PAPER

SACCHAROMYCES CEREVISIAE BIODIVERSITY IN MONFERRATO, NORTH WEST ITALY, AND SELECTION OF INDIGENOUS STARTER CULTURES FOR BARBERA WINE PRODUCTION

K. RANTSIOU^{*}, F. MARENGO[•], V. ENGLEZOS[•], F. TORCHIO[•], S. GIACOSA[•], L. ROLLE[•], V. GERBI[•] and L. COCOLIN[•]

^aUniversity of Turin, Department of Agriculture, Forest and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy

^bUniversità Cattolica del Sacro Cuore, Istituto di Enologia e Ingegneria Agro-Alimentare, Piacenza, Italy *Corresponding author. Tel.: +39 011 670 8870; fax: +39 011 670 8549 E-mail address: kalliopi.rantsiou@unito.it

ABSTRACT

The aim of this study was to examine the biodiversity of *Saccharomyces cerevisiae* isolates from Barbera grapes and musts, from the Monferrato area, in the Piedmont region – North West Italy. An interdelta element PCR analysis was used to identify and discriminate 636 *S. cerevisiae* isolates at a strain level. Ninety-six *S. cerevisiae* that showed different molecular fingerprints were characterized through physiological tests and laboratory scale fermentations. A chemical analysis of experimental wines obtained from inoculated fermentations showed significant differences between the wines. The main variables considered in the strain differentiation were the residual sugars and the production of acetic acid, which ranged from 148.64 to 3.44 g/l and from 0.20 to 0.60 g/l, respectively. As a consequence, strain variability should be considered as a relevant resource to select suitable starter cultures in order to improve or characterize wines with a close bond to the geographic region.

Keywords: Saccharomyces cerevisiae, yeast biodiversity, indigenous starter, interdelta PCR, selection

1. INTRODUCTION

Wine production is an ancient tradition that has been carried out for centuries through the spontaneous fermentation of grape juice, which takes place due to the presence of indigenous yeasts from different genera and species (FLEET, 2003; PRETORIUS, 2000; ROMANO *et al.*, 2003). The number of species and their presence during fermentation depends on several factors (PRETORIUS *et al.*, 1999), which lead to subsequent wine quality variations from region to region, but also from one year to another, and all this makes the outcome of spontaneous fermentation difficult to predict (PRETORIUS, 2000). In an attempt to address this issue, many winemakers have used pure commercial *Saccharomyces cerevisiae* cultures inoculated into the must (PRETORIUS, 2000). However, it has been suggested that native *S. cerevisiae* strains are better suited to the micro-area climatic conditions of the wine production region (LOPES *et al.*, 2002) and can therefore more easily dominate the natural biota (LA JEUNE *et al.*, 2006).

S. cerevisiae, the most relevant species in winemaking, is usually chosen as the wine yeast, and the particular strain is chosen according to a set of physiological features that are indicative of their potential usefulness for industrial wine production. In addition to the primary end products of the glycolytic fermentation of glucose and fructose, certain oenological criteria must be considered in order to select yeast strains that show desirable characteristics, including: tolerance and high ethanol production, exhaustion of the sugar in must and high fermentation activity, growth at high sugar concentrations, high glycerol production, resistance and low sulphur dioxide production, good enzymatic profile (high β -glucosidase and proteolytic activities) and low acetic acid formation (ESTEVE-ZARZOSO *et al.*, 2000).

At present, there is increasing interest, in the wine community, in the use of indigenous *S*. *cerevisiae* strains that may contribute to the overall sensorial quality of wine and reflect the characteristics of a given region, even in guided fermentations using selected *S*. *cerevisiae* starter cultures (CAPECE *et al.*, 2010; SUZZI *et al.*, 2012). Recently, in an attempt to respond to these aspects coupled with the current emphasis on the preservation of all forms of genetic biodiversity, some research groups have focused on the selection of yeasts from restricted areas (SETTANNI *et al.*, 2012; FRANCESCA *et al.*, 2009; ORLIC *et al.*, 2007; LOPES *et al.*, 2007).

We have previously extensively studied the indigenous mycobiota originating from the Barbera grapes from the Monferrato area, Piedmont region, North-West Italy (ALESSANDRIA *et al.*, 2015). Barbera grapes produce a ruby-red coloured wine with berry, cherry, plum and spicy flavours, depending on the clone, as well as the location and the age of the plant (BOSSO *et al.*, 2011). In this study, *S. cerevisiae* isolates were characterized to establish their genetic and technological variability in order to contribute to the preservation of the *S. cerevisiae* genetic resources of the Barbera of Monferrato *terroir*. Interdelta-PCR was used to help establish the genetic diversity of the isolates. Physiological tests, which focused on the production of extracellular hydrolytic enzymes and on their growth in different ethanol and total SO concentrations, were then conducted. Finally, selected genotypes were used to ferment Barbera must, during micro-fermentation trials, in order to evaluate their fermentation potential.

2. MATERIALS AND METHODS

2.1. Fermentation set up and yeast isolation

Spontaneous fermentations were conducted using *Vitis Vinifera* L. Barbera grapes obtained from fifteen different vineyards (Fig. 1), located in five areas in the Asti and Alessandria

districts of the Piedmont region (ALESSANDRIA *et al.*, 2015). The vineyards, which were identified on the basis of their geographical locations, were: 1 (Murisengo), 2 (San Martino Alfieri), 3 (Costigliole d'Asti), 4 (Isola d'Asti), 5 (Montegrosso d'Asti), 6 (Agliano Terme), 7 (Vinchio), 8 (Nizza Monferrato), 9 (Incisa Scapaccino), 10 (Loazzolo), 11 (Ricaldone), 12 (Alice bel colle), 13 (Acqui -Terme Crocera south west zone), 14 (Acqui Terme - Crocera south est zone) and 15 (Acqui Terme - Dannona zone).

Approximately 25 kg of healthy grapes, without signs of bird damage or Botryotinia fuckeliana infection, were harvested. The grapes were crushed in the laboratory and the obtained juice (about 15 L volume) was transferred to sterile jugs where it underwent spontaneous fermentation at room temperature (between 22 and 25°C). Yeasts were isolated from each container at the beginning of the fermentation (after 1 day and 3 days), in the middle (after 7 days) and when alcoholic fermentation was completed. The alcoholic fermentation was monitored with a densitometer. Aliquots (0.1 mL each) of several decimal dilutions, in a 0.1% ringer solution (Oxoid, Milan, Italy), were plated on Wallerstein Laboratory Nutrient (WLN) medium (Oxoid) (Pallmann et al., 2001). The plates were incubated at 28°C for 5 days. WLN allows the presumptive identification of the yeast species according to the colony morphology and colour (URSO et al., 2008). At least 10 colonies were selected from each sample and at each fermentation stage and were isolated on WLN; priority was given to putative colonies of *Saccharomyces* spp. The isolates were stored at -80 °C in YPD broth (1% (w/v) yeast extract, 2% (w/v) peptone and 2% (w/v) glucose, all obtained from Oxoid) after the addition of glycerol (30%, v/v) (Sigma-Aldrich, Milan, Italy).

2.2. Yeast identification

The putative *Saccharomyces* spp. isolates were subsequently identified and simultaneously differentiated at a strain level on the basis of a PCR interdelta element analysis (δ -PCR). In order to conduct the δ -PCR analysis, the total DNA was extracted from 1 millilitre of an overnight culture in YPD broth, according to COCOLIN *et al.* (2000), quantified using a Nanodrop ND-1000 spectrophotometer (Celbio, Milan, Italy) and standardized at 100 delta12 The (5'-TCAACAATGGAATCCCAAC-3') delta21 (5' $ng/\mu L$. and CATCTTAACACCGTATATGA-3') oligonucleotide primers were used to amplify regions between the repeated interspersed delta sequences (Legras and Karst, 2003). Amplification reactions were performed with a PTC-200 DNA Engine MJ Research thermal cycler (Biorad, Milan, Italy) using the following programme: initial denaturation at 95°C (5 min), 35 cycles of denaturing at 94°C (1 min), annealing at 50°C (1 min), extension at 72°C (1 min) and a final extension at 72°C (10 min). The PCR products were separated in 1.5% agarose gels and stained with ethidium bromide. The resulting fingerprints were analyzed by means of the BioNumerics V4.0 software package (Applied-Maths, Sint-Martens-Latem, Belgium). Similarity among the digitized profiles was calculated using the Pearson correlation, and an average linkage (UPGMA) dendrogram was derived from the profiles. A coefficient of correlation of 85% was arbitrarily selected to distinguish the clusters. The yeasts that were not amplified with δ -PCR, were subsequently identified by using the RFLP of the ribosomal region method as described in ALESSANDRIA et al. (2015).

2.3. Physiological characterization

2.3.1 Hydrogen sulphite production

The ability to produce hydrogen sulphite was determined by streaking single colonies onto Biggy agar (Oxoid) and incubating them at 25°C for 48-72 h. Colony colour was observed and scored as being white, pale hazel, hazel, dark hazel or black.

2.3.2 Enzymatic activities

The esterase, protease and β -glucosidase activities of the isolates were screened as described by ENGLEZOS *et al.* (2015).

2.3.3. Ethanol and SO₂ tolerance assays

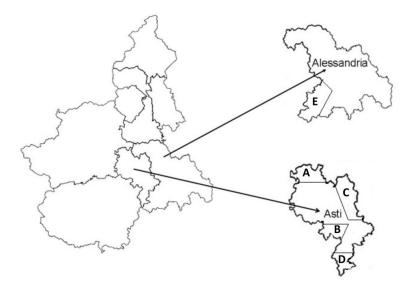
Ethanol tolerance and SO₂ tolerance were determined in microplates, according to the method proposed by ARROYO-LOPEZ et al. (2010) and TOFALO et al. (2012), with some modifications. Yeast Nitrogen Base with amino acids (YNB, 6.7 g/L, [Remel, Lenexa, KS, USA]) and pH 5.5 was supplemented with 20 g/L of glucose and sterilized by filtration using a 0.2 µm membrane filter (VWR, Milan, Italy). The medium was supplemented with different concentrations of ethanol (Sigma) (final concentrations of 0, 12, 14 and 16% v/v) in order to test for ethanol tolerance, while, in order to establish SO₂ resistance, different amounts of total SO₂ were added (after adjustment to pH 3.0) until final concentrations of 0, 50, 100 and 150 mg/L. Cells for the inoculation were prepared from an overnight culture in 1 mL of YPD medium, centrifuged at 9000 rpm for 10 min. The obtained pellet was washed twice in a sterile salt solution (8 g/L NaCl) and then re-suspended in the same solution to obtain a concentration of about 10° cells/mL. The diluted cells (20 µL) were mixed with 180 μ L of YNB, prepared as above. The microplates were incubated at 25 °C and the optical density (OD) was measured at 600 nm using a microtiter plate reader (Savatec Instruments, Torino, Italy) at 24 and 48 hours after an orbital shaking of 30 s, in order to re-suspend the cells in the medium before the measurement. YNB without ethanol or SO₂ was used as the control. Cell growth was determined on the basis of the ratio (%) of OD values obtained in medium with and without ethanol or SO for the specific incubation times. Tests were carried out in triplicate. Isolates with a percentage of growth < 10% were considered sensitive.

2.4. Microfermentations

The fermentation potential of the different genotypes was evaluated in microfermentation trials. These were carried out in duplicate for 14 days, in 50 mL tubes containing 25 mL of Barbera grape must (120 g/L glucose, 124 g/L fructose, 5.25 titratable acidity as g/L of tartaric acid, pH 3.20 and 184 mg/L yeast available nitrogen (YAN)). Before the inoculation, the must was thermally treated at 60 °C for 50 min, and the absence of viable populations was evaluated by plating 100 μ L of the must after the treatment on the WLN medium, followed by incubation at 28 °C for 5 days. Pre-cultures were prepared in must at 25 °C for 24 h, and then used to inoculate each fermentation with a cell concentration of 10° per mL, which was determined through a microscopical cell count. The fermentations were carried out under static conditions at 25 °C.

2.5. Chemical analysis

After 14 days of fermentation, the sugar consumption (glucose and fructose) and the ethanol, glycerol and acetic acid production were evaluated directly by means of HPLC, according to the method proposed by ROLLE *et al.* (2012). YAN was measured following the protocols reported in ENGLEZOS *et al.*, 2016).


2.6. Data analysis

The results of the chemical composition of the wines obtained from the microfermentation trials were subjected to a Principal Component Analysis (PCA), in order to evaluate the intraspecific biodiversity of *S. cerevisiae* isolates. Statistical analyses were performed using the IBM SPSS Statistics software package (version 19.0, IBM Corp., Armonk, NY, USA).

3. RESULTS AND DISCUSSIONS

The possible association between territory and yeasts is being actively investigated in recent years and is believed to have a positive impact and influence purchase decisionmaking by the consumer. The use of indigenous selected yeasts could represent a useful alternative to spontaneous fermentation in order to optimize the typical attributes of the grape variety (CLEMENTE JIMENEZ *et al.*, 2004; REMENTERIA *et al.*, 2003; ROMANO *et al.*, 2008). The goal of this study was to isolate and characterize indigenous *S. cerevisiae* yeasts present on Barbera grapes in the vineyards of the Monferrato area.

Fifteen vineyards, located in the Piedmont region (Fig. 1) and cultivated with the Barbera grape variety, were studied during the 2012 harvest season and the collected grapes were crushed to obtain 15 spontaneous alcoholic fermentations.

Figure 1. Geographic location of the fifteen vineyards in the Monferrato region (Asti and Alessandria) with indication of the 5 areas considered. The distribution of the vineyards in the five areas was as follows: A (Murisengo), B (Montegrosso d'Asti, Costigliole d'Asti, San Martino Alfieri, Agliano Terme, Isola d'Asti), C (Vinchio, Nizza Monferrato, Incisa Scapaccino), D (Loazzolo) and E (Ricaldone, Aqui Terme, Alice bel colle).

Overall, 943 yeast colonies were isolated during the fermentations, and after molecular identification, most of them (636 isolates) were identified, through the use of δ -PCR, as *S. cerevisiae*. Other species, namely *Hanseniaspora uvarum* (248 isolates), *Starmerella bacillaris* (synonym *Candida zemplinina*) (11 isolates), *Pichia anomala* (7 isolates) and *Torulaspora delbruecki* (7 isolates) were also isolated, mainly at the beginning and middle of the fermentations.

The PCR amplification of the δ interspersed sequences was also used to identify the genetic differences among the *S. cerevisiae* isolated during the fermentations. The molecular fingerprinting analysis, using a coefficient of similarity of 85%, allowed numerous strains among the isolates to be distinguished. The dendrogram resulting from the analysis of 636 *S. cerevisiae* isolates highlighted the presence of 62 clusters and 37 strains, which were unique and did not cluster with any other isolate. The most numerous clusters were: XVII and XLI with 60 and 44 isolates, respectively (Table 1). It is interesting to notice the different level of heterogeneity of *S. cerevisiae* isolated from the different vineyards. For example, most of the isolates from vineyard 1 grouped in one single cluster (XLI), while in other cases (vineyards 12, 13 and 14) a high level of diversity was observed. Only 37 *S. cerevisiae* strains in Monferrato area. Considering the ratio between the number of *S. cerevisiae* isolated and the number of observed patterns, as an approximate biodiversity estimation, our results showed similar values to those found in Portugal (SCHULLER *et al.*, 2005) and in France (VALERO *et al.*, 2007).

In order to investigate further the S. cerevisiae diversity, 96 strains were selected on the basis of the cluster analysis, and screened for desirable oenological characteristics (ESTEVE-ZARZOSO et al., 2000) such as: a low production of hydrogen sulphide and tolerance to a final concentration of 150 mg/L total sulphur dioxide and 16% (v/v) of ethanol (Table 2). All the strains exhibited a medium hydrogen sulphide production level; 5% of them appeared to be pale hazel on Biggy agar, while the others were hazel. Concerning the results of the tolerance to SO₂, the selected strains were able to grow in the presence of 50 and 100 mg/L of SO₂ (83% and 60% of the isolates, respectively), while only a few isolates (32%) grew at 150 mg/L of SO₂ within 24 h. Extending the incubation time to 48 h, the number of the isolates that were able to grow at 150 mg/L of SO₂ increased to 63%. Only one strain (ScBa20) was totally inhibited by SO₂. As far as ethanol tolerance is concerned, 60% of the strains grew at 14% v/v within 24 h. Ethanol mainly affected yeast growth by increasing the lag phase, and this evidence explains why after increasing the incubation time to 48 h, 95% of the strains were able to grow in all the ethanol concentrations (Table 2). β -glucosidase activity was found in only 2.7% of the strains, thus indicating possible production and activity during the fermentation. Protease activity was detected in 37.8% of the tested S. cerevisiae, while 21.6% were able to hydrolyse esters (data not shown).

In order to extend the information on the 96 *S. cerevisiae* strains of the Monferrato area, alcoholic fermentations were carried out in Barbera grape must. The experimental wines obtained were analyzed to establish the content of some by-products correlated to the organoleptic quality of the wine and the obtained results are reported in Table 3. The values of the residual sugars ranged from 3.44 to 148.64 g/L. Only seven isolates (ScBa4, ScBa5, ScBa13, ScBa26, ScBa44, ScBa60 and ScBa63) were able to leave less than 5 g/L of residual sugars after 14 days of fermentation. All the strains, except ScBa12, ScBa47, ScBa48 and ScBa57, were capable of consuming almost all the glucose of the must, confirming the glucophylic character of this species. All the yeast strains, that completed the fermentation, formed low amounts of acetic acid in the wines (less than 0.6 g/L). Glycerol production was relatively low, ranging from 5.20 to 7.86 g/L. The fermentation purity was high; most strains had a low ratio between the produced acetic acid and ethanol (range 0.01-0.09) and only three strains showed values above 0.04. As regards ethanol production, 52% of the strains produced more than 13%, and 6% of them managed to develop more than 14%.

Table 1. Clusters obtained from a comparison of the different fingerprinting profiles of the *S. cerevisiae* isolates examined in this study by means of the molecular technique. The arbitrarily selected coefficient of similarity was 85%. The table shows their composition according to the geographical locations (vineyard) from which the isolates were obtained.

		Monferrato's vineyards														
Cluster	Number of strains in the cluster	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
I	5	/	/	/	/	/	/	/	/	/	/	5	/	/	/	1
П	15	/	/	/	/	11	/	4	/	/	/	/	/	/	/	/
III	14	/	/	6	/	/	/	4	/	/	/	2	/	2	/	/
IV	6	/	/	6	/	/	/	/	/	/	/	/	/	/	/	/
V	3	/	3	/	/	/	/	/	/	/	/	/	/	/	/	/
VI	6	/	/	/	/	/	/	/	/	/	2	/	/	/	3	1
VII	2	/	/	/	/	/	/	/	/	/	/	/	/	/	/	2
VIII	24	/	14	5	/	/	/	/	2	/	/	/	/	1	/	2
IX	4	/	4	/	/	/	/	/	/	/	/	/	/	/	1	/
Х	7	/	/	/	/	3	/	/	/	/	/	4	/	/	/	/
XI	10	/	/	/	/	/	/	/	/	3	/	/	/	7	/	1
XII	8	/	/	/	/	/	/	/	/	4	/	/	/	4	/	1
XIII	7	/	7	/	/	/	/	/	/	/	/	/	/	/	1	/
XIV	18	/	4	/	/	10	/	/	/	/	/	1	/	2	1	/
XV	4	/	/	/	/	/	2	/	/	/	/	/	/	2	/	/
XVI	2	/	/	/	/	/	/	/	/	/	1	/	/	/	1	/
XVII	60	6	4	3	2	1	/	3	8	/	2	/	2	5	9	15
XVIII	6	/	/	/	/	/	/	2	2	/	/	/	/		2	/
XIX	10	/	/	4	/	/	/	/	/	/	/	/	/	4	1	2
XX	15	1	/	/	9	2	/	/	/	/	/	/	/	/	2	1
XXI	13	/	/	/	2	2	/	/	2	/	2	/	/	2	2	1
XXII	28	2	/	1	/	/	/	/	1	/	/	/	1	1	4	18
XXIII	2	/	/	1	/	/	/	/	/	/	/	/	/	1	1	/
XXIV	3	/	/	/	/	/	/	/	/	/	3	/	/	/	1	/
XXV	3	/	/	/	/	/	/	/	/	/	3	/	/	/	/	/
XXVI	4	/	/	/	/	/	/	/	/	/	/	/	/	/	1	4
XXVII	5	/	/	3	/	/	/	/	/	/	/	/	/	/	1	1
XVIII	2	/	/	/	/	/	/	/	/	/	/	/	/	2	/	1
XXIX	10	/	/	/	/	/	/	/	/	/	/	/	/	10	/	/
XXX	6	/	/	/	/	/	/	/	/	/	/	/	/	3	3	1
XXXI	7	/	/	/	/	/	/	/	/	/	3	/	/	3	/	1
XXXII	3	1	/	/	/	/	/	/	/	/	2	/	/	/	/	1
XXXIII	6	/	/	/	/	/	/	/	/	/	/	/	5	1	/	1
XXXIV	5	/	/	/	/	/	/	/	/	/	/	/	5	/	/	1
XXXV	3	/	/	/	1	/	/	/	/	/	/	/	/	2	/	1
XXXVI	5	/	/	/	/	/	5	/	/	/	/	/	/	/	/	/
XXXVII	9	1	/	/	2	/	/	/	2	/	4	/	/	/	/	1
XXXVIII	4	/	/	/	/	/	/	/	/	/	/	/	/	/	/	4

Table 1. Continues.

		Monferrato's vineyards														
Cluster	Number of strains in the cluster	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
XXXIX	2	/	/	/	/	/	/	/	2	/	/	/	/	/	/	/
XL	7	/	/	/	/	/	/	/	/	/	/	/	/	7	/	/
XLI	44	38	/	/	/	/	/	/	/	/	/	/	3	3	/	/
XLII	7	/	/	/	/	/	2	/	1	4	/	/	/	/	/	/
XLIII	9	/	/	5	/	/	/	/	/	1	/	/	2	/	1	/
XLIV	7	/	/	/	/	/	/	/	3	3	1	/	/	/	/	/
XLV	6	/	/	/	/	/	/	/	/	/	/	/	/	6	/	/
XLVI	5	/	/	/	/	/	/	5	/	/	/	/	/	/	/	/
XLVII	10	/	/	/	9	/	/	/	/	/	/	/	/	1	/	/
XLVIII	15	/	/	/	/	/	/	/	/	/	/	13	2	/	/	/
XLIX	6	/	/	/	/	2	4	/	/	/	/	/	/	/	/	/
L	10	/	3	/	/	/	/	/	6	/	1	/	/	/	/	/
LI	4	/	/	/	/	/	/	/	/	3	/	1	/	/	/	/
LII	30	/	/	/	/	2	16	10	/	/	/	/	/	2	/	/
LIII	12	/	/	/	/	2	/	7	/	/	/	/	1	/	2	/
LIV	2	/	/	/	/	/	/	/	/	/	1	/	/	1	2	/
LV	10	/	/	/	/	/	/	/	/	/	1	/	/	1	/	10
LVI	5	/	/	/	/	3	2	/	/	/	1	/	/	1	/	/
LVII	19	2	/	/	/	2	/	/	1	/	/	/	/	6	8	/
LVIII	15	/	/	/	/	3	/	/	/	/	2	/	10	1	/	/
LIX	25	/	/	/	/	/	5	7	/	/	/	/	1	/	12	/
LX	22	/	/	/	/	/	/	/	1	/	7	/	/	12	1	1
LXI	3	/	/	/	/	/	/	/	/	/	1	/	/	2	/	/
LXII	17	/	3	/	/	/	/	1	/	/	/	4	8	/	1	/

Table 2. Results of the resistance to ethanol and SO₂ of the tested strains. The values presented are the ratio between the OD of the isolates in broth with and without ethanol or SO₂ times 100 at the specific incubation times. The values are the means of triplicate experiments.

Strains			SO ₂ grow	/th (mg/L)		Ethanol growth (% vol.)							
	24 ho	ours of incul	oation	48 ho	urs of incul	bation	24 ho	urs of incu	bation	48 hours of incubation			
	50	100	150	50	100	150	12	14	16	12	14	16	
ScBa1	36	6	14	81	74	81	0	0	0	64	0	0	
ScBa2	82	87	71	93	99	89	100	93	100	100	100	100	
ScBa3	81	46	36	100	91	100	36	6	7	97	47	0	
ScBa4	34	3	4	100	72	36	2	1	1	17	0	0	
ScBa5	81	46	36	98	99	96	36	6	7	98	73	4	
ScBa6	44	46	16	87	67	52	11	1	1	13	1	1	
ScBa7	58	48	42	95	88	61	9	4	4	90	6	5	
ScBa8	76	49	42	98	94	93	8	4	5	85	7	5	
ScBa9	70	42	43	96	92	94	5	4	5	72	4	5	
ScBa10	26	15	9	70	69	60	19	1	0	70	0	0	
ScBa11	22	6	6	87	83	10	2	1	1	5	0	0	
ScBa12	9	6	2	44	7	7	4	2	2	3	1	1	
ScBa13	60	32	32	99	93	83	9	3	3	97	3	3	
ScBa14	38	2	1	85	55	16	51	1	0	61	0	0	
ScBa15	26	3	3	72	30	14	49	0	0	58	0	0	
ScBa16	2	4	23	6	40	77	51	0	0	61	0	0	
ScBa17	12	0	0	91	54	17	37	0	0	76	0	1	
ScBa18	47	0	0	55	9	0	1	1	0	38	0	0	
ScBa19	87	58	52	85	84	75	40	0	0	77	0	0	
ScBa20	63	0	0	64	2	0	0	0	0	13	0	0	
ScBa21	52	31	46	60	59	50	55	0	0	83	0	0	
ScBa22	96	91	83	100	97	96	100	95	97	98	93	99	
ScBa23	67	63	54	96	66	40	96	70	71	100	92	10	
ScBa24	28	16	8	85	87	78	100	69	75	100	71	84	
ScBa25	76	76	75	95	82	58	73	71	52	81	67	57	
ScBa26	39	31	21	74	40	22	79	17	8	69	65	66	
ScBa27	14	11	10	74	40	22	67	59	59	69	65	66	
ScBa28	83	65	62	88	86	76	92	83	71	100	94	90	
ScBa29	95	81	65	100	98	89	89	77	58	100	92	83	
ScBa30	44	33	7	88	91	38	69	55	64	71	63	68	
ScBa31	100	90	86	100	98	99	80	52	1	90	78	0	
ScBa32	100	84	83	100	97	98	99	90	5	100	98	7	
ScBa33	100	81	75	100	98	97	98	90	5	99	97	1	

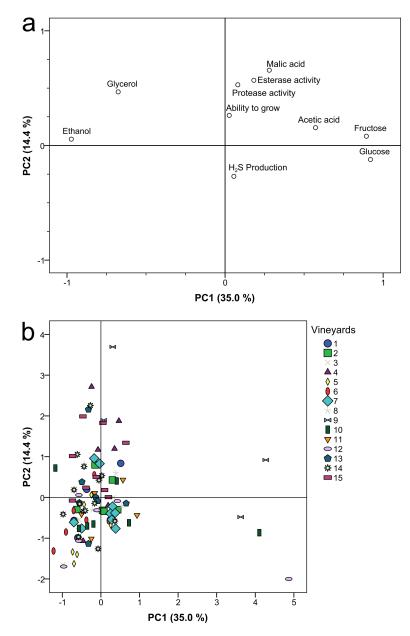
ScBa34	45	37	10	97	87	67	77	50	1	79	63	0
ScBa35	36	22	28	50	39	30	44	32	27	87	83	67
ScBa36	65	62	33	100	95	84	96	83	86	88	84	87
ScBa37	66	32	23	100	68	65	100	95	97	100	100	100
ScBa38	70	43	29	100	70	66	100	98	100	100	98	100
ScBa39	60	34	28	100	96	98	97	86	73	82	67	44
ScBa40	27	9	14	100	99	98	92	87	78	100	96	98
ScBa41	25	8	7	72	30	14	51	28	0	87	44	1
ScBa42	24	14	20	100	97	97	96	91	74	99	96	90
ScBa43	43	18	21	100	98	86	80	62	13	99	92	75
ScBa44	66	55	38	89	86	83	100	96	99	100	98	100
ScBa45	52	35	25	88	89	77	99	91	85	100	93	91
ScBa46	40	26	22	98	90	76	76	77	86	93	88	94
ScBa47	29	28	9	100	64	70	83	0	0	100	100	100
ScBa48	14	4	6	69	63	46	90	27	4	100	100	100
ScBa49	59	53	52	90	85	76	98	89	85	97	88	86
ScBa50	57	50	44	77	86	88	95	94	89	95	96	95
ScBa51	58	51	55	80	83	70	100	91	85	100	89	87
ScBa52	100	96	100	99	96	99	100	99	100	100	98	100
ScBa53	91	91	87	90	91	87	91	88	91	92	93	93
ScBa54	100	98	100	100	97	100	100	100	100	100	100	100
ScBa55	100	98	99	100	99	99	100	100	100	100	100	100
ScBa56	98	73	90	100	95	99	100	100	99	100	100	99
ScBa57	20	12	13	70	16	11	100	93	63	100	100	100
ScBa58	72	19	12	100	88	71	100	98	92	100	100	96
ScBa59	80	45	27	100	98	99	100	98	96	100	98	96
ScBa60	70	76	53	100	100	96	97	77	92	100	100	100
ScBa61	86	87	62	99	97	98	100	95	81	100	100	91
ScBa62	88	69	73	100	98	100	96	94	90	100	94	87
ScBa63	80	54	49	100	100	97	98	98	92	100	99	93
ScBa64	86	49	31	100	100	98	96	96	91	98	96	90
ScBa65	100	93	94	100	100	100	100	95	100	100	96	99
ScBa66	35	12	15	67	50	61	95	92	72	95	95	88
ScBa67	30	7	15	70	70	66	95	83	61	100	97	92
ScBa68	36	6	8	72	68	65	99	99	97	100	100	100
ScBa69	25	7	8	79	70	73	100	100	100	100	100	100
ScBa70	65	79	42	79	82	61	100	97	83	100	99	85
ScBa71	18	35	18	70	74	71	97	81	78	100	95	88
ScBa72	80	77	42	100	93	78	100	96	96	100	100	99

ScBa74 93 86 68 100 98 91 100 95 84 100 97 100 ScBa75 57 59 59 59 89 55 56 66 66 51 66 67 53 ScBa76 88 85 86 86 83 84 97 97 74 97 99 79 ScBa77 87 85 86 84 82 86 95 88 71 100 92 76 ScBa79 100 100 100 99 91 100													
ScBa75 57 59 59 89 55 56 66 66 51 66 67 53 ScBa76 88 85 86 86 83 84 97 97 74 97 99 79 ScBa77 87 85 85 84 82 86 95 88 71 100 92 76 ScBa78 100 99 95 99 97 97 100	ScBa73	54	59	32	83	81	73	97	96	85	100	100	100
ScBa76 88 85 86 86 83 84 97 97 74 97 99 79 ScBa77 87 85 85 84 82 86 95 88 71 100 92 76 ScBa78 100 99 95 99 97 97 100 99 99 100	ScBa74	93	86	68	100	98	91	100	95	84	100	97	100
ScBa77 87 85 85 84 82 86 95 88 71 100 92 76 ScBa78 100 99 95 99 97 97 100 99 99 100	ScBa75	57	59	59	89	55	56	66	66	51	66	67	53
ScBa7810099959997971009999100100100ScBa7910010099100100100100100100100100100ScBa80919288909188837065887166ScBa818172431009798100969310097100ScBa8274796310097100100929810097100ScBa8310099991009999100100100100100100100ScBa848486848486876962937263ScBa859290919391929986751009793ScBa86919393919293100100100100100100ScBa86919393919293100100100100100100100ScBa87929192837888867164917062ScBa86919393919293100100100100100100ScBa869383891009688100 <td< td=""><td>ScBa76</td><td>88</td><td>85</td><td>86</td><td>86</td><td>83</td><td>84</td><td>97</td><td>97</td><td>74</td><td>97</td><td>99</td><td>79</td></td<>	ScBa76	88	85	86	86	83	84	97	97	74	97	99	79
ScBa79 100 <t< td=""><td>ScBa77</td><td>87</td><td>85</td><td>85</td><td>84</td><td>82</td><td>86</td><td>95</td><td>88</td><td>71</td><td>100</td><td>92</td><td>76</td></t<>	ScBa77	87	85	85	84	82	86	95	88	71	100	92	76
ScBa80919288909188837065887166ScBa8181724310097981009693100100100ScBa8274796310097100100929810097100ScBa8310099991009999100100100100100100100ScBa848486848486876962937263ScBa859290919391929986751009793ScBa86919393919293100100100100100100ScBa86919393919293100100100100100100ScBa87929192898788867164917062ScBa88918690918690979710010010092ScBa899383891009688100979710010092ScBa90979599999610010092100100100100ScBa93100777210075681009899	ScBa78	100	99	95	99	97	97	100	99	99	100	100	100
ScBa8181724310097981009693100100100ScBa8274796310097100100929810097100ScBa8310099991009999100100100100100100100100ScBa84848486848486876962937263ScBa85929091939192998675100100100ScBa86919393919293100100100100100100ScBa86929192898788867164917062ScBa87929192898788867164917062ScBa889186909186909992831009689ScBa8993838910096881009797100100100ScBa9097959999961001009690100100100ScBa93100797210075681009899100100100100ScBa941001001001009995 </td <td>ScBa79</td> <td>100</td> <td>100</td> <td>99</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td> <td>100</td>	ScBa79	100	100	99	100	100	100	100	100	100	100	100	100
ScBa8274796310097100100929810097100ScBa8310099991009999100100100100100100100ScBa848486848486876962937263ScBa859290919391929986751009793ScBa86919393919293100100100100100100ScBa86919393919293100100100100100100ScBa87929192898788867164917062ScBa889186909186909992831009689ScBa8993838910096881009797100100100ScBa9097959999961001009797100100100ScBa92999010099961001009990100100100ScBa93100797210075681009899100100100ScBa94100100100100999510085	ScBa80	91	92	88	90	91	88	83	70	65	88	71	66
ScBa8310099991009999100100100100100100ScBa848486848486876962937263ScBa859290919391929986751009793ScBa86919393919293100100100100100100ScBa87929192898788867164917062ScBa889186909186909992831009689ScBa8993838910096881009797100100100ScBa909795999996100100969010010092ScBa9180846393958610010092100100100100ScBa92999010099961001009899100100100100ScBa9310077721007568100989910010010099ScBa94100100100100999510085861008688ScBa9510098941009995100	ScBa81	81	72	43	100	97	98	100	96	93	100	100	100
ScBa84848486848486876962937263ScBa859290919391929986751009793ScBa86919393919293100100100100100100ScBa87929192898788867164917062ScBa889186909186909992831009689ScBa8993838910096881009797100100100ScBa909795999996100100969010010092ScBa9180846393958610010092100100100100ScBa9310079721007568100989910010010099ScBa94100100100100999510085861008688ScBa951009894100999510085861008688	ScBa82	74	79	63	100	97	100	100	92	98	100	97	100
ScBa859290919391929986751009793ScBa86919393919293100100100100100100ScBa87929192898788867164917062ScBa889186909186909992831009689ScBa8993838910096881009797100100100ScBa909795999996100100969010010092ScBa9180846393958610010092100100100ScBa929990100999610010099100100100100ScBa9310079721007568100989910010010099ScBa94100100100100999510085861008688ScBa951009894100999510085861008688	ScBa83	100	99	99	100	99	99	100	100	100	100	100	100
ScBa86919393919293100100100100100100100ScBa87929192898788867164917062ScBa889186909186909992831009689ScBa8993838910096881009797100100100ScBa909795999996100100969010010092ScBa9180846393958610010092100100100100ScBa929990100999610010099100100100100100ScBa9310079721007568100989910010010099ScBa94100100100100100999510085861008688	ScBa84	84	84	86	84	84	86	87	69	62	93	72	63
ScBa87929192898788867164917062ScBa889186909186909992831009689ScBa8993838910096881009797100100100ScBa909795999996100100969010010092ScBa9180846393958610010092100100100ScBa929990100999610010099100100100100ScBa9310079721007568100989910010010099ScBa94100100100100100999510085861008688ScBa951009894100999510085861008688	ScBa85	92	90	91	93	91	92	99	86	75	100	97	93
ScBa889186909186909992831009689ScBa8993838910096881009797100100100ScBa909795999996100100969010010092ScBa918084639395861001009210010010092ScBa929990100999610010099100100100100100ScBa93100797210075681009899100100100100ScBa94100100100100999510085861008688ScBa951009894100999510085861008688	ScBa86	91	93	93	91	92	93	100	100	100	100	100	100
ScBa8993838910096881009797100100100ScBa909795999996100100969010010092ScBa9180846393958610010092100100100100ScBa929990100999610010099100100100100100ScBa9310079721007568100989910010010010099ScBa94100100100100999510085861008688	ScBa87	92	91	92	89	87	88	86	71	64	91	70	62
ScBa909795999996100100969010010092ScBa9180846393958610010092100100100ScBa929990100999610010099100100100100ScBa93100797210075681009899100100100100ScBa94100100100100999510085861008688	ScBa88	91	86	90	91	86	90	99	92	83	100	96	89
ScBa9180846393958610010092100100100ScBa929990100999610010099100100100100ScBa93100797210075681009899100100100100ScBa94100100100100100999510085861008688	ScBa89	93	83	89	100	96	88	100	97	97	100	100	100
ScBa929990100999610010099100100100100ScBa93100797210075681009899100100100100ScBa941001001001001009910010010010099ScBa951009894100999510085861008688	ScBa90	97	95	99	99	96	100	100	96	90	100	100	92
ScBa93100797210075681009899100100100ScBa941001001001001009910010010010099ScBa951009894100999510085861008688	ScBa91	80	84	63	93	95	86	100	100	92	100	100	100
ScBa941001001001009910010010010099ScBa951009894100999510085861008688	ScBa92	99	90	100	99	96	100	100	99	100	100	100	100
ScBa95 100 98 94 100 99 95 100 85 86 100 86 88	ScBa93	100	79	72	100	75	68	100	98	99	100	100	100
	ScBa94	100	100	100	100	100	99	100	100	100	100	100	99
	ScBa95	100	98	94	100	99	95	100	85	86	100	86	88
ScBa96 100 90 65 100 90 66 100 97 97 100 98 99	ScBa96	100	90	65	100	90	66	100	97	97	100	98	99

Strains	Vineyard	Cluster	Residual glucose (g/L)	Residual fructose (g/L)	Glycerol (g/L)	Acetic acid (g/L)	Ethanol (%v/v)	Fermentatio n purity ^a	Ethanol yield ^b	Glycerol yield ^c	Acetic acid yield ^d
ScBa1	11	I	2.18±0.54	24.23±2.14	7.00±0.15	0.45±0.00	12.57±0.19	0.036±0.001	0.058±0.001	0.032±0.001	0.0359 ± 0.0008
ScBa2	13	*	0.88±0.07	8.68±0.80	6.86±0.05	0.51±0.02	13.77±0.05	0.037±0.001	0.059±0.001	0.029±0.001	0.0367±0.0012
ScBa3	5	II	0.65±0.08	4.43±1.04	7.01±0.01	0.56±0.01	14.11±0.11	0.039±0.001	0.059±0.001	0.029±0.001	0.0395 ± 0.0005
ScBa4	7	*	0.68±0.01	2.77±1.47	7.42±0.82	0.29±0.03	14.14±0.11	0.021±0.002	0.059±0.001	0.031±0.003	0.0208±0.0023
ScBa5	7	III	0.38±0.27	3.08±1.84	6.89±0.10	0.30±0.05	14.27±0.01	0.021±0.004	0.059±0.001	0.029±0.001	0.0207±0.0037
ScBa6	7	*	1.14±0.37	6.57±2.71	7.08±0.03	0.31±0.07	13.89±0.35	0.022±0.006	0.059±0.001	0.026±0.001	0.0224±0.0056
ScBa7	3	IV	1.58±0.73	12.15±1.93	6.92±0.16	0.33±0.00	13.82±0.03	0.024±0.001	0.060±0.001	0.030±0.001	0.0240±0.001
ScBa8	2	V	2.98±3.16	16.78±18.9 8	6.54±0.43	0.47±0.34	12.60±0.90	0.037±0.025	0.056±0.002	0.029±0.005	0.0367±0.0247
ScBa9	5	*	0.69±0.25	5.68±4.83	7.07±0.01	0.29±0.02	13.73±0.20	0.021±0.001	0.058±0.002	0.030±0.001	0.0215±0.0014
ScBa10	10	VI	1.65±0.49	15.33±2.45	6.81±0.14	0.41±0.04	13.46±0.13	0.031±0.002	0.059±0.001	0.030±0.001	0.0307±0.0025
ScBa11	15	VII	1.11±0.96	11.44±10.3 6	7.44±0.08	0.35±0.01	13.46±0.58	0.026±0.001	0.058±0.001	0.032±0.001	0.026±0.0007
ScBa12	2	VIII	78.13±0.19	70.52±0.15	5.20±0.10	0.43±0.01	4.90±0.09	0.088±0.001	0.051±0.001	0.054±0.001	0.0879±0.0001
ScBa13	2	IX	0.82±0.25	2.80±0.68	6.63±0.08	0.20±0.02	13.87±0.28	0.014±0.002	0.058±0.001	0.028±0.001	0.0144±0.0015
ScBa14	11	Х	1.14±0.72	13.37±5.12	6.99±0.07	0.29±0.03	13.59±0.45	0.021±0.003	0.059±0.001	0.030±0.001	0.0213±0.0033
ScBa15	14	XI	2.88±0.61	28.44±1.79	7.10±0.03	0.44±0.01	12.38±0.05	0.035±0.001	0.058±0.001	0.033±0.001	0.0352±0.0008
ScBa16	14	XII	3.71±0.58	28.71±1.54	6.82±0.22	0.38±0.04	12.04±0.14	0.032±0.003	0.057±0.001	0.032±0.001	0.0319±0.0028
ScBa17	2	XIII	1.09±0.07	6.93±0.34	7.37±0.01	0.39±0.01	14.03±0.03	0.028±0.001	0.059±0.001	0.031±0.001	0.0275±0.0004
ScBa18	2	*	0.89±0.37	11.64±5.35	6.46±0.65	0.41±0.18	13.00±0.32	0.031±0.013	0.056±0.001	0.028±0.004	0.0314±0.0129
ScBa19	5	XIV	0.83±0.23	8.09±5.27	6.85±0.09	0.36±0.05	13.34±0.71	0.028±0.006	0.056±0.004	0.029±0.001	0.0275±0.0055
ScBa20	14	XV	0.63±0.24	7.80±2.79	7.26±0.02	0.41±0.00	13.89±0.07	0.029±0.001	0.060±0.001	0.031±0.001	0.0292±0.0004
ScBa21	10	XVI	1.58±0.21	10.27±2.32	6.72±0.04	0.44±0.06	13.40±0.15	0.030±0.001	0.0059 ±0.001	0.030 ±0.001	0.0234±0.003
ScBa22	15	XVII	1.54±0.62	17.88±4.13	7.88±0.12	0.38±0.04	12.88±0.14	0.030±0.004	0.057±0.001	0.035±0.001	0.0297±0.0037
ScBa23	13	*	1.04±0.65	13.68±5.92	7.35±0.04	0.34±0.01	13.21±0.26	0.026±0.001	0.058±0.001	0.032±0.001	0.026±0.0012
ScBa24	14	*	1.18±0.04	15.75±0.21	7.13±0.20	0.34±0.01	13.14±0.19	0.026±0.001	0.058±0.001	0.031±0.001	0.0261±0.0007
ScBa25	7	*	3.86±1.76	22.9±5.06	6.81±0.17	0.26±0.01	12.82±0.71	0.021±0.001	0.059±0.001	0.031±0.001	0.0206±0.0006

Table 3. Chemical analysis of the wines obtained from the fermentation of the pure indigenous *S. cerevisiae* cultures. The data are means±standard deviations. With * were reported strains which were unique and did not cluster with any other isolate.

	_										
ScBa26	7	XVIII	0.69±0.08	4.20±1.12	7.13±0.21	0.25±0.04	13.96±0.22	0.018±0.003	0.058±0.001	0.030±0.001	0.0181±0.0035
ScBa27	14	XIX	0.73±0.48	9.18±6.55	6.88±0.13	0.24±0.04	13.72±0.64	0.017±0.004	0.059±0.001	0.029±0.001	0.0174±0.0037
ScBa28	4	XX	0.75±0.10	7.31±2.50	6.65±0.12	0.32±0.07	13.68±0.30	0.024±0.006	0.058±0.001	0.028±0.001	0.0237±0.0058
ScBa29	5	XXI	1.84±0.13	16.38±0.98	6.80±0.11	0.41±0.05	13.32±0.20	0.031±0.004	0.059±0.001	0.030±0.001	0.0307±0.0043
ScBa30	15	XXII	5.12±2.03	31.28±5.30	6.65±0.03	0.44±0.01	11.8±0.54	0.037±0.001	0.057±0.001	0.032±0.001	0.037±0.0008
ScBa31	2	XXIII	1.15±0.44	11.07±4.09	6.59±0.01	0.40±0.06	13.56±0.41	0.029±0.005	0.058±0.001	0.028±0.001	0.0293±0.0051
ScBa32	10	XXIV	0.96±0.47	6.09±0.38	7.03±0.84	0.37±0.02	13.67±0.17	0.027±0.002	0.058±0.001	0.03±0.004	0.0269±0.0015
ScBa33	10	XXV	0.65±0.17	5.69±1.43	6.42±0.17	0.44±0.03	13.97±0.27	0.031±0.003	0.059±0.002	0.027±0.001	0.0313±0.003
ScBa34	13	*	1.13±0.54	18.34±1.89	7.78±0.05	0.32±0.00	12.82±0.01	0.025±0.001	0.057±0.001	0.035±0.001	0.0249±0.0001
ScBa35	7	*	0.62±0.20	5.13±1.56	7.44±0.03	0.52±0.02	13.93±0.20	0.037±0.002	0.058±0.001	0.031±0.001	0.0372±0.0019
ScBa36	15	XXVI	1.14±0.42	15.81±2.76	6.69±0.08	0.40±0.06	12.99±0.12	0.031±0.004	0.057±0.001	0.029±0.001	0.0306±0.004
ScBa37	3	XXVII	0.57±0.13	5.55±2.26	6.59±0.07	0.33±0.01	13.87±0.12	0.024±0.001	0.058±0.001	0.028±0.001	0.0239±0.0012
ScBa38	10	*	0.79±0.02	7.81±1.69	6.99±0.32	0.41±0.02	13.23±0.50	0.031±0.002	0.056±0.003	0.030±0.001	0.0310±0.0002
ScBa39	14	XXVIII	1.58±0.35	17.36±1.76	7.86±0.10	0.31±0.01	12.99±0.23	0.024±0.001	0.058±0.001	0.035±0.001	0.0240±0.0010
ScBa40	14	XXIX	2.68±0.47	24.44±0.38	7.49±0.68	0.42±0.05	12.24±0.90	0.036±0.007	0.054±0.004	0.034±0.003	0.0356±0.0068
ScBa41	12	*	1.40±0.86	19.33±4.79	7.12±0.16	0.39±0.02	13.01±0.28	0.03±0.002	0.058±0.001	0.032±0.001	0.0297±0.0025
ScBa42	13	XXX	2.52±0.62	25.2±1.99	6.98±0.23	0.36±0.00	12.6±0.17	0.029±0.001	0.058±0.001	0.032±0.001	0.0287±0.0003
ScBa43	15	XXXI	3.07±1.42	26.09±4.50	6.91±0.20	0.36±0.02	12.50±0.68	0.029±0.001	0.058±0.002	0.032±0.001	0.0289±0.0001
ScBa44	1	XXXII	0.62±0.01	3.63±0.59	6.99±0.08	0.27±0.01	14.05±0.04	0.019±0.001	0.058±0.001	0.029±0.001	0.0189±0.0003
ScBa45	12	XXXIII	3.88±0.02	30.01±0.48	6.86±0.11	0.41±0.03	12.11±0.02	0.034±0.002	0.058±0.001	0.033±0.001	0.0338±0.0020
ScBa46	12	XXXIV	3.32±0.14	24.06±0.06	7.69±0.27	0.39±0.00	12.43±0.22	0.031±0.001	0.057±0.001	0.035±0.001	0.0313±0.0003
ScBa47	4	XXXV	61.26±8.62	48.21±7.22	5.65±0.44	0.52±0.02	7.42±0.89	0.071±0.006	0.055±0.001	0.042±0.002	0.0708±0.0058
ScBa48	6	XXXVI	68.47±0.49	53.25±1.42	5.51±0.29	0.54±0.02	6.86±0.28	0.079±0.001	0.056±0.002	0.045±0.002	0.0786±0.0003
ScBa49	15	XXXVII	1.39±0.90	17.01±3.35	6.94±0.05	0.37±0.00	12.88±0.40	0.029±0.001	0.057±0.001	0.031±0.001	0.0288±0.0012
ScBa50	9	*	2.78±0.19	25.25±0.23	6.75±0.15	0.39±0.01	12.6±0.08	0.031±0.001	0.058±0.001	0.031±0.001	0.0311±0.0003
ScBa51	15	XXXVIII	2.48±0.03	24.83±0.26	6.81±0.18	0.36±0.01	12.49±0.22	0.029±0.001	0.058±0.001	0.031±0.001	0.0291±0.0001
ScBa52	8	XXXIX	0.71±0.09	8.32±0.62	6.67±0.11	0.43±0.02	13.73±0.08	0.031±0.001	0.058±0.001	0.028±0.001	0.0312±0.0010
ScBa53	11	*	1.78±1.01	21.99±5.78	6.80±0.04	0.42±0.03	12.60±0.14	0.033±0.002	0.057±0.001	0.031±0.001	0.0333±0.0019
ScBa54	14	XL	1.72±1.39	15.94±7.53	7.06±0.01	0.31±0.00	13.24±0.42	0.023±0.001	0.058±0.001	0.031±0.001	0.0233±0.0011
ScBa55	1	XLI	2.11±1.08	17.06±5.14	6.70±0.06	0.24±0.01	13.18±0.48	0.018±0.001	0.059±0.001	0.030±0.001	0.0181±0.0015
ScBa56	6	XLII	1.85±0.39	15.86±1.64	6.78±0.01	0.32±0.01	13.35±0.16	0.024±0.001	0.059±0.001	0.030±0.001	0.0238±0.0007
											I


ScBa57	3	XLIII	68.19±0.5	45.76±2.71	5.21±0.13	0.60±0.00	7.39±0.17	0.081±0.002	0.057±0.001	0.040±0.002	0.0811±0.0024
ScBa58	8	XLIV	4.84±3.73	30.43±10.1	6.53±0.20	0.43±0.01	11.73±1.22	0.038±0.004	0.055±0.002	0.031±0.003	0.0375±0.0045
ScBa59	1	*	3.60±1.45	8 28.12±4.22	6.84±0.01	0.42±0.00	12.20±0.46	0.034±0.001	0.057±0.001	0.032±0.001	0.0341±0.0011
ScBa60	10	XLIV	0.69±0.20	4.12±2.80	7.81±0.20	0.30±0.02	14.08±0.03	0.022±0.001	0.059±0.001	0.033±0.001	0.0216±0.0013
ScBa61	14	XLV *	0.56±0.05	7.10±0.59	6.96±0.19	0.42±0.00	13.79±0.18	0.030±0.001	0.058±0.001	0.029±0.001	0.0305±0.0007
ScBa62	13	*	0.98±0.08	13.73±0.37	6.43±0.17	0.32±0.01	13.21±0.28	0.024±0.001	0.058±0.001	0.028±0.001	0.0239±0.0001
ScBa63	14		0.39±0.15	3.85±1.71	7.20±0.07	0.50±0.14	13.58±0.48	0.038±0.012	0.056±0.002	0.030±0.001	0.0377±0.0116
ScBa64	14	*	0.98±0.54	7.81±1.64	6.87±0.14	0.32±0.09	13.33±0.61	0.025±0.008	0.056±0.002	0.029±0.001	0.0248±0.0079
ScBa65	7	XLVI	1.07±0.51	9.91±4.72	6.46±0.09	0.23±0.01	13.42±0.50	0.017±0.001	0.057±0.001	0.028±0.001	0.0173±0.0013
ScBa66	4	XLVII	3.00±0.12	25.73±0.44	6.76±0.01	0.39±0.01	12.15±0.07	0.032±0.001	0.056±0.001	0.031±0.001	0.0319±0.0005
ScBa67	4	*	3.17±1.05	25.26±2.74	7.72±1.37	0.37±0.01	12.71±0.56	0.029±0.001	0.059±0.004	0.036±0.007	0.0292±0.0002
ScBa68	4	*	0.89±0.22	9.31±2.35	6.60±0.22	0.22±0.03	13.46±0.31	0.016±0.002	0.057±0.001	0.028±0.001	0.0162±0.0017
ScBa69	4	*	0.85±0.42	8.44±4.20	6.54±0.03	0.24±0.02	13.41±0.27	0.018±0.002	0.057±0.001	0.028±0.001	0.0182±0.0021
ScBa70	12	XLVIII	4.27±1.33	31.23±3.89	6.88±0.02	0.40±0.03	12.27±0.27	0.033±0.001	0.059±0.003	0.033±0.001	0.0330±0.0014
ScBa71	11	*	0.72±0.33	4.54±2.92	6.72±0.09	0.30±0.01	13.88±0.39	0.021±0.001	0.058±0.001	0.028±0.001	0.0214±0.0001
ScBa72	6	XLIX	0.66±0.09	7.05±0.76	6.84±0.01	0.40±0.01	13.78±0.08	0.029±0.001	0.058±0.001	0.029±0.001	0.0291±0.0009
ScBa73	14	*	0.78±0.04	7.81±0.64	7.10±0.04	0.42±0.00	13.82±0.02	0.031±0.001	0.059±0.001	0.030±0.001	0.0307±0.0002
ScBa74	8	L	0.93±0.28	9.96±2.72	6.64±0.01	0.40±0.01	13.49±0.11	0.030±0.001	0.058±0.001	0.028±0.001	0.0300±0.0007
ScBa75	9	LI	3.57±2.41	27.49±8.01	6.79±0.13	0.38±0.01	12.35±0.66	0.031±0.002	0.058±0.001	0.032±0.001	0.0309±0.0022
ScBa76	9	*	3.63±1.97	30.74±4.86	6.58±0.05	0.37±0.00	12.01±0.29	0.031±0.001	0.057±0.001	0.031±0.001	0.0308±0.0008
ScBa77	9	*	3.96±1.15	30.12±3.88	6.61±0.04	0.37±0.03	11.93±0.41	0.031±0.001	0.057±0.001	0.031±0.001	0.0314±0.0011
ScBa78	7	*	1.02±0.22	9.71±2.42	6.15±0.11	0.31±0.04	13.42±0.11	0.023±0.003	0.057±0.001	0.026±0.001	0.0228±0.0033
ScBa79	11	*	1.23±0.37	12.73±2.91	6.52±0.13	0.23±0.01	13.37±0.06	0.017±0.001	0.058±0.001	0.028±0.001	0.0169±0.0007
ScBa80	8	*	6.79±2.11	36.88±3.98	6.57±0.00	0.41±0.02	11.22±0.36	0.037±0.003	0.056±0.001	0.033±0.001	0.0366±0.0032
ScBa81	7	LII	1.96±1.25	15.41±6.55	6.96±0.03	0.40±0.01	13.30±0.38	0.030±0.002	0.059±0.001	0.031±0.001	0.0299±0.0017
ScBa82	6	LIII	1.00±0.06	10.89±0.92	6.65±0.04	0.21±0.00	13.36±0.07	0.016±0.001	0.057±0.001	0.029±0.001	0.0157±0.0001
ScBa83	5	LIV	2.43±1.29	17.35±5.92	6.66±0.15	0.38±0.01	12.82±0.45	0.030±0.002	0.057±0.001	0.030±0.001	0.0298±0.0017
ScBa84	15	LV	2.14±0.86	23.56±3.33	6.68±0.05	0.40±0.02	12.47±0.29	0.032±0.002	0.057±0.001	0.031±0.001	0.0318±0.0022
ScBa85	14	*	3.92±1.20	29.25±3.40	6.70±0.02	0.38±0.00	12.10±0.16	0.031±0.001	0.057±0.001	0.032±0.001	0.0314±0.0008
ScBa86	6	LVI	1.06±0.15	10.25±1.61	6.73±0.13	0.42±0.01	13.60±0.20	0.031±0.001	0.058±0.002	0.029±0.001	0.0307±0.0011
ScBa87	1	LVII	1.74±0.96	21.21±4.94	6.85±0.07	0.39±0.02	12.54±0.20	0.031±0.002	0.057±0.001	0.031±0.001	0.0311±0.0021
000407	I		1.74±0.90	21.2114.34	0.05±0.07	0.03±0.02	12.34±0.20	0.001±0.002	0.001 ± 0.001	0.001±0.001	0.0011±0.0021

Ital. J. Food Sci., vol 29, 2017 - 531

ScBa88	12	LVIII	2.85±2.21	25.68±9.50	6.64±0.24	0.37±0.02	12.39±0.02	0.029±0.002	0.058±0.003	0.031±0.003	0.0295±0.0016
ScBa89	13	*	2.24±0.24	19.4±0.70	7.12±0.07	0.33±0.02	13.07±0.18	0.025±0.001	0.059±0.001	0.032±0.001	0.0253±0.0009
ScBa90	13	LIX	2.55±0.28	24.87±0.73	7.43±0.20	0.32±0.01	12.29±0.13	0.026±0.001	0.057±0.002	0.034±0.001	0.0258±0.0011
ScBa91	10	LX	2.64±0.41	19.53±1.64	6.36±0.17	0.37±0.01	12.64±0.11	0.029±0.001	0.057±0.001	0.029±0.001	0.0292±0.0007
ScBa92	14	LXI	3.43±2.51	26.05±8.16	6.49±0.02	0.36±0.01	12.06±0.33	0.030±0.001	0.056±0.001	0.030±0.002	0.0301±0.0001
ScBa93	6	LXII	0.67±0.31	6.69±5.00	6.46±0.18	0.21±0.01	13.55±0.34	0.016±0.001	0.057±0.002	0.027±0.001	0.0156±0.0001
ScBa94	5	XX	0.83±0.05	10.16±0.53	6.59±0.05	0.28±0.00	13.46±0.05	0.021±0.001	0.058±0.001	0.028±0.001	0.0205±0.0003
ScBa95	15	LXII	2.42±0.73	24.31±2.48	6.55±0.17	0.37±0.01	12.31±0.24	0.030±0.002	0.057±0.002	0.030±0.001	0.0301±0.0017
ScBa96	12	LIX	3.18±1.87	25.13±5.26	6.67±0.06	0.40±0.02	12.12±0.28	0.033±0.001	0.056±0.001	0.031±0.001	0.0329±0.0007

^a Fermentation purity: acetic acid (g/L)/ethanol % (v/v), ^b Ethanol yield: ethanol % (v/v)/sugar consumption (g/L), ^c Glycerol yield: glycerol (g/L)/sugar consumption (g/L), ^d Acetic acid: acetic acid (g/L)/sugar consumption(g/L).

The physiological data from the growth tests at 50 mg/L of SO₂ after 24 h (enological conditions, variable: "Ability to grow"), the presence or absence of enzymatic activities (esterase and protease activity), H₂S production and the chemical composition (glucose, fructose, malic and acetic acids, glycerol, and ethanol) of the wines obtained after 14 days of fermentation were used to evaluate the technological diversity of the strains. A Principal Component Analysis (PCA) was carried out and the outcome is presented in Fig. 2, including the loadings plot (Fig. 2a) and the scatter plot (Fig. 2b).

Figure 2. Principal component analysis of the *S. cerevisiae* strains from the fifteen vineyards (as reported in Figure 1), according to the wine chemical composition: loadings plot (a) and scatter plot (b). The fifteen vineyard considered were: 1 (Murisengo), 2 (San Martino Alfieri), 3 (Costigliole d'Asti), 4 (Isola d'Asti), 5 (Montegrosso d'Asti), 6 (Agliano Terme), 7 (Vinchio), 8 (Nizza Monferrato),9 (Incisa Scapaccino), 10 (Loazzolo), 11 (Ricaldone), 12 (Alice bel colle), 13 (Acqui Terme Crocera south west), 14 (Acqui Terme Crocera south est) and 15 (Acqui Terme Dannona).

PC1 (35.0 % of variance explained) was better correlated with the strains that left high level of residual sugars present in the wine and that produced high amount of acetic acid, while PC2 (14.4 % of variance explained) was mainly correlated to the high production of glycerol and low degradation of malic acid (Fig. 2a). Two groups may be differentiated according to the scatter plot (PC1 or PC2 with values close or higher than 2, respectively). Some strains from vineyards 4, 13, 14, and 15 produced high glycerol amounts and preserved malic acid contents, and two isolates from vineyards 10 and 12 were unsatisfactory due to their sugars degradation. In addition, all the four isolates from vineyard 9 were present either in the first or in the second group (Fig. 2b).

4. CONCLUSIONS

The present study investigated the genetic and technological diversity of autochthonous *S. cerevisiae* in the North-West of Italy, in the Monferrato area. It was possible to genetically and phenotypically differentiate the strains. In order to investigate the ability of the isolated strains to properly ferment Barbera must, at pilot scale level first and in industrial settings after, relevant technological characteristics, such as sugar consumption and acetic acid production, should be taken into consideration. All the data presented here were obtained from pasteurized natural must, and the ability of the selected strains to dominate the natural grape and must mycobiota should therefore be determined throughout the fermentation process. In parallel, the ability to complete the fermentation in the competitive environment of a natural grape should also be confirmed. Finally, the production of compounds, such as alcohols, esters, carbonyl compounds and fatty acids that have an impact on the sensory characteristics of wine should also be evaluated.

ACKNOWLEDGEMENTS

This work has been funded by EU FP7 under Grant Agreement 315065-WILWINE (http://www.wildwine.eu/). The information in this document only reflects the authors' views and the Community is not liable for any use that may be made of the information contained herein.

REFERENCES

Alessandria V., Marengo F., Englezos V., Gerbi V., Rantsiou K. and Cocolin L. 2015. Mycobiota of Barbera grapes from the Piedmont region from a single vintage year. Am. J. Enol. Vitic. 66: 244-250.

Arroyo-Lopez F.N., Salvadó Z., Tronchoni J., Guillamón J.M., Barrio E. and Querol A. 2010. Susceptibility and resistance to ethanol on *Saccharomyces* strains isolated from wild and fermentative environments. Yeast 27: 1005-1015.

Bosso A., Panero L., Petrozziello M., Follis R., Motta S. and Guaita M. 2011. Influence of submerged-cap vinification on polyphenolic composition and volatile compounds of Barbera wines. Am. J. Enol. Vitic. 62: 503-511.

Capece A., Romaniello R., Siesto G., Pietrafesa R., Massari C., Poeta C. and Romano P. 2010. Selection of indigenous *Saccharomyces cerevisiae* strains for Nero d'Avola wine and evaluation of selected starter implantation in pilot fermentation. Int. J. Food Microbiol. 144: 187-92.

Clemente-Jimenez J.M., Mingorance-Cazorla L., Martinez-Rodriguez S., Las HerasVazquez F.J. and Rodriguez-Vico F. 2004. Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiol. 21: 149-155.

Cocolin L., Bisson L.F. and Mills D.A. 2000. Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiol. Lett. 189: 81-87.

Englezos V., Rantsiou K., Torchio F., Rolle L., Gerbi V. and Cocolin, L. 2015. Exploitation of the non-*Saccharomyces* yeast *Starmerella bacillaris* (synonym *Candida zemplinina*) in wine fermentation: physiological and molecular characterizations. Int. J. Food Microbiol. 199: 33-40.

Englezos V., Rantsiou K., Cravero, F., Torchio, F., Ortiz-Julien, A., Gerbi, V., Rolle, L. and *Starmerella bacillaris* and *S. cerevisiae* mixed fermentations to reduce ethanol content in wines. Appl. Microbiol. Biotechnol. 100: 5515-5526.

Esteve-Zarzoso B., Gostincar A., Bobet R., Uruburu F. and Querol A. 2000. Selection and molecular characterization of wine yeasts isolated from the "El Penede`s" area (Spain). Food Microbiol. 17: 553-562.

Fleet G.H. 2003. Yeast interactions and wine flavour. Int. J. of Food Microbiol. 86: 11-22.

Francesca N., Chiurazzi M., Romano R., Aponte M., Settanni L. and Moschetti G. 2010. Indigenous yeast communities in the environment of "Rovello bianco" grape variety and their use in commercial white wine fermentation. World J. Microbiol. Biotechnol. 26: 337-351.

Gilbert J.A, van der Lelie D. and Zarraonaindia I. 2014. Microbial terroir for wine grapes. Proc. Natl. Acad. Sci. USA. 111: 5-6.

La Jeune C., Enry C., Demuyter C. and Lollier M. 2006. Evolution of the population of *Saccharomyces cerevisiae* from grape to wine in a spontaneous fermentation. Food Microbiol. 2: 709-716.

Legras J.-L. and Karst F. 2003. Optimisation of interdelta analysis for *Saccharomyces cerevisiae* strain characterisation. FEMS Microbiol. Lett. 221: 249-255.

Lopes C.A., Rodríguez M.E., Sangorrín M., Querol A. and Caballero A.C. 2007. Patagonian wines: the selection of an indigenous yeast starter. J. Ind. Microbiol. Biotechnol. 34: 539-546.

Lopes C.A., van Broock M., Querol A. and Caballero A.C. 2002. *Saccharomyces cerevisiae* wine yeast populations in a cold region in Argentinean Patagonia. A study at different fermentation scales. J. Appl. Microbiol. 93: 608-615.

Mills D. A., Johannsen E.A. and Cocolin L. 2002. Yeast diversity and persistence in botrytis affected wine fermentations. Appl. Environ. Microbiol. 68: 4884-4893.

Orlic S., Redzepovic S., Jeromel A., Herjavec S. and Iacumin L. 2007. Influence of indigenous Saccharomyces paradoxus strains on Chardonnay wine fermentation aroma. Int. J. Food Sci. Technol. 42: 95-101.

Pallmann C.L., Brown J.A., Olineka T.L., Cocolin L., Mills D.A. and Bisson L.F. 2001. Use of WL medium to profile native flora fermentations. Am. J. Enol. Vitic. 52: 198-203.

Pretorius I.S.2000. Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16: 675-729.

Pretorius I.S., van der Westhuizen T.J. and Augustyn O.P.H. 1999. Yeast biodiversity in vineyards and wineries and its importance to the South African wine industry-a review. South African J. Enol. Vitic. 20: 61-75.

Rementeria A., Rodriguez J.A., Cadaval A., Amenabar R., Muguruza J.R., Hernando F.L. and Sevilla M.J. 2003. Yeast associated with spontaneous fermentations of white wines from the "Txakoli de Bizkaia" region (Basque Country, North Spain). Int. J. Food Microbiol. 86: 201-207.

Rolle L., Giordano M., Giacosa S., Vincenzi S., Río Segade S., Torchio F., Perrone B. and Gerbi V. 2012. CIEL*a*b* parameters of white dehydrated grapes as quality markers according to chemical composition, volatile profile and mechanical properties. Anal. Chim. Acta 732: 105-113.

Romano P., Capece A., Serafino V., Romaniello R. and Poeta C. 2008. Biodiversity of wild strains of *Saccharomyces cerevisiae* as tool to complement and optimize wine quality. World J. Microbiol. Biotechnol. 24: 1797-1802.

Romano P., Caruso M., Capece A., Lipani G., Paraggio M. and Fiore C. 2003. Metabolic diversity of *Saccharomyces cerevisiae* strains from spontaneously fermented grape musts. World J. Microbiol. Biotechnol. 19: 311-315.

Schuller D., Alves H., Dequin S. and Casal M. 2005. Ecological survey of *Saccharomyces cerevisiae* strains from vineyards in the Vinho Verde Region of Portugal. FEMS Microbiol. Ecol. 51: 167-77.

Settanni L., Sannino Č., Francesca N., Guarcello R. and Moschetti G. 2012. Yeast ecology of vineyards within Marsala wine area (western Sicily) in two consecutive vintages and selection of autochthonous Saccharomyces cerevisiae strains. J. Biosci. Bioeng. 114: 606-614.

Suzzi G., Arfelli G., Schirone M., Corsetti A., Perpetuini G. and Tofalo R. 2012. Effect of grape indigenous *Saccharomyces cerevisiae* strains on Montepulciano d'Abruzzo red wine quality. Food Res. Int. 46: 22-29.

Tofalo R., Schirone M., Torriani S., Rantsiou K., Cocolin L., Perpetuini G. and Suzzi G. 2012. Diversity of *Candida zemplinina* strains from grapes and Italian wines. Food Microbiol. 29: 18-26.

Urso R., Rantsiou K., Dolci P., Rolle L., Comi G. and Cocolin L. 2008. Yeast biodiversity and dynamics during sweet wine production as determined by molecular methods. FEMS Yeast Res. 8: 1053-1062.

Valero E., Cambon B., Schuller D., Casal M. and Dequin S. 2007. Biodiversity of *Saccharomyces* yeast strains from grape berries of wine-producing areas using starter commercial yeasts. FEMS Yeast Res. 7: 317-329.

Wright S. 1978. Evolution and the genetics of populations. Variability within and among natural populations. Univ. Chi. Press, Chi.

Paper Received February 9, 2017 Accepted May 19, 2017