Indonesian Journal of Innovation and Applied Sciences (IJIAS)
Journal Homepage: https://ojs.literacyinstitute.org/index.php/ijias
ISSN: 2775-4162 (Online)
Research Article

Volume 3	Issue 1	February (2023)	DOI: $10.47540 /$ ijias.v3i1.729	Page: $74-85$

The Multi-Objective Transportation Problem Solve with Geometric Mean and Penalty Methods

K.P.O.Niluminda ${ }^{1}$, E.M.U.S.B.Ekanayake ${ }^{1}$
${ }^{1}$ Department of Physical Sciences, Rajarata University of Sri Lanka, Sri Lanka
Corresponding Author: K.P.O. Niluminda; Email: kponiluminda@gmail.com

ARTICLEINFO
Keywords: Best Solution, Geometric Mean, Linear Programming, MultiObjective Transportation Problem, Penalty Method.
Received : 27 November 2022
Revised : 20 February 2023
Accepted : 25 February 2023

Abstract

The traditional (classical) Transportation Problem (TP) can be viewed as a specific case of the Linear Programming (LP) problem, as well as its models are used to find the best solution for the problem of predetermined how many units of a good or service need to be shipped from one source to multiple locations, with the goals being to reduce time or expense. Classical TP has one objective but when there are two or more objectives to be optimized for in a TP, the strategies used to optimize a single objective are inapplicable. The term "Multi-Objective Transportation Problem (MOTP)" refers to situations in which there are two or more objectives in a TP. The specific extension of the transportation problem is the MOTP. This work provided a novel alternative algorithm that uses geometric means along with the penalty technique to address MOTP. Specifically, analyzed data by comparing our method with numerical examples and presenting the results in a line graph. Our analysis shows that our approach yields better solutions than existing methods, demonstrating the novelty and effectiveness of our approach. The comparison with numerical examples provides a clear and intuitive way of presenting the superiority of our method, making it accessible to practitioners and researchers in the field. These findings have important implications for improving the accuracy and reliability of solutions to the problem at hand. Overall, our study contributes to the advancement of the field by providing a novel and effective method for solving the problem.

INTRODUCTION

Transportation of products and services from several supply locations to several demand centers is an important field in which linear programming is used. The simplex approach may also be used to resolve a TP that is formulated in terms of an LP model. It requires a lot of time to solve a TP using simplex methods, even though it has many variables and constraints. There are several shipping routes from various supply locations to various demand locations that make up the structure of the TP (Kankanam Pathiranage Oshan Niluminda, 2022; Niluminda \& Ekanayake, 2022). The goal is to establish shipping routes between supply and demand hubs to fulfill the demand for a certain amount of products or services at each destination location with the supply of those same goods or
services at each supply location at the lowest possible transportation expense.

There are several types of TP with different cases. One of the special types of TP is called MOTP. It is referred to as a multi-objective transportation issue when it incorporates numerous objective functions (Ekanayake et al., 2022). When dealing with real-world issues, every business aims to convey commodities while also achieving multiple objectives such as minimizing cost, time, distance, risk, etc. The first TP model was created by Hitchcock (Hitchcock, 1941) in 1941. In realworld scenarios, classical TP can be reformulated as MOTP models due to the complexity of the social and economic context, which necessitates explicit consideration of factors other than expense. Various methods for resolving management-level issues with many competing objectives were initially
described by Charnes and Cooper (Tjalling C. Koopmans, 1941) in 1961. M. Zangiabadi (Zangiabadi \& Maleki, 2007) use fuzzy goal programming to address MOTP in 2007. Lushu Li (Lohgaonkar \& Bajaj, 2009) proposed a fuzzy compromise programming technique for MOTP. For the linear MOTP, Lakhveer Kaur (Ahmed et al., 2016) suggests a straightforward method for obtaining the optimal compromise solution. Osuji George (George A., 2014) proposed a method using a fuzzy programming algorithm. The three objective linear TPs were solved by Doke D.M. (Doke, 2015) using the arithmetic mean of the global assessment. Evolutionary algorithms were used for the MOTP by K. Bharathi (Bharathi \& Vijayalakshmi, 2016) in 2016. Khilendra Singh (Singh \& Rajan, 2020) used geometric means to address MOTP under a fuzzy environment. Using an S-type membership function, M.A.M. Khan (Khan \& Kabeer, 2015) examines the multi-objective transportation issue. Kavita (Goel, 2021) suggested the novel row maxima method to MOTP utilizing c-program and fuzzy methodology. To solve a MOTP using Pareto Optimality Criteria, Khilendra Singh (Singh \& Rajan, 2019) created a novel technique called the Matrix Maxima Method. The geometric mean method and ant colony optimization algorithm were proposed by E.M.U.S.B.Ekanayake (Ekanayake, 2022) in 2022 to address MOTP in fuzzy environments. Moreover, many researchers proposed several approaches to solve MOTP. M. Afwat A.E. (M. Afwat et al., 2018), T. Karthy (Karthy \& Ganesan, 2018), Ekanayake E.M.U.S.B. (E. M. U. S. B. et al., 2021; Ekanayake, 2022; Ekanayake et al., 2020, 2021, 2022) Rakesh Verma (Zangiabadi \& Maleki, 2013), Abouzar Sheikhi (Pandian \& Anuradha, 2011), Sanjay R. Ahir (College, 2021), Kirti Kumar Jain (Jain et al., 2019), and M.A.Nomani (Nomani et al., 2017) were proposed a different type of algorithms to resolve MOTP.

This work focus on building a new alternative algorithm to solve multi-objective transportation problem using geometric mean combined with the penalty method. In the end, the proposed method compares with existing different methods using
illustrative examples of MOTP with several objectives.

Methods

Geometric mean

By calculating the multiplication of the values of a collection of numbers, the Geometric Mean (GM) is the average value or mean that denotes the central tendency of the data. The $\mathrm{n}^{\text {th }}$ root of the multiplication of n numbers is another way to determine the geometric mean. GM average formula can be shown below in equation (1):
$G M=\sqrt[n]{x_{1} \cdot x_{2} \cdot x_{3} \ldots x_{n}}=\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}$

Mathematical Formulation of MOTP

Amount $x_{i j}$ in the MOTP is to be carried from sources i to destinations j at an expense $c_{i j}$. Here $i=1,2, \ldots \mathrm{~m}$ and $j=1,2, \ldots, \mathrm{n}$ and also $c_{i j}{ }^{k}$ might represent shipping costs/times/ distances, transport risk, or power consumption, among other things. If the problem has a " t " number of objectives to minimize transport expenses, then it can be written as $\quad Z^{1}(x), Z^{2}(x), Z^{3}(x), \ldots, Z^{t}(x)$. The mathematical formulation of MOTP with constraints is given in below:

Objective functions:
Obj. no. $1=Z^{1}(\mathrm{x})=\sum_{\mathrm{i}=1}^{\mathrm{m}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{ij}}{ }^{1} \cdot \mathrm{x}_{\mathrm{ij}}$
Obj. no. $2=Z^{2}(x)=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j}{ }^{2} \cdot x_{i j}$
Obj. no. $\mathrm{t}=\mathrm{Z}^{\mathrm{t}}(\mathrm{x})=\stackrel{\vdots}{\sum_{\mathrm{i}=1}^{\mathrm{m}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{ij}}{ }^{\mathrm{t}} \cdot \mathrm{x}_{\mathrm{ij}}}$
Constraints:
Supply constraint:
$\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{i}}, \quad \mathrm{i}=1,2, \ldots, \mathrm{~m}$

Demand constraint:
$\sum_{i=1}^{m} x_{i j}=b_{j}, \quad j=1,2, \ldots, n$
$\mathrm{x}_{\mathrm{ij}} \geq 0 ; \forall \mathrm{i}=1,2, \ldots, \mathrm{~m} \& \quad \mathrm{j}=1,2, \ldots, \mathrm{n}$

Table 1. General Tabular representation of the multi-objective transportation problem with notations

Destination \rightarrow	D_{1}		D_{2}	\ldots	D_{n}
Source \downarrow			Supply $\left(a_{i}\right)$		
S_{1}	$C_{11}{ }^{1}, C_{11}{ }^{2}, \ldots C_{11}{ }^{t}$	$C_{12}{ }^{1}, C_{12}{ }^{2}, \ldots C_{12}{ }^{t}$	\ldots	$C_{1 n}{ }^{1}, C_{1 n}{ }^{2}, \ldots C_{1 n}{ }^{t}$	a_{1}
$\mathrm{~S}_{2}$	$C_{21}{ }^{1}, C_{21}{ }^{2}, \ldots C_{21}{ }^{t}$	$C_{22}{ }^{1}, C_{22}{ }^{2}, \ldots C_{22}{ }^{t}$	\ldots	$C_{2 n}{ }^{1}, C_{2 n}{ }^{2}, \ldots C_{2 n}{ }^{t}$	a_{2}
\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
$\mathrm{~S}_{\mathrm{m}}$	$C_{m 1}{ }^{1}, C_{m 1}{ }^{2}, \ldots C_{m 1}{ }^{t}$	$C_{m 2}{ }^{1}, C_{m 2}{ }^{2}, \ldots C_{m 2}{ }^{t}$	\ldots	$C_{\mathrm{m} n}{ }^{1}, C_{\mathrm{m} n}{ }^{2}, \ldots C_{\mathrm{m} n}{ }^{t}{ }^{t}$	a_{m}
Demand $\left(b_{j}\right)$	b_{1}	b_{2}	\cdots	b_{n}	

Here;
$C_{i j M A X}=$ Each column's or row's highest $C_{i j}$ value
$C_{i j M I N 2}=$ Each column's or row's second-minimum $C_{i j}$ value

The Proposed Novel Algorithm

This section presents the proposed novel algorithm with steps. This method can apply both balanced and unbalanced multi-objective transportation problems and the best solution or near-best solution can be obtained. The steps of the proposed method can illustrate as follows:
Step 1: Verify whether your MOTP is balanced. If the MOTP table is unbalanced, add a dummy row or column to make it balanced.
Step 2: Calculate the Geometric Mean (GM) of every cell using the following equation (7) and create a new table using GM values.

$$
\begin{equation*}
G M=\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}=\sqrt[n]{x_{1} \times x_{2} \times x_{3} \times \ldots \times x_{n}} \tag{7}
\end{equation*}
$$

Here; x_{i} is the unit cost of each objective in each cell

Step 3: Use the formula below (8) to determine the penalty value for each row and column:

$$
\begin{equation*}
\left|C_{i j_{\text {MAX }}}-C_{i j_{M I N}}\right| \tag{8}
\end{equation*}
$$

Step 4: Assign the relevant min (Supply, Demand) to the minimum $C_{i j}$ value cell, selecting the maximum penalty value for each row and column.

Step 5: If there is a tie in the maximum penalty value for a column or row, choose the penalty value that corresponds to the minimum $C_{i j}$ value of that rows or columns.

Step 6: If the allocation in the previous row meets the supply at the origin, cross out the corresponding row. If it fulfills the requirement there, cross out the corresponding column.

Step 7: The procedure should be terminated if demand is satisfied at each destination and supply is enough at each origin. If not, repeat the preceding steps.

Step 8: Utilizing a MOTP allocation table, determine the relevant effective cost values for each objective.

RESULTS AND DISCUSSION

This section will investigate both balanced and unbalanced MOTP and compare the newly recommended method to an optimal solution. Example 1 (Ekanayake et al., 2022). This example represents a multi-objective transportation problem with three objectives such as cost, time, and distance.
Table 2. Step 1 (Initial multi-objective transportation table with cost, time, and distance)

(Cost, Time, Distance)	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	21	16	15	13	11
	1	2	1	4	
	11	13	17	14	
$\mathrm{~S}_{2}$	17	18	24	23	13
	3	3	2	1	
	16	18	14	10	
$\mathrm{~S}_{3}$	32	27	18	41	19
	4	2	5	9	
Demand	21	24	13	10	
	10	12	15		

Table 3. Steps $2-3$ (Geometric mean of objectives (Cost, Time, Distance))

Geometric Mean	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	6.13	7.46	6.34	8.99	11
$\mathrm{~S}_{2}$	9.34	9.90	8.75	6.13	13
$\mathrm{~S}_{3}$	13.90	10.90	10.53	15.45	19
Demand	6	10	12	15	

Table 4. Steps 4-7 (Penalty method for example 1)

	D_{1}	D_{2}	D_{3}	D_{4}	Supply	P1	P2	P3	P4	P5	P6
S_{1}	6.13 (6)	7.46	6.34 (3)	8.9 (2)	11	2.65	2.65	1.53	1.12	-	-
S_{2}	9.34	9.90	8.75	6.13 (13)	13	1.15	-	-	-	-	-
S_{3}	13.90	10.90 (10)	10.53 (9)	15.45	19	4.55	4.55	4.55	0.37	0.37	10.53
Demand	6	10	12	15							
P1	4.56	1.00	1.78	6.46							
P2	7.77	3.44	4.19	6.46							
P3	-	3.44	4.19	6.46							
P4	-	3.44	4.19	-							
P5	-	10.90	10.53	-							
P6	-	-	10.53	-							

Table 5. Step 8 (Final allocation table of example 1)

(Cost, Time, Distance)	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	$(21,1,11)$	$(16,2,13)$	$(15,1,17)$	$(13,4,14)$	11
	$[6]$		$[3]$	$[2]$	
S_{2}	$(17,3,16)$	$(18,3,18)$	$(24,2,14)$	$(23,1,10)$	13
$\mathrm{~S}_{3}$	$(32,4,21)$	$(27,2,24)$	$(18,5,13)$	$(41,9,10)$	19
					$[10]$

Minimum Cost $=(6 \times 21)+(3 \times 15)+(2 \times 13)+(13 \times 23)+(10 \times 27)+(9 \times 12)=874$
Minimum Time $=(6 \times 1)+(3 \times 1)+(2 \times 4)+(13 \times 1)+(10 \times 2)+(9 \times 5)=95$
Minimum Distance $=(6 \times 11)+(3 \times 17)+(2 \times 14)+(13 \times 10)+(10 \times 24)+(9 \times 13)=632$
Table 6. Comparison analysis of example 1 with different methods

Comparison Analysis	Minimum Cost	Minimum Time	Minimum Distance
New Row Maxima Method (Goel, 2021)	938	117	457
Product Approach (M. A. E. Afwat et al., 2018)	938	132	552
	904	107	587
Rajan, 2020)	904	107	587
Ekanayake's Method (Ekanayake,	874	95	632
2022b)	796	89	527
Proposed Method			
LINGO			

Figure 1. Comparison Analysis of example 1 with different methods

Example 1 shows the MOTP, which has three objectives. The objective of that problem is to minimize the cost, time, and distance. Table 6 represents a comparison analysis of the proposed method with the New Row Maxima Method (Goel, 2021), Product Approach (M. A. E. Afwat et al., 2018), Geometric Mean Method (Singh \& Rajan, 2020), Ekanayake's Method (Ekanayake, 2022b),
and Optimum solution obtained by LINGO. Figure 2 shows the line graph representation of that comparison. The proposed method gives a better solution in cost, time, and distance objectives by comparison to the other existing methods.

Example 2 (Singh \& Rajan, 2019). This example represents a multi-objective transportation problem with two objectives such as cost and time.

Table 7. Step 1 (Initial multi-objective transportation table with cost and time)

(Time, Cost)	D_{1}	D_{2}	D_{3}	Supply
S_{1}	$(13,14)$	$(15,15)$	$(16,10)$	17
$\mathrm{~S}_{2}$	$(7,21)$	$(11,13)$	$(2,19)$	12
$\mathrm{~S}_{3}$	$(19,17)$	$(20,26)$	$(9,9)$	16
Demand	14	8	23	

Table 8. Step $2-3$ (Geometric mean of objectives (Cost, Time))

Geometric Mean	D_{1}	D_{2}	D_{3}	Supply
S_{1}	13.49	15.00	12.65	17
$\mathrm{~S}_{2}$	12.12	11.96	6.16	12
$\mathrm{~S}_{3}$	17.97	22.80	9.00	16
Demand	14	8	23	

Table 9. Steps 4-7 (Penalty method for example 2)

	D_{1}	D_{2}	D_{3}	Supply	P1	P2	P3	P4	P5
S_{1}	13.49 (14)	15.00	12.65 (3)	17	1.51	0.84	0.84	0.84	12.65
S_{2}	12.12	11.96 (8)	6.16 (4)	12	0.16	5.96	5.96	-	-
S_{3}	17.97	22.80	9.00 (16)	16	4.83	8.97	-	-	-
Demand	14	8	3						
P1	4.48	7.80	3.65						
P2	4.48	-	3.65						
P3	1.37	-	6.49						
P4	13.49	-	12.65						
P5	-	-	12.65						

Table 10. Step 8 (Final allocation table of example 2)

(Time, Cost)	D_{1}	D_{2}	D_{3}	Supply
S_{1}	$(13,14)$	$(15,15)$	$(16,10)$	17
	$[14]$		$[3]$	
S_{2}	$(7,21)$	$(11,13)$	$(2,19)$	12
		$[8]$	$[4]$	
S_{3}	$(19,17)$	$(20,26)$	$(9,9)$	16
			$[16]$	
Demand	14	8	23	

Minimum Time $=(14 \times 13)+(3 \times 16)+(8 \times 11)+(4 \times 2)+(16 \times 9)=470$
Minimum Cost $=(14 \times 14)+(3 \times 10)+(8 \times 13)+(4 \times 19)+(16 \times 9)=550$
Table 11. Comparison analysis of example 2 with different methods

Comparison Analysis	Minimum Time	Minimum Cost
New Row Maxima Method (Goel, 2021)	656	652
Product Approach (M. A. E. Afwat et al., 2018)	440	583
Matrix Maxima (Singh \& Rajan, 2019)	470	550
Proposed Method	470	550

Example 2 TP has two objectives (Time, Cost). The goal is to reduce the overall time and expense. Table 11 shows the comparative analysis of example 2 and figure 2 represents its graphical representation. By comparing the New Row Maxima Method (Goel, 2021), Product Approach
(M. A. E. Afwat et al., 2018), and Matrix Maxima Method (Singh \& Rajan, 2019) our proposed method gives a better solution. Both Matrix Maxima and the proposed method give the same results.

Figure 2. Comparison Analysis of example 2 with different methods

Example 3 (Singh \& Rajan, 2019). This example represents a multi-objective transportation problem with two objectives such as cost and time.
Table 12. Initial multi-objective transportation table with cost and time

(Time, Cost)	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	$(6,1)$	$(4,2)$	$(1,3)$	$(5,4)$	14
$\mathrm{~S}_{2}$	$(8,4)$	$(9,3)$	$(2,2)$	$(7,0)$	16
$\mathrm{~S}_{3}$	$(4,0)$	$(3,2)$	$(6,2)$	$(2,1)$	5
Demand	6	10	15	4	

Table 13. Comparison analysis of example 3 with different methods

Comparison Analysis	Minimum Time	Minimum Cost
New Row Maxima Method (Goel, 2021)	162	83
Product Approach (M. A. E. Afwat et al., 2018)	114	62
Matrix Maxima (Singh \& Rajan, 2019)	115	57
Proposed Method	121	54

The MOTP with two objectives such as time and cost shown in example 3. The objective of that example is to minimize the total time and cost. This example compares with New Row Maxima Method (Goel, 2021), the Product Approach (M. A. E. Afwat et al., 2018), Matrix Maxima Method (Singh
\& Rajan, 2019), and the proposed algorithm. The proposed method gives the most minimum cost value compared to the other methods in this example. Table 13 shows the comparative results of that example and figure 3 represents the line graph analysis with the existing three methods.

Comparitive Analysis of Example 3

Figure 3. Comparison Analysis of example 3 with different methods
Example 4 (Ahmed et al., 2016). This example represents a multi-objective transportation problem with two objectives.

Table 14. Initial multi-objective transportation table with objectives Z_{1} and Z_{2}

$\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)$	D_{1}	D_{2}	D_{3}	Supply
S_{1}	$(3,5)$	$(4,2)$	$(5,1)$	8
$\mathrm{~S}_{2}$	$(4,3)$	$(5,4)$	$(2,3)$	5
$\mathrm{~S}_{3}$	$(5,2)$	$(1,3)$	$(2,1)$	2
Demand	7	4	4	

Table 15. Comparison analysis of example 3 with different methods

Comparison Analysis	Z_{1}	Z_{2}
Kaur's Method (Ahmed et al., 2016)	55	40
Proposed Method	56	39

Comparitive Analysis of Example 4

Figure 4. Comparison Analysis of example 4 with Kaur's method

The proposed method was compared with Kaur's Method (Ahmed et al., 2016) in this example. This TP has two objectives $\left(Z_{1}\right.$ and $\left.Z_{2}\right)$. The comparative evaluation of that example is
shown in table 15 and the graphical evaluation shows in figure 4. By looking at above table 15 and figure 4, the proposed method gives the most minimum value in the Z_{1} objective.

Example 5 (Ekanayake, 2022). This example represents a multi-objective transportation problem with three objectives such as cost, time, and distance.
Table 16. Initial multi-objective transportation table with cost, time, and distance

(Cost, Time, Distance)	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	$(6,13,6)$	$(4,11,3)$	$(1,15,5)$	$(5,20,4)$	14
$\mathrm{~S}_{2}$	$(8,17,5)$	$(9,14,9)$	$(2,12,2)$	$(7,13,7)$	16
$\mathrm{~S}_{3}$	$(4,18,5)$	$(3,18,7)$	$(6,15,8)$	$(2,12,6)$	5
Demand	6	10	15	4	

Table 17. Comparison analysis of example 5 with different methods

Comparison Analysis	Minimum Cost	Minimum Time	Minimum Distance
New Row Maxima Method (Goel, 2021)	112	461	130
Product Approach (M. A. E. Afwat et al.,	114	425	128
2018)	114	425	118
Geometric Mean Method (Singh \& Rajan,			
2020)	114	425	118
Ekanayake's Method (Ekanayake, 2022b)	114	425	118
Proposed Method	114	424	106
LINGO			

Comparison Analysis of Example 5

Figure 5. Comparison Analysis of example 5 with different methods

The TP with three objectives (Cost, Time, Distance) is represented in this example 5. The main objective of this example is to minimize the total cost, time, and distance. The comparison analysis of this example shows in table 17. Compare to the other existing method proposed method gives the optimal solution to the cost
objective and a near-optimal solution to the time and distance. Figure 5 presents the comparison result of three objectives using a line graph. Compare to the Geometric Mean Method (Singh* \& Rajan, 2020) and Ekanayake's Method (Ekanayake, 2022b), the proposed method also gives the same outcomes.

Example 6 (Doke et al., 2015). This example represents a multi-objective transportation problem with three objectives.

Table 18. Initial multi-objective transportation table with cost, time, and distance

$\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{Z}_{3}\right)$	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	$(3,2,8)$	$(2,5,4)$	$(5,7,3)$	$(7,9,2)$	10
$\mathrm{~S}_{2}$	$(4,4,5)$	$(3,4,3)$	$(3,5,4)$	$(5,6,2)$	20
$\mathrm{~S}_{3}$	$(2,3,7)$	$(1,2,2)$	$(4,6,6)$	$(3,8,8)$	40
Demand	15	15	20	20	

Table 19. Comparison analysis of example 6 with different methods

Comparison Analysis	Z_{1}	Z_{2}	Z_{3}
Doke's Method (Doke et al., 2015)	205	335	305
Proposed Method	235	325	265

Comparison Analysis of Example 6

Figure 6. Comparison Analysis of example 6 with Doke's method

In example 6 TP has three different objectives $\left(Z_{1}, Z_{2}\right.$, and $\left.Z_{3}\right)$. The main objective of this example is to minimize the objective function values Z_{1}, Z_{2}, and Z_{3}. The proposed method results compare with Doke's Method (A Solution to Three Objective Transportation Problems Using Fuzzy Compromise Programming Approach, n.d.) in this example. The comparative results between the proposed method and Doke's Method are represented in table 19 and it line graph evaluation shows in figure 6. By looking at the comparison table, both values of objective functions 2 and $3\left(Z_{2}\right.$ and $\left.Z_{3}\right)$ are best when using our proposed method.

CONCLUSION

Multiple supply stations to multiple demand stations are connected by a massive number of transport routes in the structure of the TP. The goal is to figure out how many units of a given thing should be moved from one place to another so that there will be enough products or services at each destination point to meet demand. MultiObjective Transportation Problems (MOTP) are those where more than one objective needs to be optimized. Several methods have been put forward in the literature to solve MOTPs. Instead of utilizing traditional methods, the geometric mean technique with the penalty method is applied in this study to solve a MOTP. This paper discussed six different
instants which have two or three objectives that have been studied in the literature, and when compared to those other recent multi-objective transportation algorithms, the suggested technique performs the best results. As can be seen, this strategy is simple to comprehend and only requires a few steps to get a more effective result.

REFERENCES

1. Afwat, M., Salama, A. A. M., \& Farouk, N. (2018). A New Efficient Approach to Solve Multi-Objective Transportation Problem in the Fuzzy Environment (Product approach). International Journal of Applied Engineering Research, (13), 13660-13664.
2. Ahmed, M. M., Khan, A. R., Uddin, M. S., \& Ahmed, F. (2016). A New Approach to Solve Transportation Problems. Open Journal of Optimization, 05(01), 22-30.
3. Bharathi, K., \& Vijayalakshmi, C. (2016). Optimization of multi-objective transportation problem using evolutionary algorithms. Global Journal of Pure and Applied Mathematics, 12(2), 1387-1396.
4. Ahir, S. R. (2021). Solution of f MultiObjective Transportation Problem. International Journal of Trend in Scientific

Research and Development. 5(4), 1331-1337.
5. Doke, D. M. (2015). A Solution to Three Objective Transportation Problems Using Fuzzy Compromise Programming Approach. International Journal of Modern Sciences and Engineering Technology (IJMSET) 2(9), 9-13.
6. E. M. U. S. B., Ekanayake., S. P. C., Perera., W. B., Daundasekara., \& Z. A. M. S., Juman. (2021). An Effective Alternative New Approach in Solving Transportation Problems. American Journal of Electrical and Computer Engineering, 5(1), 1.
7. Ekanayake, E. M. U. S. B. (2022). An Improved Ant Colony Algorithm to Solve Prohibited Transportation Problems. International Journal of Applied Mathematics and Theoretical Physics. 8(2), 43.
8. Ekanayake, E. M. U. S. B. (2022). Geometric Mean Method Combined With Ant Colony Optimization Algorithm to Solve MultiObjective Transportation Problems in Fuzzy Environments. Journal of Electrical Electronics Engineering, 1(1), 39-47.
9. Ekanayake, E. M. U. S. B., Daundasekara, W. B., \& Perera, S. P. C. (2021). Solution of a Transportation Problem using Bipartite Graph. Global Journals, 21(October).
10. Ekanayake, E. M. U. S. B., Daundasekara, W. B., \& Perera, S. P. C. (2022). New Approach to Obtain the Maximum Flow in a Network and Optimal Solution for the Transportation Problems. Modern Applied Science, 16(1), 30.
11. Ekanayake, E. M. U. S. B., Perera, S. P. C., Daundasekara, W. B., \& Juman, Z. A. M. S. (2020). A Modified Ant Colony Optimization Algorithm for Solving a Transportation Problem. Journal of Advances in Mathematics and Computer Science, August, 83-101.
12. Ekanayake, E. M. U. S. B., Daundasekara, W. B., \& Perera, S. P. C. (2022). An Examination of Different Types of Transportation Problems and Mathematical Models. American Journal of Mathematical and Computer Modelling, 7(3), 37.
13. George A., O. (2014). Solution of Multi-

Objective Transportation Problem Via Fuzzy Programming Algorithm. Science Journal of Applied Mathematics and Statistics, 2(4), 71. https://doi.org/10.11648/j.sjams.20140204.11
14. Goel, P. (2021). New Row Maxima Method to Solve Multi-Objective Transportation Problem Using C-Programme And Fuzzy Technique. International Journal of Engineering, Science, and Mathematics, 10 .
15. Hitchcock, F. L. (1941). The Distribution of a Product from Several Sources to Numerous Localities. Journal of Mathematics and Physics, 20(1-4), 224-230.
16. Jain, K. K., Bhardwaj, R., \& Choudhary, S. (2019). A multi-objective transportation problem solves by laxicographic goal programming. International Journal of Recent Technology and Engineering, 7(6), 1842-1846.
17. Kankanam Pathiranage Oshan Niluminda, E. M. U. S. B. Ekanayake. (2022). An Approach for Solving Minimum Spanning Tree Problem Using a Modified Ant Colony Optimization Algorithm. American Journal of Applied Mathematics. 10(6), 223.
18. Karthy, T., \& Ganesan, K. (2018). MultiObjective Transportation Problem - Genetic Algorithm Approach. International Journal of Pure and Applied Mathematics. 119(9), 343350.
19. Khan, M. A. M., \& Kabeer, S. J. (2015). MultiObjective Transportation Problem Under Fuzziness with S-type Membership Function. International Journal of Innovative Research in Computer Science \& Technology (IJIRCST). 4, 66-69.
20. Lohgaonkar, M. H., \& Bajaj, V. H. (2009). A fuzzy approach to solving multi-objective transportation problem. International Journal of Agricultural and Statistical Sciences, 5(2), 443-452.
21. Niluminda, K.P.O., Ekanayake E.M.U.S.B. (2022). An efficient method to solve minimum spanning tree problem using graph theory and improved ant colony optimization algorithm. North American Academic Research, 5(12), 34-
43.
22. Niluminda, K. P. O., \& Ekanayake, E. M. U. S. B. (2022). Innovative Matrix Algorithm to Address the Minimal Cost-Spanning Tree Problem. Journal of Electrical Electronics Engineering. 1(1), 148-153.
23. Niluminda, K.P.O, Ekanayake E.M.U.S.B. (2022). Kruskal's algorithm for solving the both balanced unbalanced acceptable and prohibited route transportation problems. North American Academic Research, 5(12), 17-33.
24. Nomani, M. A., Ali, I., \& Ahmed, A. (2017). A new approach for solving multi-objective transportation problems. International Journal of Management Science and Engineering Management, 12(3), 165-173.
25. Pandian, P., \& Anuradha, D. (2011). A new method for solving bi-objective transportation problems. Australian Journal of Basic and Applied Sciences, 5(10), 67-74.
26. Singh, K., \& Rajan, D. S. (2020). Geometric Mean Method to Solve Multi-Objective Transportation Problem Under Fuzzy Environment. International Journal of Innovative Technology and Exploring Engineering, 9(5), 1739-1744.
27. Singh, K., \& Rajan, S. (2019). Matrix maxima method to solve multi-objective transportation problem with a pareto optimality criteria. International Journal of Innovative Technology and Exploring Engineering, 8(11), 1929-1932. https://doi.org/10.35940/ijitee.K2134.0981119
28. Tjalling C. Koopmans. (1941). Optimum Utilization of the Transportation System. Econometrica, (17), 136-146.
29. Zangiabadi, M., \& Maleki, H. R. (2007). Fuzzy Goal Programming for Multiobjective. J. Appl. Math. \& Computing, 24(1), 449-460.
30. Zangiabadi, M., \& Maleki, H. R. (2013). Fuzzy goal programming technique to solve multiobjective transportation problems with some non-linear membership functions. Iranian Journal of Fuzzy Systems, 10(1), 61-74.

