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Abstract
Mthatha town of Eastern Cape Province, South Africa has been challenged to address the pollutant issues that are coming
from rampant densification and effluent concentration discharge from the Mthatha Correctional Services Centre and the
Efata School for the Blind and Deaf which have caused ineffable impaired damage to the Mthatha River Catchment (MRC).
This paper is aimed at identifying drivers of poor water quality in the catchment and classified the River’s water quality
into different cluster groups for proper pollutant source control measures. Water quality parameters data comprising of pH;
conductivity; Phosphorus; Ammonia (NH4-N); Feacals; and E-coli covering 95 percent and 105 percent of the upstream
and downstream sections of the River were available at ten monitored sites of the river catchment. These datasets covering
eight years 2012-2020 were analysed in this study. Factor analysis as a choice of principal component analysis (PCA) and
Agglomerative Hierarchical Clustering (AHC) was used to deduce inferences for the pollutants’ subsequent classification.
The results classified the catchment into three different clusters of lower pollutant (LP), medium pollutant (MP), and
high pollutant (HP) areas, with PC1 accounting for 84.54% of the total variance from the three components classification.
Adaptive catchment managers would find usefulness in the employed statistical tools in ensuring real-time measures for river
non-point pollutants sources control that could offer additional benefits in maintaining a safe life above and below water in
the preservation of their public values benefit. The study recommends the issuance of compliance notices and non-point
pollutant source control measures to improve the water quality (WQ) parameters.
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1. INTRODUCTION

A deeper understanding of river flow management and its
interactions with water quality parameters could permeate
the effective adoption of the most cost-effective strategy for
controlling pollutants and maintaining the river’s health
(Diamantini et al., 2018; Sagan et al., 2020). The Mthatha
River Catchment (MRC) authority has been challenged to
address the pollutant issues that are coming from the ram-
pant effluent discharge from the Mthatha Prison and the
Efata School for the Blind and Deaf which have caused inef-
fable damage to the MRC water quality. This has triggered
different studies on both preventive and curative ways of
regulating and maintaining the river’s health for the general
populace’s uses (Achieng et al., 2017; Ajayan et al., 2018).

Hence, among the different multidisciplinary factors in-
fluencing flow regime and water quality are human activities

such as water abstraction, excess water disposal, irrigation,
and vegetation clearing. These activities have the potential
to change both the quantity and quality of flow (Rostami
et al., 2020). Climate change has also caused significant
extreme flow events which had produced changes in aquatic
and riparian vegetation, aquatic connectivity, water qual-
ity, erosion, and sedimentation processes (Diamantini et al.,
2018). This is not limited to the timing, length, and seasonal
pattern of flow and varying water quality parameters, but all
of which have an impact on the river ecosystem (O’Briain,
2019). In streams and rivers, water quality may vary sig-
nificantly, depending on the water magnitude flow, a high
flow serves to dilute the waste concentration while when
there is a low flow, concentration may become undesirably
high. It is therefore common practice to pick a flow condi-
tion for judging whether ambient water quality standards
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are being met. Also, contaminants may even be induced
through the various hydrological variations in flow regimes,
and their biological or chemical interactions with underlying
geological rock and soil processes may also impact the waste
concentration.

The quantity and qualities of the inflowing and receiving
waters may amplitude the flow’s influence on the altered
water quality (Hallouin et al., 2018). Furthermore, other un-
derlying features that could influence streamflow as drivers of
water quality parameters include geology, vegetation cover,
and rainfall characteristics such as magnitude, intensity,
and frequency. The interaction between these attributes
and their response varies spatially and temporally (Snelder
et al., 2009). Moreso, the vitality and health of aquatic
species depend on the natural processes in the drainage
areas. Likewise, the natural process of precipitation, runoff,
and percolation can cause significant changes in ecosystem
structure and function, as well as the number and types of
organisms that can live in the new environment (Hallouin
et al., 2018).

Water quality classification methods are preventive and
curative ways of maintaining required effluent standards in
degraded river courses due to wastewater treatment plants
discharged into the river. Most of the water quality clas-
sification procedures and approaches consist of three main
methods which include: water quality index (Abbasnia et al.,
2019; Bora and Goswami, 2017; Misaghi et al., 2017; Wu
et al., 2018); the use of trophic status index (Kulshreshtha
and Shanmugam, 2017 ; Robert et al., 2016; Thakur and
Jindal, 2017); and the statistical analysis approaches (Rako-
tondrabe et al., 2018; Ustaoğlu et al., 2020).

Many of the water quality index methods have been
addressed through the weighted arithmetic index approach.
This method consists of average computation of the water
quality index based on the physical-chemical and biological
quality parameters that have been measured over an interval
in a region while the trophic state index is a classification
system designed to rate water bodies based on the amount of
biological productivity they sustain. The existing entropic
and mesotrophic environment for the aquatic ecosystem in
the catchment calls for other biodiversity status classifica-
tions, particularly for South African rivers and lakes which
had not been researched. Thus, depending on the available
or measured water quality parameters, the expected bene-
fits and aim of the research, the various existing methods
for water quality assessment can be used to aggregate the
diverse parameters, and harness their varied benefits into
a single score in representing the historical water quality
status of a river or catchment.

However, most of these approaches had been inexplicably
complex due to the dynamic nature of the river/streamflow
and the non-linearity in the water quality parameters. Only
a few studies have paid attention to rainfall characteristics
such as magnitude, intensity, and frequency to alter stream-
flow impacts on water quality (Richter et al., 1998; Poff

and Zimmerman, 2010; Likens, 2013; Allen et al., 2020).
Majority of these address water quality classification on the
basis of precautionary average weighted arithmetic index
and segmented rated water bodies based on the amount
of biological productivity life it can sustain. Furthermore,
depending on other biodiversity status classifications, in-
tegrated statistical analysis could serve as a standard for
evaluating the water quality status and ensuring its public
benefit for ecosystem survival.

Among the techniques aimed at reducing the drivers of
poor water quality in any catchment are the application of
statistical causal inference methods, the use of graphical
models, neural networks, extreme event algorithms, time
series modeling, non-linear dynamics-inspired methods, and
surrogate modelling (Rakotondrabe et al., 2018; Ustaoğlu
et al., 2020). Hence, the classification of the river water
quality into different clusters for proper pollutant control,
suggests new ways analyse and possibly model how the
altered water quality (WQ) parameters and flow regime
intersect towards maintaining a healthy state of the river
for prompt mitigation measures in controlling pollutants
from the effluence discharge. Thus, statistical analysis ap-
proaches offer a universal basis for proactive preventive
methods depending on the available or measured water qual-
ity parameters and the main benefit the research aimed at
achieving. The main contribution of this study lies in the
understanding of the effects of altered streamflow patterns
on some selected water quality parameters from the efflu-
ent discharge in the MRC. The novel feature of this study
lies in its ability to mimic and reveal the interrelationships
that exist among streamflow and pollutants as a common
component of a water system.

Furthermore, because of unit disparity, the normal and
standardised representation of water quality sample had
proved to be effective for statistical analyses. Among the
non-parametric methods which are not limited to cluster
analysis (CA), factor analysis (FA), and principal component
analysis (PCA) had been used to investigate the dimension-
ality of a measurement instrument by identifying the fewest
number of interpretable factors (Jolliffe and Cadima, 2016).
The PCA had enjoyed wide usage for reducing and inter-
preting large multivariate data sets with underlying linear
structures, and for discovering previously unsuspected rela-
tionships (Taherdoost et al., 2022; Panaretos et al., 2017).
PCA contributions are scale-independent and less sensitive
to extreme values since it places a unit on the diagonal of all
the variances signifying common and error variance among
variables in the matrix (Brown et al., 2019). In addition,
it may be used to identify the main pollutants and to aid
in the interpretation of complicated data matrices to gain
a better understanding of the water quality and ecological
status of the examined systems (Tripathi and Singal, 2019;
Wang et al., 2017). Thus, the most essential components
that describe natural and anthropogenic impacts can be
found using PCA.
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Figure 1. Research Methodology Block Diagram

Cluster analysis (CA) is a statistical technique for classi-
fying datasets based on similarities without the use of prior
assumptions or supervision. Among the various cluster-
ing algorithms, the hierarchical clustering has been mostly
employed to analyze water quality data (Banda and Ku-
marasamy, 2020; Varol, 2020). Thus, the need to minimize
the hazardous health impacts and aesthetically offensive
odour which could pose danger to the lives and health of
the community where river water quality is not properly
managed cannot be over-emphasised. The South African
Water Quality Guidelines (Volume 8) have been the main
source of information for determining the water quality
status of any river in the country depending on its water
uses. This document is a compilation of all the different
Targeted Acceptable Water Quality Ranges (TWQR), which
have been previously discussed in Volumes one to seven of
the gazettes for the protection and maintenance of healthy
aquatic ecosystems.

Hence, the current study examined the interaction of
streamflow and measured water quality parameters including
pH, conductivity, phosphorus, Ammonia (NH4-N), feacals,
and E-coli in the MRC. It further highlights the inter and
intra-annual seasonal trends in the monitored water quality
parameters while also correlating the relationships between
the altered streamflow and the measured water quality pa-
rameters. The categorised flow regime from the upper and
lower sections of the River was used for the pollutants’
strength classification into good, poor, and very poor rating
index. This clustered classification provides possible control
measures for managing the River catchment.

2. EXPERIMENTAL SECTION

2.1 Materials and Methods
Figure 1 depicts the employed research methodology block
diagram employed in this study.

The study employed a mixed design methodology which
entails a desktop review of documents and fieldwork for
data collection. Thereafter, different statistical analysis was
performed on the collected dataset. Correlation was used to
establish the relationship between the water quality parame-

ters and streamflow while the t-test was used to compare the
statistical difference between the upper and lower reach of
the River water quality and streamflow. The Kruskal–Wallis
(KW) statistical tool test was used to determine if there is
a significant difference between the medians of each dataset
between the upper and lower grouped flow regime and wa-
ter quality. Finally, the Agglomerative Hierarchical Ward
Clustering Analysis was used to classify the pollutants into
high, medium, and low pollutants strength.

2.2 Water Quality Index Rating Procedural Method
The water quality index was assessed using established pro-
cedures (DWAF, 1996; American Public Health Association,
2012), and the results were compared to the South African
Water Quality Guidelines Volume 8 and WHO (2018). For
the calculation of the water quality index, the weighted
arithmetic index approach was utilized (WQI). Ewaid et al.
(2018) detailed the steps for calculating the WQI as follows:
i) Determine a weighting rate based on expert advice
ii) Using Equation 1, calculate relative weight (RW)

RW =
AWi∑n
i=1 AWi

(1)

where AW is each parameter’s assigned weight, and n de-
notes the number of parameters.
iii) All of the parameters were then given a quality rating,
except for pH. As shown in Equations 2 and 3, this was
accomplished by increasing the result of each sample water
quality parameter acquired from the laboratory analysis
by a standard suggested by the WHO (2018) or the South
African Water Quality Guidelines Volume 1 (DWAF, 1996),
then multi1plying by 100.

Qi =

[
Ci

Si

]
× 100 (2)

QpH =

[
Ci − Vi

Si − Vi

]
× 100 (3)

where Qi signifies the quality rating, Ci denotes the value
of the water quality parameter obtained from the suggested
WHO, Si is the ideal value of 7.0 for pH, and Vi means the
measured value above or below 7.0 for pH. Equations 2 and
3 ensure that Qi = 0 when there is no pollution in the water
sample and Qi = 100 when the parameter’s value is barely
above the permitted range. As a result, the water becomes
more contaminated as the Qi value rises (Şener et al., 2017).
Finally, using Equations 4 and 1, the computed WQI (SIi)
was determined for each parameter.

SIi = RW ×Qi (4)

WQI =

n∑
i=1

SIi (5)
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The WQI scores were assigned to the following categories:
<50 = Excellent, ≥50-≤100 = Good, >100-≤200 = Poor,
>200-≤300 = Very Poor, and >300 = Unsuitable (Şener
et al., 2017).

2.3 Data Sampling Design and Study Area
A preliminary survey was carried out to identify the general
condition of the environment as well as the possible sources
of pollutants that could impact water resources negatively.
This helps in sampling location, from which water quality
samples were collected twice before being transported to
the laboratory to measure physio-chemical and bacteriologi-
cal parameters. Water quality parameters comprising the
pH, electrical conductivity-EC (mS/m) of the wastewater,
Ammonia (mg/L), Phosphate (mg/L), Faecal coliforms (per
100 mL) and E-coli (count/mL) were used for the study.
An average of the measured samples ensures an adequate
design sample was used while the collected samples were
transported to the Talbot and Talbot laboratory for analysis
using the standard procedure as outlined in American Public
Health Association (2012). A total of 1680 water samples
were collected for the catchment between the period 2012
to 2020, with the year 2018 dataset missing due to data
storage corruption. Thereafter, the geographic information
system (GIS) was used to map the ten-identified monitoring
points (coordinate) along the Mthatha River as shown in
Figure 2.

2.4 Dataset–Sample Collection and Analyses
The sampled dataset comprises six water quality parameters
which include the pH, conductivity (mS/m), PO4-P (mg/L),
NH4-N (mg/L), Faecals (per 100 mL) and E-coli (count/mL)
for both the upper and lower reach along the river catchment
were used. Organic substances that have dissolved in water
are measured as conductivity. Table 1 depicts the collected
measured water quality parameter at Efata School (Upper
River reach) and Mthatha Prison (Lower River reach) for
the final effluent discharge in comparison to the required
standard effluent compliance requirement.

From Table 1, the various water quality effluence param-
eters results showed that the Efata School effluent had not
complied with the generally accepted standards as stated
in Section 24 of the South Africa Constitution, and Section
19 of the National Water Act, therefore, effort is required
for the effluent treatment before been discharged into rivers
water resource.

2.5 Data Analyses
Table 2 summarizes the basic statistics for the studied water
quality parameters at upper and lower monitoring sites for
the period 2012-2020 while Figure 3 depicts the streamflow
hydrographs at the upper and lower reaches of the Mthatha
River with mean values of 57 ± 30 and 51 ± 8 respectively.

The mean streamflow as illustrated in Table 2 are 51.48
and 57.99 (m3/s) respectively at the upper reach and lower

reach of the Mthatha River. These values indicate that the
catchment characteristics are closely related to the upstream
and downstream flow regimes while the mean pH was 7.43
at upper reaches and 7.46 at lower reaches. With the mean
values of 11.90 mS/m, 0.035 mg/L, 0.24 mg/L and 462.53
(100/mL) respectively for the conductivity, phosphate, am-
monia and faecal coliforms parameters in the upper reaches
of the MRC as against the lower reaches parameters’ mean
values of 14.92 mS/m, 0.28 mg/L, 0.41 mg/L and 468.06
(100/mL) respectively, the result reveals that most of the
lower reaches water quality parameters are higher than those
of the upper reaches. This implies a higher water quality
matrix with streamflow’s hydrological indices.

3. RESULTS AND DISCUSSION

The various results obtained in this study are hereby pre-
sented in this section.

3.1 Preliminary Data Analysis Results and Discus-
sion

The current study was made with an assumption that the
River maintains a steady state, indicating no change over
time in the water quality concentrations with time. Thus, a
trend analysis of the seasonal water quality (WQ) discharge
of the catchment allows us to better understand the prevail-
ing underlying physio-chemical mechanism occurring in the
catchment. This can be used as a starting point for planning,
and in controlling the pollutants trend. Thus, using the
Standard Normal Homogeneity Test (SNHT) as depicted
in Figure 4, shows that most of the water quality parame-
ters dataset were not from the same source (homogeneity)
and that the water quality parameters are not consistent in
their trend, because their p-observed values was less than
the significance level of 0.05. Thus, there was a significant
difference between the upper reaches and the lower reaches.

The pre-processing phase is very important in data anal-
ysis to improve data quality. Since the various water quality
parameters are of different units, there is a need to normalise
and standardise the data to ensure superior accuracy and
minimum bias. The z-score method has been used for the
dataset normalisation. This method transformed the dataset
into a non-dimensional scalar value. Figure 5 depicts the
normalised and standardised versions of the water quality
parameters.

In rating the surface water quality index into pollutant
strength for their environmental and public values benefit
preservation, the pre-data process helped to minimise ac-
cumulated errors in the different water quality parameters.
Thus, contributing to higher accuracy and aggregating the
effects of the altered streamflow pattern on the selected
water quality parameters.

3.2 Classification into Pollutant Strength
Table 3 illustrates the statistical summary of the water
quality parameters correlation with the entire catchment
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Figure 2. Map of the Mthatha River Catchment Study Area Sampling Sites

Table 1. Efata School and Mthatha Prison Measured Statistical Analysis (2012-2020)

Parameter Efafa School Mthatha Prison
Standard

Discharge Limit

pH 6.6-8.1 5.47-7.20 5.5-9.5
Conductivity (mS/m) 25.9-62.0 25-84.6 70-100
Phosphate(mg/L) 21-293 20-317 75
Ammonia (mg/L) 1.04-6.6 0.240-39 10

Faecals (per 100 mL) 1.38-35.3 4.29-55 6
E-coli (Count/mL) 26 - 61300 2400-77000 1000

Figure 3. Mean Annual Streamflow Hydrograph for
Mthatha River Upper and Lower Reaches

streamflow. This analysis helps to determine the dependence
of water quality on flow for the catchment.

A negative relationship with the water quality parame-
ters for the MRC implies that the likelihood of the streamflow
yield decreases. The correlation coefficient of variation in
the streamflow magnitude reveals that increasing streamflow

Figure 4. Homogenous and Abrupt Change Test on MRC
Water Quality Parameters at the Lower and Upper Reaches

from storms may dilute water quality and reduce pollution
rate time, as well as change water quality parameters. This
may also impact the aquatic ecosystem by lowering the water
temperature through reducing the water quality disturbance
effects. In all, the water quality parameters correlation with
streamflow suggests that the river’s water quality status has
rapidly deteriorated going by the negative correlation values
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Table 2. Statistics of Water Quality Parameters at MRC Upper and Lower Reach

Upper Reach Lower Reach
Min Max Mean Std. Deviation Min Max Mean Std. Deviation

Stream Flow 43.18 59.37 51.48 5.62 15.09 89.08 57.99 27.55
pH 6.50 8.10 7.43 0.33 6.70 8.50 7.46 0.34

Conductivity 4.00 82.00 11.90 11.71 5.00 60.00 14.92 11.002
Phosphate 0.002 0.250 0.04 0.05 0.001 10.00 0.28 1.37
Ammonia 0.07 1.37 0.24 0.26 0.08 3.08 0.41 0.63
Faecals 0.00 3600.00 462.53 772.72 0.00 4100.00 468.04 728.04
E-coli 0.00 242.40 323.20 635.24 0.00 1986.00 268.67 385.26

Table 3. MRC Water Quality Variables Correlation with Streamflow

Stream Flow pH Conductivity Phosphate Ammonia Faecals E-coli

Stream Flow 1
pH -0.0178114 1

Conductivity -0.026936 0.001029 1
Phosphate -0.0017228 0.000917 0.018476401 1
Ammonia -0.0314364 -0.02566 0.223397513 0.0424139 1
Faecals -0.0569992 -0.00314 0.008206518 0.010088 0.000623 1
E-coli -0.0541755 -0.0047 0.006950648 -0.0084705 0.000461 0.969333 1

Figure 5. Normal and Standardised Representation of
Water Quality Parameters Data

observed. This could be attributed to low rainfall, rising
population, and human activities’ impacts on the catchment.

3.3 Seasonal Water Quality Parameters Trends with
Streamflow

The seasonal water quality parameters trend could assist in
identifying period drivers of the poor water quality parame-
ters witnessed in the catchment. This could also be useful
in other seasonal periods to proffer mitigation strategies
against emerging pollutants and classification ratings when
optimal measures are needed for control. Using the intra-
annual season’s dependence of water quality parameters on
the altered seasonal streamflow, Figure 6 shows the annual
seasonal pattern for the observed water quality parameters.
The indicated bracket water quality parameters account for
the remaining 2%, 3%, 3%, and 2% respectively for the
different seasonal variations.

Figure 6 depicts that, the pH was observed as being
stable throughout the seasons with a ranged value between
6.6-8.1, this may be due to none effect of relative rainfall dis-
tribution to cause greater dilution in the acidity or alkalinity
of a water resource. As the pH is a log scale, a one-unit
change would mean a ten-fold change in the hydrogen ion
concentration (Wanda et al., 2016). In terms of the water
quality guidelines, the pH should not change by more than
0.5 or less than 0.5 unit change to the background pH.

Conductivity is a measurement of organic substances
that have dissolved in water, high conductivity peaks were
observed during the dry seasons, which indicated that there
was no dilution happening instead the high evaporation
increased the organic substances/solutes in water. Naturally,
the River has its assimilative capacity indicating the ability
to clean itself, which becomes much more possible during
high rainfall while also noting that high solutes in water
prohibit plants’ growth.

Ammonia showed some high peaks (1.38-55 mg/L) in all
the seasons (Table 1) equally as shown in Figure 6. Likewise,
Phosphate pollutants may be a result of the presence of
high algae growth and eutrophication. The Mthatha River
downstream was noted to have thick layers of water hyacinth
and algae growth. Faecal coliforms and E-coli were equally
very high, and these are an indicator of the presence of
organisms and that the water is Faecal contaminated with
organic materials from both humans and animals. The
poorly treated sewer discharged by the waste stabilization
ponds was also responsible for the high Faecal matter.
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Figure 6. Mthatha River Seasonal Variation Measured Water Quality (2012-2020)

3.4 Surface Water Quality Seasonal Index Rating
Tables 4 to 7 illustrate the statistical t-test comparison
at the upper reach of the River to the lower reach based
on the seasonal water quality parameter and streamflow
magnitude. Table 4 depicts the t-tests used to determine
whether the group means are statistically heterogeneous or
whether they differ by group variability. The paired-sample
t-test between water quality parameters at the MRC and
the River’s reaches in Summer is shown in Table 4.

From Table 4, the observed p-value range of 0.084-0.957
was greater than the significance value of 0.05 for stream-
flow, pH, EC, ammonia, phosphates, faecal coliforms, and
E-coli. As a result, the null hypothesis that there is mean-
ingful difference among the pollutants can thus be drawn
that there was no meaningful difference in streamflow, pH,
EC, ammonia, phosphates, faecal coliforms, and E-coli in
summer.

Tables 5 to 7 illustrate the statistical summary for the
seasonal water quality parameter and streamflow correlation.
The t-test hypothesis tests were used to determine whether
the group means are statistically heterogeneous or whether
they differ by group variability. The paired-sample t-test
between water quality parameters at the Mthatha River’s

upper reaches and lower reaches in Autumn was shown in
Table 5.

The result from Table 5 depicts that, there was no no-
ticeable difference in the parameters in Autumn. The null
hypothesis that the grouped means water quality parameters
and streamflow differ by group variability was rejected be-
cause the streamflow p-value was less than the significance
level of 0.05. Thus, there was a significant difference in
streamflow between the upper reaches and the lower reaches.
Table 6 shows the t-test paired-sample comparison between
water quality parameters at the Mthatha River’s upper
reaches and lower reaches in Winter.

As depicted in Table 6, the result shows that the drivers
of poor water quality in the catchment, in Winter, show
there was no meaningful difference in the parameters. Thus,
the null hypothesis was rejected since the p-value for the
streamflow-water quality was less than the 0.05 significance
level. Thus, there was a significant difference in streamflow-
water quality parameters between the upper reaches and
the lower reaches. Table 7 shows the paired-sample t-test
between water quality parameters in Spring.

As depicted in Table 7, the result of the streamflow-
water quality drivers of poor water quality in the catchment

© 2023 The Authors. Page 7 of 12
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Table 4. Paired Sample t-test Results of Mthatha River Water Quality Parameters in Summer

t df P-sig(2 tailed)

Mthatha River stream flow
upper Mthatha River flow lower

-1.483 40 0.146

pH upper pH lower -1.543 46 0.130
EC upper EC lower -0.175 38 0.862

Ammonia upper Ammonia lower -1.769 46 0.084
Phosphates upper Phosphates lower -1.543 46 0.130

Feacals upper Faecals lower -0.806 46 0.424
E-coli upper E-coli lower -0.054 46 0.957

Table 5. Paired Sample t-test of Mthatha River Water Quality Parameters in Autumn

t df P-sig(2 tailed)

Mthatha River stream flow
upper Mthatha River flow lower

-3.252 40 0.002

pH upper pH lower -0.274 50 0.785
EC upper EC lower 0.733 50 0.467

Ammonia upper Ammonia lower 1.286 50 0.204
Phosphates upper Phosphates lower -1.362 50 0.179

Feacals upper Faecals lower -0.695 50 0.490
E-coli upper E-coli lower 0.055 50 0.956

Table 6. Paired Sample t-test of Mthatha River Water Quality Parameters in Winter

t df P-sig(2 tailed)

Mthatha River stream flow
upper Mthatha River flow lower

-5.059 40 < 0.0001

pH upper pH lower -1.581 70 0.118
EC upper EC lower 0.155 70 0.877

Ammonia upper Ammonia lower -0.313 70 0.755
Phosphates upper Phosphates lower -0.006 70 0.995

Feacals upper Faecals lower -0.246 62 0.807
E-coli upper E-coli lower -0.385 66 0.701

Table 7. Paired Sample t-test of Mthatha River Water Quality Parameters in Spring

t df P-sig(2 tailed)

Mthatha River stream flow
upper Mthatha River flow lower

-1.2963 40 0.050

pH upper pH lower -0.568 48 0.573
EC upper EC lower 0.635 50 0.528

Ammonia upper Ammonia lower -1.260 50 0.213
Phosphates upper Phosphates lower -1.821 50 0.075

Feacals upper Faecals lower 0.141 42 0.888
E-coli upper E-coli lower -1.275 50 0.208
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shows there was no noticeable difference in the parameters
in Spring. The null hypothesis was rejected because the
p-value was less than the significance level of 0.05. Thus,
there was a significant difference in water quality between
the upper reaches and the lower reaches in Spring. It may
then be inferred that streamflow, pH, electrical conductivity,
ammonia, phosphates, faecal coliforms, and E-coli do change
much. Thus, the intra-annual dependence of water quality
on the seasonal flow regime, shows the witnessed annual
temporal variability of streamflow is due to the complex
interaction of catchment water quality concentration and
rainfall interaction which may induce variation witnessed in
the study area.

3.5 Water Quality and Streamflow Classification
Result

Using the Euclidean distance in CA, the catchment driver
and the water quality parameters had been broadly grouped
into three classes namely high, medium, and low pollutants
as illustrated in Figure 7. The Agglomerative hierarchi-
cal cluster (AHC) in Figure 7 illustrates the dendrogram
classification for the water quality sample parameters and
their driver (flow). The results by class indicate that cluster
C1 represents high pollutant (HP); cluster C2 represents
medium pollutant (MP) while cluster C3 represents low
pollutant (LP) classification.

Figure 7. The Agglomerative Hierarchical Clusters - HP,
MP, and LP Classification

Table 8 depicts the object dendrogram classification by
distance. Going by the correlations with the centroids factor
degree, the factor pattern squared cosine’s contribution
classified the water quality observation into class 1, 2 and 3.

The factor analysis effect was quite evident from the
grouped Agglomerative hierarchical cluster classification re-
sult of the catchment with a correlation of 1.00 for class 1,
0.163 -0.995 for class 2, and 0.987-0.996 for class 3 respec-
tively. This grouped the flow of the water quality parameters
into three major clusters. Table 9 shows the grouped Eigen
factor classification that depicts the degree of the factor
pattern squared cosine’s contribution. The cluster factors
F1, F2, and F3 represent the most important contribution to
the water quality index rating. Factor F1 shows the degree

Table 8. Classification by Distance Results

Observation Class
Distance to
Centroid

Correlations
with

Centroids

pH 1 0.000 1.000
Phosphate 2 247.007 0.163

Ammonia {as N} 2 231.216 0.384
Conductivity 2 475.829 0.995

Faecals 3 27752.723 0.996
E-coli 3 27752.723 0.987

of reliance on the water quality variance of 0.984 (faecal)
and 0.982 (E-coli) as the most contributing variables in the
group while 0.339 (Phosphate) and 0.999 (Ammonia) shows
significant contribution in factor (F2). The negative 0.51
and 0.31 in grouped factor (F3) resulted in three cluster
groups: highly polluted (HP), moderately polluted (MP),
and less polluted (LP).

Table 9. The Factor Pattern Squared Cosine’s Contribution

F1 F2 F3

pH 0.018 -0.178 -0.510
Phosphate -0.003 0.339 -0.039

Ammonia {as N} -0.035 0.999 0.012
Conductivity -0.014 0.292 -0.307

Faecals 0.984 0.025 0.009
E-coli 0.982 0.019 -0.004

The bolded values correspond to the factor for which the
squared cosine is the largest for each variable

Table 9 shows the relative catchment cluster summary
based on a supervised factor analysis classification. The
results suggest increased streamflow causes lower water tem-
perature and the subsequent increase in pH, Conductivity,
Phosphate {as P}, Ammonia {N}, Faecals, and E-coli). This
is useful in order to proffer mitigation strategies against the
emerging pollutants rating between the water quality pa-
rameters and the streamflow.

3.6 Water Quality Index (WQI) Results and Discus-
sion

The use of AHC to group the water quality drivers into
pollutant strength provides adequate intervention measures
in rating the water quality index (WQI) for different usage.
According to Ustaoğlu et al. (2020), the general status of the
environment’s water quality accounts for upstream tributary
inputs that could have a considerable impact on downstream
water quality. Thus, the analysis of the water quality index
in the Mthatha River catchment was subsequently carried
out. The WQI technique has been adequately described
in Section 3.1 using Equations 1 and 5. Table 10 shows

© 2023 The Authors. Page 9 of 12



Nombuyiselo et. al. Indonesian Journal of Environmental Management and Sustainability, 7 (2023) 1-12

Table 10. Analysis of the Water Quality Index in the Mthatha River Catchment

Parameters
Water
Quality
Standard

Assigned
Weight

Relative
Weight

Quality
Rating

Sub-Indices

pH (pH Unit) 6.50 2.50 0.19 15.03 2.89
NO3+NO2-N (mg/L) 1.50 2.40 0.18 123.83 22.86

NH4-N (mg/L) 2.00 2.00 0.15 52.33 8.05
F (mg/L) 1.00 1.60 0.12 156.36 19.24

PO4-P (mg/L) 1.00 1.00 0.08 135.97 10.46
SO4 (mg/L) 1.50 1.50 0.12 123.94 14.30
TDS (mg/L) 3.00 2.00 0.15 112.61 17.32

Total 13.00 WQI=Sum(SI) 95.13

Table 11. Mthatha River Monitoring Segment Water Qual-
ity Index Rating

Sub
Basin

Drinking Water Irrigation Aquatic Life

A 88 Good 67 Good 56 Good
B 167 Poor 83 Good 78 Good
C 78 Good 126 Poor 98 Good
D 54 Good 63 Good 79 Good
E 168 Poor 67 Good 56 Good
F 164 Poor 63 Good 108 Poor
G 176 Poor 63 Good 78 Good
H 57 Good 76 Good 79 Good
I 157 Poor 74 Good 98 Good
J 178 Poor 65 Good 90 Good

the results of the Mthatha River Catchment water quality
index analysis while Table 11 depicts the water quality
index rating for aquatic life, drinking, and irrigation use.
The water quality index rating figures were computed using
Equations 1–5.

Where the sub-catchments were labeled alphabetically
as follows: (A) upstream of Langeni forest; (B) downstream
Langeni WWTW; (C) below Langeni Sawmill (D) upstream
of Cicira; (E) downstream of Cicira; (F) above Mthatha
prison (G) below Mthatha prison (H) below Mthatha wastew-
ater treatment plant (wwtp); (I) below First Falls and (J)
below Ngangelizwe township. These intervention measures
portrayed the water quality index when compared to the
South African Water Quality Guidelines and the World
Health Organization (WHO) guideline for aquatic and bio-
diversity survival restrictions.

The results of the water quality index rating at river
sections D to G imply that irrigation and aquatic usage
have only a little impact as the values of these parameters
suggest that they are not harmful to human health. These
values have not exceeded the threshold permissible value
stipulated in (American Public Health Association, 2012;

DWAF, 1996; WHO, 2018) standard values. The high value
of the Water Quality Index rating in sub-basin (J), on the
other hand, shows that the ecosystem is entropic. The
greater the entropy, the greater the losses, wastes, and
environmental impacts- including heated waterways and
degraded air quality to land contamination.

3.7 Limitations of the Study
This study was based on modeling the different sections
of the Mthatha River into upper and lower reach, which
may differ slightly from the simulation of the whole catch-
ment. Also, the assigned magnitude index from an expert
in calculating the WQI may be of varying degrees to the
water body’s pollutant rate classification. Furthermore, al-
though one could argue that all portions upstream of a river’s
section have a significant impact on water pollutants down-
stream, this was not factored into the WQI calculation and
subsequent classification for different usage. Similarly, the
analysis ignores mechanisms like self-purification, pollution
retention for instance through sedimentation, and/or dilu-
tion due to the inflow of cleaner tributaries. As a result, the
model’s applicability is limited. Although an entropic and
mesotrophic environment exists for the aquatic ecosystem
in the catchment, other biodiversity status classifications for
South African rivers and lakes should be further researched.

4. CONCLUSIONS

Sustainable maintenance of rivers’ water quality drivers
provide a standard for healthy, economic development, and
poverty alleviation in a catchment. This study examined sea-
sonal trends and drivers of altered water quality parameters
on a seasonal basis. The application of the statistical Ag-
glomerative Hierarchical Clustering factor in classifying the
river pollutants’ strength into low pollutant (LP), medium
pollutant (MP), and high pollutant (HP) clustered groups
could help provides adequate intervention measures in rat-
ing the water quality index (WQI) for different usage. The
correlation of the water quality parameters with the upper
and lower sections of the Mthatha River depicts the effect
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of the drivers on the water quality status in the catchment.
Furthermore, the results revealed that most of the failed
sections of the River contain moderate pollutants, which
implies the presence of high nuisance algae/aquatic plants
which should be treated with caution. A similar report
by DWAF (2004), corroborates with part of this current
study outcome, which suggests the need for water resource
managers to recognize the complexities of water quality pol-
lutants sources and designate priority areas classification
that needs immediate attention and intervention. Also, the
exceedance of effluent limits standard for the area called for
the issuance of non-compliance notices, enforcement of the
polluter pays principle, and query of the government officers
in charge of the waste stabilization pond for the treatment
of the effluent in the catchment before being discharged into
the Mthatha River.
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