

Indonesian Journal of Environmental Management and Sustainability p-ISSN: 2598-6260 e-ISSN: 2598-6279

http://ijoems.com/index.php/ijems

Research Article Energy Efficiency and Greenhouse Gas Emissions Reduction Through Electrification Program at Tanjung Enim Mine Business Unit of PT Bukit Asam (Persero) Tbk.

Iko Gusman¹, Pramudita Triatmojo¹, Peni Rostiarti¹, Bima Arifiyanto¹

1PT. BUKIT ASAM (Persero) Tbk. - Unit PertambanganTanjungEnim JalanParigi No.1-A KecamatanLawangKidul, KabupatenMuaraEnim, Sumatera Selatan - Indonesia igusman@bukitasam.co.id

ABSTRACT

Current global economic conditions have made the coal prices become uncertain. PT Bukit Asam (PTBA) has taken corporate action by improving operational efficiency, cost control; develop coal diversification product and also optimization in the mining operation. One of the operational efficiency programs for cost control in mining operation system is the Electrification Program. This program changed mining operations previously dominated by fuel-based mining system transformed into an electricity-based mining system for an electricity-operation equipment divided into several stages for short-term and long-term targets. Electrification program consist of 7 Units Electric Shovel (PC3000-6E) and 40 Units Rigid DT (Belaz75135) with target20 Million BCM in 2017 located in Banko West Mine. PTBA through the electrification program has succeeded in reducing energy consumption by 333,861.74 Joule/Years and reducing greenhouse gas emissions by 15,058.49 Ton CO2e/Year. Electrification program has successfully contributed for environmental sustainability by reducing energy consumption and greenhouse gas emissions in accordance with the vision of PTBA into a world-class energy company that cares about the environment.

Keywords: Electrification, Mining system, Energy Consumption, Greenhouse Gas Emission, PTBA

1. INTRODUCTION

Current global economic conditions have made the coal prices become uncertain. PT Bukit Asam (PTBA) has quickly responded to these conditions by improving operational efficiency, cost control, diversifying export marketing including introducing focused mining patterns, while maintaining environmental sustainability.

One of the operational efficiency programs for cost control and corporate development is Electrification Program where previously mining operations were dominated by fuel-based mining systems. Implementation of Mining Systems with electric-based mining equipment is also designed through stages to adjust to short-term and long-term corporate targets and adjust to the readiness of equipment.

In the framework of such development, PTBA has invested in electricity-based mining equipment by utilizing its competency capacity in managing continuous mining systems and the potential of existing internal resources (Mouth Mine Power Plant) to reduce dependence on fuel consumption. Electrification program has also proven to contribute to environmental sustainability, namely the reduction of energy consumption and greenhouse gas emissions, in accordance with the vision of PTBA to be a world-class energy company that cares about the Environment.

2. EXPERIMENTAL METHOD

Estimation of electricity consumption can be applied to a wide range of analyses that can be used to [1]:

 Perform or review prefeasibility level studies by using individual estimates or linking them for estimating requirements for vertical integrated mining operations
 Estimate the economic effects of changes in power rates and fuel costs on producing or planned mining facilities

3. Estimate a component of greenhouse gas contributions produced by the energy source used to generate electricity consumed by a mining operations

Factor that affecting coal mine energy consumption, can be generated from many aspects such as operator practice, operating conditions and also equipment [2]. On the implementation, energy consumption in mine also varies due to the variation of the mine topography, mine equipment characteristics and operational practices.

The diesel or electricity are used for operating dump trucks,

Received: 27 October 2017 Accepted: 9 February 2018

*Corresponding author email: igusman@bukitasam.co.id

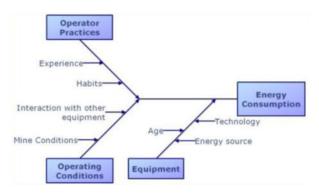
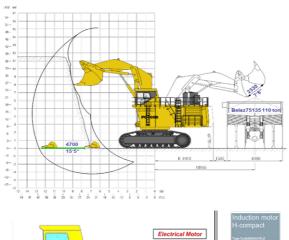



Figure 1. Factors affecting coal mine energy consumption [2]

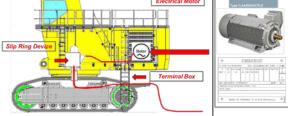


Figure 2. Shovel PC 3000 equipment.

Specification of Electric Shovel PC 3000-6E:

Туре	: Hydraulic Shovels
Drive System	: Electric Drive
Output Power	: 900 kW
Bucket Capacity	: 16,0 cum
Crowd Force	: 1100 kN
Break-out Force	: 1000 kN
Boom	: 6,0 m
Stick	: 4,3 m

excavators, shovels, draglines, crushers, conveyors and pumps. Based on benchmarking in Gondegaon opencast mine, input energy profile for conventional opencast coal mine, Electricity has annual energy consumption of 8.203 MU equivalent with 98.760 GJ (36%) meanwhile Diesel has annual energy consumption of 5.019 MU equivalent with 179.195 GJ (64%) [3].

Electrical equipment (electrification) program in PT. Bukit Asam is a new mining method which previously dominated by fuel-based mining systems. Implementation of this program is done by implementing the main equipment of the electric digging tool (shovel) and combined with fuel-based truck.

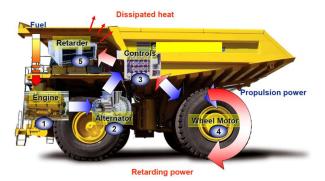


Figure 3. Belaz Truck

Specification of Dumpt	truck BELAZ-75135:
Nominal Payload	: 110 metric ton
Capacity	: 120 Short ton
Engine	: Cummins K1500E
Transmission	: Electrical Transmission
Ratio	: Electric Speed Ratio up to 4726 Torque Nm
Control System	: Automatic Control System
Top Speed (km/h)	: 48
Front Brakes	: Disk Brake
Rear Brakes	: Disk Brake, Resistor Brake
Gross Vehicle (oper- ating Weight)	: 230.100 kg
Fuel Refill, ltr	: 1900
Tires	: 33.00 – 51

Electrification is environmentally friendly program because it is proven to decrease energy consumption and decrease greenhouse gas emission. The calculation of this decrease is done by using comparison data of electrical-based mining equipment with fu-

• Electric Digging tool (Shovel)

el-based mining equipment.

Equipment used in conducting excavation activities using Electric Shovel PC 3000-6E

• Transportation (Truck)

The equipment used in carrying the hauling activity is Dumptruck BELAZ-75135.

PC 3000-6E_ELECTRICAL DRIVE ENERGY SUPPLY

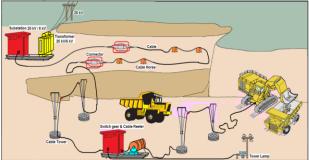
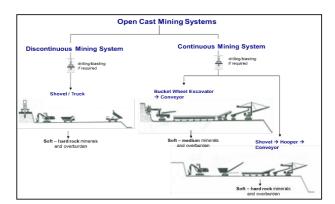



Figure 4. Electrification Mining Process

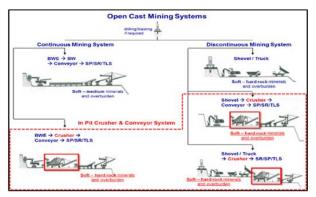


Figure 5. Mining System changes from the old mining system in Pit Crusher & Conveyor (IPCC) system with Electric Equipment

• Electrification Mining Process

Electrification Mining Process is done by implementing the main equipment of the electric digging tool (shovel) and combined with fuel-based truck.

RESULTS AND DISCUSSION

Electrical equipment (Electrification) conducted by PTBA as an effort to maximize electrical energy from Mine mouth steam power plant in Tanjun Enim Mining Unit. Electrification is done by changing conventional mining method based on fuel into base-

Table 1. IPCC system advantages and disadvantages analysis

IPCC System (Shovel à Crusher à Conveyor àSP/SR/TL					
Advantages	Disadvantages				
1. Electricity cost (Rp./kWh) 40% less cheaper than fuel (Rp./liter).	1. Limitations of flexibility by using conveyor crusher.				
2. Reduce pollution of heavy equipment carbon emissions.	2. Investment cost is higher than shovel & truck.				
3. Labor cost, maintenance cost and operating cost are relatively low and less than shovel & truck.	3. For the fully mobile type is resistant to weather, mean- whilesemi mobile is vulnera- ble to weather changes.				
4. Can cover the mining distance is relatively fluid and flexible.					
5. Suitable for Soft-hard rock and oversize type of material.					

PC 3000-6E OVERVIEW							
PC3000-Electric (Aktual) kWh/h		Cost Electric Rp/h	PC3000-Diesel Lt/H	Fuel (Rp/Lt)	Cost Fuel Rp/Lt	%	Cost Saving Rp/h
436	1240	540,743	184	8584	1,579,456	192%	1,038,713
PC 3000-6E	OVERVIEW			_ *			
Total Capacities Per Excavator				Consumption Pe		itor	

Engine ltr. (US Gal)	PTO ltr. (US Gal)	Hydraulic Reservoir Itr. (US Gal)	Slew gears ltr. (US Gal)	Travel gears ltr. (US Gal)	Engine Oil Itr/h (US Gal/h)	Hydraulic Oil Itr/h (US Gal/h)*	Gear Oil Itr/h (US Gal/h)**	Central Lubrication kg/h (lb/h)	Slew ring gear Lubrication kg/h (lb/h)
190 (50.2)	90 (23.8)	2900 (766)	83 (21.9)	135 (35.7)	0.8 (0.21)	0.53 (0.14)	0.10 (0.026)	0.14 (0.31)	0.035 (0.08)
-	90 (23.8)	2900 (766)	83 (21.9)	135 (35.7)	-	0.53 (0.14)	0.10 (0.026)	0.14 (0.31)	0.035 (0.08)
	190 (50.2)	Itr. Itr. (US Gal) (US Gal) 190 90 (50.2) (23.8)	Engine Itr. PTO Itr. Reservoir US Gal) 190 90 2900 (50.2) (23.8) (766) 90 2900	Engine Itr. P1O Itr. Réservoir Itr. gears Itr. (US Gal) (US Gal) (US Gal) Itr. 190 90 2900 83 (50.2) (23.8) (766) (21.9) 90 900 83	Engine Itr. PTO Itr. Reservoir [US Gal] gears [tr. ltr. ltr. <thli> (50.2) (23.</thli>	Eingent Wit Reservoir US Gal gears US G	Ling Plan Reservoir Itr. gears gears gears Oil Oil (US Gai) <	Lift Big P to US Gall Reservoir Itr. gears Itr. Oil Itr. Oil Itr.<	Lift Ign (US Gai) Pase (US Gai) Pase (US Gai) Pase (US Gai) Pase (US Gai) Pase (US Gai) Old (US Gai) <thold (US Gai) Old (US Gai) Old</thold

BELAZ75135	OVERVIEW						
Belaz-75135 (Aktual) Lt/H	Fuel (Rp/lt)	Cost Fuel Rp/Lt	HD785 Lt/H	Fuel (Rp/Lt)	Cost Fuel Rp/Lt	%	Cost Saving Rp/h
58	8584	497,872	75	8584	643,800	29%	145,928

don electric energy.

The mining method with the IPCC system has several advantages and disadvantages, the following explanation as listed in Table 1.

The results show that IPCC mining method with electrification has more advantages. Electrification succeeded in reducing operating costs by 40% caused by the fuel savings due to switching to electricity.

Table 2 there are cost efficiency in PC 3000 Electric of Rp 37,900,162,944 for 7 units Shovel Electric operates and decreasing oil usage as much as 29.187 liters per year equivalent with Rp. 1.208.904.636. Cost efficiency of usage belaz Truck 75135 amount Rp. 30,423,069,440 for 40 units operates and decreasing oil usageas much70,883 liters per year equivalents with Rp. 3,849,383,059,20. Table 2 show the complete calculation.

Table 2. Calculation of Decreased Energy Consumption and Emission Reduction

Description	Unit	PC electric	PC Diesel	Information
	Liter / H		184.00	1 Liter BBM = 9240 Kkal
	кwн/н	436.00	-	1 KWH = 860.42 Kkal
Energy	Kkal / H	375,143.12	1,700,160.00	1 Kkal = 4186.8 Joule
Consumption	Gjoule / H	1.57	7.12	1
	Jam Jalan / Th	5,212.00	5,212.00	
	Gjoule	8,186.22	37,100.21	
Number Of Unit	Unit	7.00		
Energy saving	Gjoule		202,397.93	1
		DT Electric	DT Diesel	
	Liter / H	DT Electric 58.70	DT Diesel 75.00	
	Liter / H KWH / H			
Energy	KWH/H			· · ·
Energy Consumption	-	58.70	75.00	
	KWH/H Kkal/H	58.70 - 542,388.00	75.00	
	KWH / H Kkal / H Gjoule / H	58.70 - 542,388.00 2.27	75.00 - 693,000.00 2.90	
	KWH/H Kkal/H Gjoule/H Jam Jalan/Th	58.70 - 542,388.00 2.27 5,212.00	75.00 - 693,000.00 2.90 5,212.00	
Consumption	KWH / H Kkal / H Gjoule / H Jam Jalan / Th Gjoule	58.70 - 542,388.00 2.27 5,212.00 11,835.77	75.00 - 693,000.00 2.90 5,212.00	
Consumption Number Of Unit	KWH / H Kkal / H Gjoule / H Jam Jalan / Th Gjoule Unit	58.70 - 542,388.00 2.27 5,212.00 11,835.77	75.00 693,000.00 2.90 5,212.00 15,122.37	

Decription	Unit	PC ELECTRIC	PC DIESEL	Information	
	Liter / H	-	184.00	Emisi CO ₂ (Diesel) = NCV x FE x Vol BBN	
Energy Consumption	KWH/H	436.00	-	Emisi CO ₂ (Electric) = FE x kwh	
	Jam jalan / Th	5212.00	5212.00		
Number Of Unit	unit	7	7	NCV ¹ Diesel = 0,000036 Tj/liter	
NCV	Tj/liter	-	0.000036		
Fe CO ₂ (Diesel)	Kg/Tj	-	74100	FE ² CO ₂ (Diesel) = 74.100 Kg/Tj	
Fe CO ₂ (Electric)	Kg CO ₂ / kwh	0.749	-	FE ³ CO ₂ (Electric) = 0,749 Kg CO ₂ /kwh	
CO ₂ Emission	Ton CO _{2e} / Th	11,914.36	17,907.75	EE = Emission Eactor	
Emission Reductions	Ton CO _{2e} / Th		5,993.39	NCV = Heat Values	
Decription	Unit	PC ELECTRIC	PC DIESEL	1. National Inventory Guidance Manual	
	Liter / H	58.70	75.00	2012, Book 1 Volume 1 Use and	
Energy Consumption	KWH/H	-	-	procurement of energy Table 2.2	
	Jam jalan / Th	5212.00	5212.00	2. National Inventory Guidance Manual	
Jumlah Unit	unit	40	40	2012. Book 1 Volume 1 Use and	
NCV	Tj/liter	0.000036	0.000036	procurement of energy Table 2.3	
Fe CO ₂ (Diesel)	Kg/Tj	74100	74100	3. Letter of Emission Factor (DJ-ESDM),	
	(-)	32.645.49	41,710.59	2012	
CO ₂ Emission	Ton CO _{2e} / Th	32,043.43			
CO ₂ Emission Emission Reductions	Ton CO _{2e} / Th Ton CO _{2e} / Th	32,043.43	9,065.10		
		32,043.43	9,065.10		

Electrification also reduced energy consumption by 333.861,74 Joule/Years. Decline in energy consumption is also followed by a decrease in greenhouse gas emissions of 15.058,49 Ton CO2/Year. Inefficiencies that affect electricity consumption in site can occur for many reasons. For example technical problems in hauling road design that decreasing total productivity unit.

CONCLUSION

Comparison of operational costs for the use of electric shovel energy (PC3000-6E) with PC3000 diesel is Rp. 37,900,162,944 for 7 units Shovel Electric operates and decreased oil as much as 29.187 liters per year equivalent Rp. 1,208,904,636.80.

Comparison of operational costs for the use of Belaz 75135 fuel (electric drive) with an equivalent dumptruck (HD785) using mechanical drive is Rp. 30,423,069,440 for 40 units of RT Belaz 75135 operates and decreased oil asmuch as 70,883 liters per year equivalent Rp.3,849,383,059,20.

Total Energy savings from implementation of Electrification Program of 333.861.74 GJoule per year.

Total Green House Gas emission reductions from implementation of the Electrification Program of 15.058.49 Ton CO2e per year.

There are opportunities to increasing efficiency by optimizing site conditions such as haul road design optimization to increase the productivity unit

REFERENCE

- Bleiwas, Estimates of Electricity Requirements for the Recovery of Mineral Commodities, with Examples Applied to Sub-Saharan Africa, U.S. Geological Survey, 2011
- [2] Awuah-Offei, K., Summers D., Hirsch C. J., Reducing Energy Consumption and Carbon Footprint through Improved Production Practices, Final Technical Report, Missouri University of Science and Technology, 2010
- [3] Indonesia Government, National Inventory Guidance Manual Book 1 Volume 1 Use and procurement of energy Table 2.2 (2012)
- [4] Indonesia Government, National Inventory Guidance Manual Book 1 Volume 1 Use and procurement of energy Table 2.3 (2012)
- [5] Letter of Emission Factor (DJ-ESDM), 2012