashMap();
meta.put("mime", "image/jpeg");
QualifiedCoordinates qc = locationProvider
 .getQualifiedCoordinates();
meta.put("longitude", qc.getLongitude());
meta.put("latitude", qc.getLatitude());
meta.put("longAccuracy", qc.getVerticalAccuracy());
meta.put("latiAccuracy", qc.getHorizontalAccuracy());
content.publish(loc, meta);
content.get(queryResult.getID());

Having a generic metadata container allows application

developers to put any kind of metadata with the published
content, where the Content Service deals with serializing
and decoding the maps. In the example above, we add
some fields to publish the location data of a content item,
here we get the location data from the a Java ME
LocationProvider instance, and also include a field to
describe the content’s Internet MIME type, in this case
being a JPEG image. The final line above illustrates how
to request a content item by using a unique ID retrieved
from a query result using the get(String contentID)
method.

C. Mico Shared Microbrowser
The Shared Microbrowser application is a modified

version of the open-source JCellBrowser mobile
application. The JCellBrowser project [7] is a Compact
HTML (C-HTML) browser that is designed to be
lightweight and portable across devices implementing the
Java ME CLDC/MIDP platform. C-HTML is a subset of

HTML that was widely adopted by i-mode mobile phone
devices and described in detail by Kamada in [8]. As a
proof of concept, we took the source code from
JCellBrowser and created a new service based on top of
the Mico Simple Messaging Service to allow collaborative
sessions where users can share a single view on through a
common application. Like some desktop shared Web
browsers, the approach taken is to propagate a simple
event from a user that indicates the Web URL that the
group should all be viewing, and rendering the Web page
using the standard local browser code.

This was achieved by defining a new protocol message
that simply propagates any change in a user’s URL to the
other collaborators, and using the Simple Messaging
Service to propagate the messages. A custom message
listener is created to filter out these URL update messages
from the Simple Messaging Service, which in turn is
passed back to the Shared Microbrowser application via a
custom listener attached to our new service.

The following code snippet shows how we implement a
new Mico service. Before creating our new service class,
we must define an event listener interface for the service.
In this case we define a UrlEventListener that is
implemented to pass the URL updates to the application
level.

public interface UrlEventListener {
 public void urlUpdateEvent(String newUrl);
}

Next we also define new protocol message, in this case

a single protocol message, UrlUpdateMessage that
extends the SimpleMessage class to ensure compatibility
with the underlying messaging service. The message is a
one-way propagation to the group, so no reply messages
need to be defined.

class UrlUpdateMessage extends SimpleMessage {

 private String url;

 public UrlUpdateMessage(String sender,
 String messageID, String url) {
 super(sender, messageID);
 this.url = url;
 }

 public UrlUpdateMessage(Message message) {
 super(message);
 this.url = message
 .getMessageElement("propUrl", "url")
 .toString();
 }

 public Message toJxtaMessage() {
 Message message = super.toJxtaMessage();
 StringMessageElement urlElement =
 new StringMessageElement("url",
 new String(this.url));
 message.addMessageElement("propUrl", urlElement);
 }

 public String getUrl() {
 return this.url;
 }

}

The UrlUpdateMessage implementation adds to the

basic functionality provided by the SimpleMessage class.
SimpleMessage objects provide basic message
information such as a unique message ID, the sender’s

14 http://www.i-jim.org

A PLATFORM FOR SUPPORTING MICRO-COLLABORATIONS IN A DIVERSE DEVICE ENVIRONMENT

unique ID, and a timestamp. UrlUpdateMessage adds to
those fields to propagate a URL change.

Finally we can define our new service,
PropagateUrlService. Here we define any public
interfaces for the application developers to use, in this
case with the urlChanged method providing the
functionality of propagating URL changes. The bulk of
the logic occurs in the constructor which takes the
reference to our event listener defined earlier, and links it
into the Simple Messaging Service. We retrieve an
instance of the Simple Messaging Service, create and
register a SimpleMessagingEventListener that we use to
in-turn notify the application level via our service specific
listener.

public class PropageteUrlService {

 SimpleMessagingService s;
 UrlEventListener listener;

 public PropagateUrlService(UrlEventListener l) {

 this.listener = l;

 s = (SimpleMessagingService)Platform
 .getService("uk.ac.rdg.mico
 .SimpleMessagingService");

 s.add(new SimpleMessagingEventListener() {
 public void msgEvent(SimpleMessage m) {
 if (m instanceof UrlUpdateMessage) {
 (UrlUpdateMessage)m;
 listener.urlUpdateEvent(urlUpdate
 .getUrl());
 }
 }

 // public method for application to use
 public void urlChanged(String url) {
 UrlUpdateMessage u = new UrlUpdateMessage(url);
 s.send(u);
 }
 });
}

Modifying the JCellBrowser code to integrate this new

Mico-enabled service only takes a few lines of code. The
following code snippet shows how the new service is
instantiated, and a custom listener is added to integrate
with the microbrowser at the application level. In this case
whenever an event is received, it calls a method within the
Web browser application that refreshes the page being
viewed.

PropagateUrlService propUrl = new
PropagateUrlService(new PropagateUrlEventListener() {
 public void urlUpdateEvent(String newUrl) {
 WebBrowser.this.setPage(newUrl)
 }
});

Finally, to send an update event, we use the method

defined in the original service class to propagate the URL
changes, as shown in the following example.

propUrl.urlChanged("http://acet.reading.ac.uk/");

Note that for the sake of clarity, we have omitted much

of the application specific code in order to illustrate how
the Mico Platform library was used in these exemplary
applications. For this example, we only propagate the
event of changing what URL is being browsed, where the
result is that all users should be viewing the same page,

and, in this basic case, all users have “control”. If more
complexity is to be built into a shared Web browser
service, a possible extension could be to propagate user
input events while browsing in order to share item focus
with a group. This would be in a similar vein to having a
telepointer shared between desktop applications as
implemented in some groupware systems.

IV. RELATED WORK
The work described in this paper is a direct evolution of

MicroCoco, part of the Coco project that developed a P2P
platform for ad-hoc group formation and collaboration and
described in [9]-[11]. Coco was developed as a P2P
desktop platform for software developers to build Java
groupware applications, and MicroCoco aimed to
interoperate with the full desktop version to provide
collaboration services across the device domain. However
due to limitations of the underlying platform support for
JXTA for mobile devices at the time, pervasive
connectivity between Coco and MicroCoco was possible
but very inefficient. There was also a significant added
complexity to bridging between Coco and MicroCoco as
many of the collaboration services could not be built on
the same underlying JXTA service set. As a result, Mico
was developed with a view to building upwards from the
lowest common denominators (i.e. micro-collaboration
services) with a design ethos based around reducing
complexity in communication and processing.

A project based on similar technologies, but with a
different approach to enabling collaboration was carried
out by the ProMoCoTo project. As described by Wang
and Sørensen in [12], ProMoCoTo’s aim was to promote
spontaneous collaboration using a P2P mobile application
based on Java technologies. Their approach, like Mico,
was to build on Java and P2P technologies. Although also
having assessed JXTA as a networking solution, the
authors opted to use a different P2P framework, Proem,
developed by Kortuem et al [13] at the Wearable
Computing Laboratory, University of Oregon. Proem aims
to provide a framework for rapid development of Java
applications aimed at ad-hoc mobile network
environments, and like JXTA is designed to be
independent of the underlying transports. Wang and
Sørensen justify their choice of underlying networking
platform by reasoning that Proem aims to be more
resilient in unpredictable network environments and
focuses on user-to-user communication rather than dealing
with lower-level elements. However our own design
decision of choosing a JXTA-based approach was based
on the assumption that most mobile users will actually
have a relatively stable Internet connection (either Wi-Fi
or 2G/3G) rather than having to form ad-hoc mesh
networks. Also, Proem is based on Java SE making it
inherently less portable in the mobile device domain than
Java ME solutions. The aims of ProMoCoTo were also
vastly different from that of Mico. ProMoCoTo was a
specific tool aimed to automatically connect and
communicate with peers in its network neighbourhood
without user intervention, with a view to suggesting to
users that real-world collaborations can take place. Mico
aims to be a generic collaboration platform, and one
which tools can be built on.

iJIM – Volume 3, Issue 4, October 2009 15

A PLATFORM FOR SUPPORTING MICRO-COLLABORATIONS IN A DIVERSE DEVICE ENVIRONMENT

V. CONCLUSION
This paper describes our efforts to develop an easy to

use software platform for application developers to create
micro-collaborative applications in a diverse mobile
device environment. We describe a set of services built on
Java and JXTA technologies that can be used by
application developers to create a range of mobile
applications, and demonstrate their use through a set of
example applications. These examples illustrate the ease
of use of the software library, and additionally show how
by exposing the lower level platform service of the Simple
Messaging Service, developers can extend the platform to
create custom services for applications that do not fall into
the pure communications/messaging or content sharing
categories. Having built on JXTA as our the P2P
messaging enabler, in the future we aim to build towards
cross-device category bindings of Mico based on Java SE
and its corresponding JXTA build. We also plan to
develop domain specific applications on top of the Mico
platform, such as for the corporate work and educational
settings, and to assess the performance and behaviours of
the Mico platform itself in real-world deployments.

REFERENCES
[1] M. Wiberg and Å. Grönlund, “Exploring Mobile CSCW: Five

Areas of Questions for Further Research,” in Proc. of the 23rd
Conf. on Information Systems Research, 2000 © Univ.
Trollhättan, Uddevalla, Sweden.

[2] S. Kristoffersen and F. Ljungberg, “Making Place to Make IT
Work: Empirical Explorations of HCI for Mobile CSCW,” in
Proc. ACM SIGGROUP Conf. on Supporting Group Work,
Phoenix, AZ, 1999, pp. 276-285.

[3] J. Brandt, N. Weiss and S.R. Klemmer, “Designing for Limited
Attention,” in Stanford Univ. Computer Science Technical
Reports, 2007 [Online]. Available: http://hci.stanford.edu/cstr/

[4] J. Roth, “Seven Challenges for Developers of Mobile Groupware,”
in Proc. ACM SIGCHI 2002 Conf. on Human Factors in
Computing Systems, Minneapolis, MO, 2002 [Online]. Available:
http://www.wireless-earth.de/paper/chi02ws.pdf

[5] L. Gong, “JXTA: a network programming environment”, IEEE
Internet Comput., vol. 5, no. 3, pp. 88-, May 2001.

[6] J.P. Williams, “Groupware: Shared Thoughts, Shared Media, and
Shared Models,” School of Information at the Univ. Texas at
Austin, 2003. [Online] Available:
http://www.ischool.utexas.edu/~i385tkms/blog/archives/patrick/gr
oupwarepaper.html

[7] JCellBrowser: A J2ME cHTML Browser. [Online] Available:
http://www.sourceforge.net/jcellbrowser

[8] T. Kamada (1998, Feb. 9), W3C Note: Compact HTML for Small
Information Appliances. [Online] Available:
http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/

[9] I.M. Bhana and D. Johnson, “Supporting Ad-hoc Collaborations in
Peer-to-Peer Networks,” in Proc. ISCA 17th Conf. on Parallel and
Distributed Computing Systems, San Francisco, CA, 2004, pp.
491-496.

[10] I.M. Bhana and D. Johnson, “Developing Collaborative Social
Software,” in Springer LNCS, Computational Science – ICCS
2006 Part II, pp. 581-586, May 2006.

[11] D. Johnson and I.M. Bhana, “Pervading Collaborative Learning
with Mobile Devices,” in Proc. Interactive Computer-aided
Blended Learning Conference, 2007 © Kassel University Press

[12] A. Wang and C. Sørensen, “Mobile Peer-to-Peer Technology used
to Promote Spontaneous Collaboration,” in Proc. 2005
Symposium on Collaborative Technologies and Systems, St.
Louis, MO, 2005, pp. 48-55

[13] G. Kortuem, “Proem: A Middleware Platform for Mobile Peer-to-
Peer Computing,” ACM SIGMOBILE Mobile Computing and
Communications Review, vol. 6, no. 4, pp. 62-64, Oct. 2002
(doi:10.1145/643550.643557)

AUTHOR
David Johnson was with the School of Systems

Engineering, University of Reading. He is now with the
School of Biological Sciences, University of Reading,
Whiteknights, Reading, RG6 6BX, United Kingdom (e-
mail: d.johnson@reading.ac.uk).

This work was supported in part by the Centre for Advanced Computing
and Emerging Technologies (ACET Centre), a centre of excellence for
computational sciences, based in the School of Systems Engineering at
the University of Reading, UK.
Submitted 12 August 2009. Published as resubmitted by the authors on
15 September 2009.

16 http://www.i-jim.org

http://hci.stanford.edu/cstr/�
http://www.wireless-earth.de/paper/chi02ws.pdf�
http://www.ischool.utexas.edu/~i385tkms/blog/archives/patrick/groupwarepaper.html�
http://www.ischool.utexas.edu/~i385tkms/blog/archives/patrick/groupwarepaper.html�
http://www.sourceforge.net/jcellbrowser�
http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/�
http://dx.doi.org/10.1145/643550.643557�

