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ABSTRACT 
 
Authentication is a major research theme in food analysis. Electronic noses (e-Noses) 
represent an effective tool for food authentication and - among others - for the 
determination of food origin. In this work we compare the performance of two e-Noses 
(metal-oxide-sensor based vs mass-spectrometry based) in the determination of 
geographic origin of honey. We analyzed 14 honey samples from South Tyrol, an Italian 
alpine region, which were compared with other 12 commercial samples from diverse 
European origins. Both e-Noses afforded 85% of correct identifications. Mass spectrometry 
provided a deep analytical insight, thanks to the possibility to determine mass peaks with 
good accuracy.  
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1. INTRODUCTION 
 
Gas-chromatographic methods represent the benchmark for food volatile analysis. In spite 
of its robustness and analytical power, gas-chromatographic analysis, being a separation-
based technique, is time-consuming and has a low analytical throughput. An alternative 
analytical approach is based on the employment of electronic Noses (e-Noses). In the e-
Nose, an array of electrochemical sensors (GARDNER, 1999) or a mass spectrometer 
(PÉREZ PAVÓN et al., 2006) provide a fingerprint of the headspace of a given sample. 
Typically an e-Nose, trained using samples of known origin, can be employed to recognize 
and predict sample identity on the basis of a specific fingerprint. Unlike GC-MS, the e-
Nose provides little information as to the actual composition of the sample headspace; on 
the other hand e-Noses are generally easy to use, they provide a high analytical 
throughput and they are relatively inexpensive. 
Proton Transfer Reaction-Mass Spectrometry (PTR-MS), similarly to an MS-based e-Nose, 
performs a rapid and direct analysis of the headspace of the sample. Unlike in MS-based e-
Noses the use of a soft ionization approach allows to minimize fragmentation, thus 
increasing the informational content of the mass spectral fingerprint (Hansel et al., 1995). 
The coupling of PTR-MS to Time-of-Flight (ToF) mass analyzers has further enhanced the 
performance of the technique, allowing for high mass and time resolution. PTR-ToF-MS 
has already been employed in the determination of food origin, with applications, among 
others, on cheese (GALLE et al., 2011), ham (DEL PULGAR et al., 2011) and coffee (YENER 
et al., 2015). 
Honey is traditionally consumed and appreciated worldwide, mainly because of its 
organoleptic properties and nutritional value. Even though the main constituents of honey 
are sugar and water, a great variety of aroma compounds can also be encountered. 
Gas Chromatography-Mass Spectrometry (GC-MS) was often employed to describe the 
composition of honey headspace, and up to 400 distinct VOCs were reported is a single 
honey type (GUYOT et al., 1998). The two main factors affecting the quality of honey are 
its botanical and geographical origin.  The botanical origin of the nectar and plant 
secretions is a major source of aroma compounds and aroma precursors but geographical 
origin, through the influence of soil and climate, also plays an important role. Several GC-
MS studies were carried out with the aim to study and predict the botanical and/or 
geographical origin of honeys (CUEVAS-GLORY et al., 2007; KAŠKONIENĖ and 
VENSKUTONIS, 2010). This approach mostly applies in the case of honeys deriving from 
a single plant species (unifloral honeys) and researchers have claimed the discovery of 
plant specific-markers (CASTRO-VÁZQUEZ et al., 2006; JERKOVIĆ et al., 2006; VERZERA 
et al., 2014; JERKOVIĆ and KUŚ, 2014); these most often include terpenes, norisoprenoids, 
nitriles or phenolic compounds and their derivatives (MANYI-LOH et al., 2011a). Less 
frequently, putative markers of geographic origins have also been detected (RADOVIC et 
al., 2001). 
e-Noses have been effectively employed in discriminating honeys from different botanical 
and/or geographical origins (BENEDETTI et al., 2004; DYMERSKI et al., 2014; ZAKARIA et 
al., 2011). Sometimes the e-Nose was coupled to another technique, such as Fourier 
Transform-Infra Red (FT-IR) spectroscopy (SUBARI et al., 2012) or Electronic Tongue 
(BURATTI et al., 2004). The coupling of analytical techniques based on different physical-
chemical principles and the “merged” dataset thus generated often allowed for an 
enhancement in discrimination capability.  
Recently, PTR-MS coupled to a quadrupole mass analyzer was employed in the 
classification of honeys having different botanical origins (KUŚ and VAN RUTH, 2015): 
the technique was not always able to perform a correct classification, affording an average 
prediction accuracy of 77%. In another recent paper (SCHUHFRIED et al., 2016), a PTR-MS 
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instrument using a Time-of-Flight (ToF) mass analyzer was employed in the headspace 
analysis of 70 mono-floral honeys of diverse origins. The higher mass resolution of the ToF 
detector, along with the use of multivariate classification techniques, provided 90-100% 
correct predictions based on botanical origin.   
The assessment of food typicality represents an issue of major relevance to the food 
industry and a challenging task from an analytical point of view. The objective of the 
present work is thus twofold: (i) find new analytical tools for the valorization of local food 
production and (ii) compare the performance of two e-Noses based on different physical-
chemical principles. Quite interestingly, the two instruments provide similar performance, 
with advantages and drawbacks on both sides: the MOS-based e-Nose is more portable 
and low-cost but it does not provide information as to sample headspace composition, 
whereas the MS-based instrument gives a fairly detailed analytical insight.    
 
 
2. MATERIALS AND METHODS 
 
2.1 Honey samples 
 
Honey commercial samples were provided by the Servizio Veterinario dell’Azienda 
Sanitaria dell’Alto Adige (Bolzano, Italy). The sample set consisted of 26 honeys, out of 
which 14 originating from South Tyrol and 12 from other European countries (namely 
Italy, Romania, Spain, Germany and Czech Republic). From the point of view of botanical 
origins, the sample set was rather heterogeneous, including multi-flower and forest 
samples as well as monofloral honeys (namely from acacia, chestnut, dandelion, lime and 
eucalyptus). The year of production of the honeys was 2013. All samplings were 
performed from the same jar, typically containing 250-500 g of sample. For a more detailed 
description of the sample set please refer to Table 1, supplementary material. 
 
2.2 PTR-ToF-MS 
 
Headspace measurements were performed using a commercial PTR-ToF 8000 instrument 
(Ionicon Analytik GmbH, Innsbruck, Austria). The instrumental conditions in the drift 
tube were the following: drift voltage 550 V, drift temperature 110°C, drift pressure 2.33 
mbar affording an E/N value of 140 Townsend (1 Td = 10-17 V*cm2). Sampling was 
performed with a flow rate of 40 sccm using a heated (110°C) PEEK transfer line. 
Measurements were performed in an automated fashion by means of a multipurpose GC 
automatic sampler (Gerstel GmbH, Mulheim am Ruhr, Germany). The analytical method 
was mutuated from a previously validated method for coffee powder headspace analysis 
(YENER et al., 2014), with some minor adaptations (not shown). Honey aliquots (1.0 g) 
were transferred into 40-ml glass screw-capped vials, suitable for volatile analysis. All 
measurements were performed in triplicate. The measurement order was randomized to 
avoid possible systematic memory effects. All vials were incubated at 40°C for 30 min 
before PTR-MS analysis. Each sample was measured for 30 s, at an acquisition rate of one 
mass spectrum per second. Data processing of ToF spectra included dead time correction, 
internal calibration and peak extraction steps performed according to a procedure 
described elsewhere (CAPPELLIN et al., 2010). In this case this allowed to reach a mass 
accuracy better than 0.001 Th, which is sufficient for sum formula determination. The 
baseline of the mass spectra was removed after averaging the whole measurement and 
peak detection and peak area extraction was performed by using modified Gaussian to fit 
the data (CAPPELLIN et al., 2011). To determine the concentrations of volatile compounds 
in ppbv = nL of VOC L-1 headspace the formulas described by LINDINGER and JORDAN 
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(1998) were used by assuming a constant reaction rate coefficient (kR=2×10−9 cm3/s) for H3O+ 
as a primary ion.  
The PTR-ToF-MS dataset was submitted to an initial step of filtration based upon 
concentration. The selection of mass peaks exceeding an arbitrary threshold has often 
proven to be an effective empirical approach to improve the discrimination ability of PTR-
MS data (APREA et al., 2015). A concentration threshold arbitrarily set at 1 ppbV, was 
applied. When peaks having an estimated concentration higher than 1 ppbV were 
selected, a subset of 55 peaks was generated. For the purpose of multivariate analysis, the 
mass spectral fingerprint obtained for every sample was normalized by the corresponding 
total emission. Normalization has already been proven useful (YENER et al., 2015), 
generally allowing to compensate variations in total emission, at the same time preserving 
the mass spectral fingerprint typical of each sample or sample class. 
 
2.3 Electronic Nose 
 
Analyses were performed with a PEN3 e-Nose (Airsense Analytics, Schwerin, Germany). 
The instrument has ten Metal Oxide Semiconductor (MOS) sensors displaying different 
specificity profiles (Table 2). The e-Nose was equipped with an automated sampling 
device (headspace sampler HSS32 from Airsense Analytics). The analytical procedure for 
e-Nose honey analysis was validated in a previous work (ZULUAGA et al., 2011). Honey 
samples were measured directly, with no prior dilution. One-gram aliquots were 
transferred into 10-ml vials, suited for volatile compound analysis. Samples were 
equilibrated for 20 minutes at 40°C and then analyzed. The e-Nose program was based 
upon measurement cycles of 150 seconds, separated by 450 seconds of sensor flushing 
with clean air. Inlet flow was set at 400 ml/min. E-Nose sensor specificities, as stated by 
the producer, are reported in Table 2. 
 
 
Table 1: Main characteristics of the honey samples used in the study. 
 

Sample designation Geographic origin Botanical origin 

H01 South Tyrol acacia 

H02 South Tyrol forest 

H03 South Tyrol forest 

H04 South Tyrol multiflower 

H05 South Tyrol forest 

H06 South Tyrol mixed (forest/flower) 

H07 South Tyrol multiflower 

H08 South Tyrol multiflower 

H09 South Tyrol multiflower 

H10 South Tyrol chestnut 

H11 South Tyrol multiflower 

H12 South Tyrol multiflower 

H13 South Tyrol multiflower 
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Table 2: E-nose sensor specificities, as declared by the manufacturer. 
 

 
 
2.4. Software 
 
All data analysis was performed using MATLAB (Statsoft, Natick, MA) and R software 
(the R Foundation for Statistical Computing, Vienna, Austria). 

H14 South Tyrol multiflower 

H15 South Tyrol multiflower 

H16 South Tyrol dandelion 

H17 South Tyrol multiflower 

H18 South Tyrol multiflower 

H19 Italy chestnut 

H20 Italy chestnut 

H21 Italy lime 

H22 Italy, Romania acacia 

H23 Italy, Spain, Romania forest 

H24 Italy eucalyptus 

H25 EU multiflower 

H26 Germany multiflower 

H27 Czech Republic multiflower 

H28 Czech Republic multiflower 

H29 Czech Republic forest 

Sensor Specificity 

S1 Aromatic compounds 

S2 Broad range, very sensitive, reacts with nitrogen oxides 

S3 Ammonia, aromatic compounds 

S4 Mainly hydrogen, selectively (breath gases) 

S5 Alkenes and less polar aromatic compounds 

S6 Methane, broad range 

S7 Sulfur compounds, terpenes, limonene and pyridine 

S8 Alcohols, broad range 

S9 Sulfur organic compounds 

S10 Reacts on high concentrations (>100ppm), sometimes 
very selective (methane) 
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2.5. Statistical analysis 
 
All results are to be intended as means of triplicate measurements. For Principal 
Component Analysis (PCA), all variables were normalized using the respective standard 
deviations.  Linear Discriminant Analysis (LDA) was carried out with the aid of the R 
package MASS (Venables, Ripley, and Venables 2002). LDA models were cross-validated 
by “leave-one-out” method.  
 
 
3. RESULTS AND DISCUSSIONS 
 
3.1. Classification of honey samples based on Metal Oxide Sensors 
 
In this study, the headspace of 26 honey samples was analyzed with a portable electronic 
nose.  Such device employed an array of ten electronic gas sensors (metal oxide sensors) 
able to detect and distinguish headspace volatiles via a pattern-recognition algorithm. 
Typical signals generated by the e-nose with honey samples are shown in Fig. 1. 
 

 
 
 
Figure 1: Typical e-Nose profile obtained on a honey sample. Signals were averaged between 80 and 100 
seconds, as indicated by the shaded area. 
 
 
The responses from each sensor during 120 s allowed to extract two data: the maximum 
signal and a plateau value (recorded arbitrarily between 80 and 100 s of measurement). 
Based on a preliminary data analysis (results not shown), the two data sets displayed a 
high degree of covariance; the plateau values, which displayed better repeatability, where 
thus used in subsequent analysis, whereas maximum values were discarded. Fig. 2 shows 
the score plot of the principal component analysis (PCA). PCA is an unsupervised pattern 
recognition tool very useful to plot in a reduced dimensional space (i.e. generally, the first 
two principal components are sufficient to explain most of the variance contained in the 
original dataset), observe any potential similarities between the samples and, in case, 
identify the most important variables responsible for such similarities. In detail, the score 
values of the first two principal components (accounting for the 91% of the total 
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variability) allow to establish a relatively good separation between samples from South 
Tyrol from those of other origins, mostly obtained through the employment of component 
2. 
Looking at the loading values (Fig. 2), the observed discrimination capacity is mainly 
explained by just 5 metal oxide sensors, and namely S2, S6, S7, S8 and S9. The higher 
response obtained with sensor S8 in honeys of various European origins is in agreement 
with mass spectrometric data, showing a higher ethanol content (paragraph 3.2). Sensors 
S7 and S9, which are specific for sulfur compounds, show more intense signals in South 
Tyrol honeys. Instead, sulfur compounds do not seem to be important for honey 
discrimination by PTR-MS, thus suggesting that the analytical responses provided by the 
two e-Noses are somewhat complementary. 
 
 

 
 
Figure 2: Principal Component Analysis of the autoscaled data obtained by e-Nose (● = South Tyrol, ○ = 
Other). Alphanumeric codes correspond to e-Nose sensors. 
 
 
3.2. Classification of honey samples based on PTR-ToF-MS 
 
We next investigated the potential enhancement offered by a more advanced electronic 
nose based on mass spectrometry. Here we used an on-line proton-transfer-reaction mass 
spectrometry based on hydronium ions as ion source reagents directly connected to an 
analyzing time-of-flight mass spectrometer system (PTR-ToF-MS). Fig. 3 shows a typical 
mass spectrum obtained for a honey sample, in the range 15-215 Th of mass-to-charge 
ratio (m/z). The high mass resolution provided by the Time-of-Flight mass analyzer 
enabled the detection of more than 204 mass peaks. Upon filtering based on average 
concentration a subset of 55 mass peaks, having concentrations higher than 1ppbV, was 
selected and employed in further analyses. 
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Figure 3: Typical mass spectrum obtained on a honey sample. The position of some selected mass peaks is 
highlighted by the corresponding nominal masses. 
 
 
PCA was next used to reduce the dataset dimensionality, observe sample similarities and 
highlight the most important mass fragments (Fig. 4). The score values of the first two 
principal components (accounting for the 53% of the total variability) allow visualize a 
partial separation between the samples from South Tyrol respect those from other origin. 
Separation was achieved thanks to both Principal Components 1 and 2. The visual 
inspection of Principal Component higher than two did not provide an improvement in 
discrimination ability. To understand which mass fragment is responsible for the observed 
clustering of the samples, the loading values were then analyzed; a subset of 10 mass 
peaks was defined (Fig. 4), referring to the variables whose loadings showed the highest 
absolute values for either Principal Component. 
 

 
 
Figure 4: Principal Component Analysis of the autoscaled data obtained by PTR-ToF-MS (● = South Tyrol, ○ 
= Other). Alphanumeric codes correspond to mass-to-charge ratios as measured by PTR-ToF-MS. 
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The mass spectrometric data obtained by means of the PTR-TOF has a resolution of 4000 
Dm/m or higher. This, after calibration, typically allows for the determination of masses 
up to the third decimal digit, eventually ensuring the assignment of a sum formula to most 
mass peaks. The cross-matching of mass spectral data with published databases of honey 
volatiles (KAŠKONIENĖ and VENSKUTONIS 2010; MANYI-LOH, Ndip, and Clarke 
2011b; WOLSKI et al. 2006) and fragmentation patterns of pure compounds (APREA et al. 
2007; BUHR, van Ruth, and Delahunty 2002; DEMARCKE et al. 2009) allowed to 
tentatively assign some of the detected mass peaks to known constituents of the headspace 
of honey. All these compounds are well representative of factors having a key impact in 
affecting honey quality and characteristics such as floral origin, oxidation, fermentation 
etc. Mass peaks m/z 84.082 (with a fragment at m/z 70.066), m/z 81.034 and m/z 111.044 were 
tentatively attributed to an N-heterocycles and carbonyls which, even though not 
necessarily reported in honey, are known as Maillard reaction intermediates and might 
participate in non-enzymatic browning reactions that take part in the oxidative alteration 
of many food products, including honey (NURSTEN 2005). Mass peak m/z 107.049 (along 
with fragment at m/z 79.054 and 13C isotopologue at m/z 108.053) was tentatively assigned 
to benzaldehyde, a compound previously reported in some unifloral honeys (MOREIRA 
and DE MARIA 2005) and associated to almond and burnt sugar sensory notes (ACREE 
and ARN 2004). Other relevant mass peaks could be assigned to well-known fermentation 
products already detected in honey (WOLSKI et al. 2006). They namely were ethanol (m/z 
47.048 and fragment at m/z 29.040), methyl-acetate and methyl-formate (m/z 75.044), and 
acetoin, butyric acid, butyrolactone and ethyl-acetate (m/z 89.060 and fragment m/z 71.049). 
 
3.3. Comparison of the e-Noses 
 
Two classification models based on linear discriminant analysis (LDA) were next build up 
on the basis of the most important variables selected by PCA for e-Nose based on MOS 
sensors and PTR-TOF-MS, respectively. LDA is a supervised pattern recognition tool 
especially developed for qualitative classification problems. When the signal from the 
selected MOS sensors were used, the resulting model afforded correct identifications for 
82% and 87% of South Tyrol honeys and samples of other origin, respectively, with an 
overall 85% of correct identifications. Instead, when the model was built with the selected 
fragments from PTR-TOS-MS, then, the resulting classification model was able to correctly 
identify 92% and 78% of honeys samples from South Tyrol and other origin, respectively, 
with an overall 85% of correct identifications. Further detail about the discrimination is 
provided in the supplementary material (Table 3). The results show that a portable e-Nose, 
once validated, may have classification performance similar or even better than that 
achievable with instruments based on high resolution mass spectrometry. Contrarily to 
what expected, the higher amount of fragments detected by the high resolution mass 
spectrometers do not result with a higher capacity to discriminate samples. Apparently, 
the capacity of discriminating the samples is hindered by an increased noise or uncertainty 
around the signal of individual fragments. 
 
Table 3: LDA confusion matrices, as obtained using e-Nose and PTR-ToF-MS (left and right, respectively). 
 

O
rig

in
al

 

 Model based upon MOS-based e-Nose Model based upon PTR-ToF-MS 

 Predicted Predicted 

 Other South-Tyrol Other South-Tyrol 

Other 10 2 11 1 

South-Tyrol 2 12 3 11 
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4. CONCLUSIONS 
 
This research work presents an unprecedented analytical approach based on two different 
types of electronic nose. This approach was employed to address the question of the 
typicality of honeys from South Tyrol (Italy). PTR-ToF-MS, with its high mass resolution, 
allowed for a rapid, yet thorough characterization of the honey headspace, permitting to 
pinpoint several candidate aromatic markers. The MOS-based electronic nose provided a 
cost effective solution to the same problem, being more portable and less expensive than 
the latter instrument. The sample set was of limited size (26 honeys) and the work is thus 
intended to be a preliminary study. Botanical diversity, which is known to play a major 
role on headspace composition, was probably underestimated, and the corroboration of 
these first results by means of a more extended survey is indeed advisable. 
The work also addresses the strategic theme of the typicality of food products issued from 
a small alpine region (South Tyrol). The work demonstrates how the development of novel 
analytical approaches can enable researchers and institutions to validate the typicality of 
regional products, representing an undoubted source of added value to all local 
productions. 
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