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ABSTRACT

While various linear and nonlinear forecasting models exist, multivariate methods like VAR, Exponential smoothing, and Box-Jenkins’ ARIMA 
methodology constitute the widely used methods in time series. This paper employs series of Turkish private consumption, exports and GDP data 
ranging between 1998: Q1 and 2017: Q4 to analyze the forecast performance of the three models using measures of accuracy such as RMSE, MAE, 
MAPE, Theil’s U1 and U2. Seasonal decomposition and ADF unit root tests were performed to obtain new deseasonalized series and stationarity, 
respectively. Results offer preference for the use of ARIMA in forecasting, having performed better than VAR and exponential smoothing in all 
scenarios. Additionally, VAR model provided better forecast accuracy than exponential smoothing on all measures of accuracy except on Thiel’s U2 
whose VAR values were not computed. Cautionary use of ARIMA for forecasting is recommended.

Keywords: Forecast Evaluation, ARIMA, Exponential Smoothing, VAR 
JEL Classifications: C1, E00, C51

1. INTRODUCTION

Tracking the overtime evolutionary path of economic variables 
and making forward projections help policymakers in setting, 
predicting and achieving both microeconomics and macroeconomic 
targets. This process is achieved through various univariate and 
multivariate forecasting methods such as the Box-Jenkins’ 
ARIMA, exponential smoothing and Vector Autoregressive 
(VAR) models. ARIMA is a method that makes use of the past 
observations of a series for modeling. Its philosophy is based on 
the fact the data is suitable enough to provide important insights 
for future projections by following the stochastic elements of 
the series. The AR term in the ARIMA process represents the 
dependence of the series on its previous values while the MA part 
represents the dependence of the series on random disturbances; 
each with the additional error term. The I component indicates 
the integral number of the series, which is the number of times a 
series has to be differenced to be stationary. On the other hand, 

the VAR model is linear models that capture the joint dynamics 
of multiple series by taking each endogenous variable as a lagged 
function of all endogenous variables in the system (Sims, 1980). 
They are famously used for forecasting and structural analysis. 
Additionally, Exponential smoothing is a method that allocate 
weights to different series to account for fluctuations in the data. 
In this method, forecasts are obtained by smoothing past values 
of series in an exponential process that decays over the mean of 
the data.

Forecasting is a very crucial process as it provides information 
to policymakers on the best choices available among competing 
options. In business operations and in multinational companies, 
accurate forecasting of economic variables is crucial since 
it improves their overall profitability and provides useful 
understanding of risks involved. In general, forecasting economic 
variables has a practical aspect in that an accurate forecast can 
provide valuable information to the investors, government 
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authorities and policymakers for use in the allocation of assets, in 
hedging risk and in policy formulation (Tindaon, 2015).

However, discrepancies arise when researchers have to choose 
between conflicting models that show phenomenal success in the 
field of forecasting science. This paper, thus, makes use of quarterly 
data series of the Turkish Private Consumption, Exports and GDP 
data ranging from 1998 Q1-2017 Q4 to undertake a comparative 
evaluation of the widely used time series forecasting methods of 
ARIMA, Exponential smoothing, and VAR to choose the best 
method to follow. Models are compared based on symmetric lost 
function. The next sections discuss literature, data, methodology, 
results, and conclusions.

2. LITERATURE

Several models have been compared to establish the ones which 
provide better forecast performance in many countries using 
various variables. The most common variables used are exchange 
rates, inflation, and interest rates among others. Most recent studies 
include Mojekwu et al. (2011) who carried out a study based on 
Nigeria foreign exchange rates series between 1974 and 2008 
using AR (1), ARIMA (1,1,1), MA (1), IMA (1,1) and SARIMA 
(0,0,0)(1,1,1)12. He also used Simple, Double, Linear, Damped-
trend, Linear and Seasonal Exponential Smoothing in addition 
to Winters Methods with the aim of establishing the efficiency 
and stability of the exchange market of Central Bank of Nigeria. 
They conclude that the exchange market of Nigeria is the most 
stable, while Bureau de changes and interbank exchange rates 
to the US dollar fluctuate over the period under investigation 
with the use of SARIMA (0,0,0) (1,1,1)12. Kadilar et al. (2009) 
compared the performance of ANN, ARIMA and ARCH models 
using exchange rates series of Turkey ranging from January 2005 
to January 2008. His findings show that ANN is more accurate 
than ARIMA and ARCH models. Using the same variable, Fat 
and Dezsi (2011) established that Romanian Leu is appreciating 
against other currencies in a study he adopted on the series of 
Romania Leu between 3 January 2011 and 22 April 2011. He 
used exponential smoothing and ARIMA models, and the results 
provided little preference for ARIMA. Additionally, Khashif et al. 
(2008) carried out a study using series between July 2001 and June 
2007 in Pakistan to determine which model performs better among 
ARIMA, GARCH, and State Space Models. His results state that 
The State Space model provides the best performance among all 
the models. A similar study based also established preference for 
the GARCH (1, 2) model. Ramzan et al. (2012) used ARMA, 
ARCH and GARCH models to model and forecast volatility and 
also found the same model to be best in removing persistence 
in volatility. On the other hand, EGARCH (1, 2) successfully 
overcame the leverage effect in the exchange rate returns. Similar 
studies done by Erkekoglu et al. (2020) in Uganda recommend 
the use of PARCH (1,1) and EGARCH (1,1) in modeling and 
forecasting volatility. Nanayakkara et al. (2014) carried out a study 
based on Sri Lanka using exchange rates data from January 2007 
to November 2011. They examined and compared GARCH and 
Neural Network approaches. Their findings revealed that ANN 
performs better than GARCH models, similar to those of Kasheri 
and Bijari (2011) and Kihoro et al (2006). In India, Biswajit (2015) 

found that the random walk model outperforms ARIMA and 
ARCH/GARCH models for an exchange rate series running from 
August 1994 to April 2014. Finally, VAR (1) generated the most 
accurate forecasts during a 1 – month horizon, while the ARIMA 
(1, 1, 0) is the more suitable model during a 3 – month horizon in 
study carried out in Sweden by Varenius (2017) on exchange rate 
series between the periods of January 2000 and December 2015.

3. DATA AND PROPERTIES

3.1. Data
This paper employs quarterly GDP, Exports and Private 
Consumption data for the Turkish economy between 1998Q1: 
2017Q2. The variables represent key subcomponents of OECD’s 
main economic indicators and the series are long enough to 
conduct a study in forecasting. The series were obtained from the 
electronic data portal of The Republic of Turkey’s Central Bank 
(TCMB), “http://www.tcmb.gov.tr”.

3.2. Seasonality
Time series data is an agglomeration of various components such 
as trend (Tr), seasonal variations (Sn), cycle (C1) and an error 
term (et). Trend is the tendency of the data to move upwards for 
a long period while seasonal variations are yearly patterns that 
keep recurring in specific periods within the data. Cycles denote 
patterns that repeatedly occur beyond two years while error terms 
are erratic movements in the data (Kirkpatrick et al., 1993). It’s 
a fundamental best practice to work with deseasonalized series 
obtained through the decomposition of series. Data components 
of the multiplicative decomposition model discussed above are 
represented as follows:

 Yt = Trt∙Snt∙CIt∙et (1)

The deseasonalized series (dt = Yt−Snt) obtained involve obtaining 
moving averages, central moving averages, error-tainted seasonal 
values, error-free seasonal values and finally deseasonalized series.

3.3. Stationarity
As a prerequisite for time series modeling, unit root analysis is 
performed to ensure that the underlying series is stationary. A series 
is stationary when its mean and variance are constant over time 
and the value of the covariance between two periods depends only 
on the gap or lag between the two periods and not on the actual 
time at which the covariance is computed (Brockwell and Davis, 
1996). Since there is difficulty in establishing full stationarity, 
the literature only focuses on weak stationarity conditioned on 
the following:
Mean: E(Yt) =µ for all t (constant mean in all periods)
Variance: var (Yt = E(Yt−µ)2 = σ2 (Variance is same in all periods)
Covariance: γk = E[(Yt−µ) E(Yt+k−µ)] (autocovariance of time 
series concerning a particular lag is the same at every period).

Stationarity is established through graphical methods, correlogram 
and unit root tests (Priestley, 1981). This study considers graphical 
and unit root methods to establish stationarity.



Figure 1: Graphs of non-stationary versus stationary series

Source: Authors’ calculations
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3.3.1. Graphical analysis test of stationarity
Graphical analysis is the starting point for examining stationarity 
as it provides the visual clue about the nature of the series. Plots 
of the initial private consumption, exports and GDP series show 
upward trends in all three series suggesting the variance of the 
mean over time; a simple indication of nonstationary series. 
However, after differencing the series, resultant plots show that 
the series fluctuate around the mean with no trend; suggestive of 
stationarity as indicated in Figure 1 in the Appendices.

3.3.2. Unit root analysis for stationarity
Unit root analysis is the most popular tool for examining 
stationarity/nonstationary of the data. Although there are 
numerous methods to test stationarity, this study adopts the 
Augmented Dickey-Fuller (ADF) test, which is an augmented 
form of the traditional Dickey-Fuller. The idea of the ADF is 
that the following regression equation is estimated to determine 
if δ=0.

 � � �Y t Y Yt t
i

m

i t i t� � � � ��
�

��� � � � �
1 2 1

1

 (2)

where εt is the pure white noise term, Δ is the first difference 
operator, δ=ρ–1, and ∆Yt−1=(Yt−1–Yt−2), ∆Yt−2=(Yt−2−∆Yt−3) ADF 

unit root test was performed on all the three series at various 
levels-intercept, trend and intercept and none.

The results displayed in Table 1 show ADF tests for all the three series 
considered. The results indicate that at levels, we cannot reject the 
null hypothesis for the presence of unit root in the series considered. 
This suggests that the series is nonstationary. However, once the 
series were differenced, we reject the null hypothesis and accept the 
alternative implying that the series are stationary after differencing.

4. METHODOLOGY

4.1. Forecasting with Box-Jenkins ARIMA 
Methodology
The Box-Jenkins ARIMA Methods are atheoretic models built 
on the philosophy that time-series data is suitable enough to 
provide important insights for future projections by following the 
stochastic elements of the series Lee (1994). The AR component 
denotes the dependence of the series on its previous values while 
the MA part represents the dependence of the series on random 
disturbances each with the additional error term. The I component 
indicates the integral number of the series, which is the number of 
times a series has to be differenced to be stationary.

Table 1: Results of ADF Unit Root Analysis for private consumption (ln_cons), Exports (ln_exp) and GDP (ln_GDP)
ADF test

Specifications ln_cons ln_exp ln_GDP
t-stat p-value t-stat p-value t-stat p-value

µ −3.154110 0.0267*** −2.968768 0.0423*** −7.033080 0.0000***
µ & T −4.831912 0.0010*** −2.612860 0.2760 −4.637834 0.0018
None 2.403286 0.9959 5.406592 1.000 1.336024 0.9533

dln_cons dln_exp dln_GDP
µ −7.923655 0.0000*** −7.295713 0.0000*** −9.428579 0.0000***
µ & T −7.963499 0.0000*** −7.612139 0.0000*** −9.410493 0.0000***
None −7.971931 0.0000*** −5.676038 0.0000*** −9.492875 0.0000***
***, **, * imply significance at the <1% <5% and <10* levels respectively.  is the constant and  is the trend
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AR (1) is represented in the following equation:

 Yt = α + β1Yt−1 + β2Yt−2+⋯+ βpYt−p + et (3)

In addition, MA (1) takes the following form:

 Yt = α + et−δ1et−1− δ2et−1-…-δqet−q (4)

Altogether, ARMA (1,1) is expressed as follows:

Yt = α + β1Yt−1 + β2Yt−2 +⋯+ βpYt−p + et–δ1et–1– δ2et−1-…-δqet−q(5)

where Yt e.g. private consumption is dependent on its previous 
values up to the pth lag plus a constant α and a random disturbance 
et.Yt in the equation above is a combination of both AR and MA 
components. Formally, the process is presented as ARIMA (p, 
d, q) where p, d, and q represent lag orders for AR, Differencing 
and MA process respectively. The specific assumption made for 
et is that they are identically and independently distributed with 
a common mean and common variance σ2 in all observations or 
simply ∼i.i.d.(0,σ2) implying the freedom of the disturbances 
from autocorrelation and heteroscedasticity. This is called the 
white-noise assumption.

The BJ methodology involves four major steps: identification, 
estimation, diagnostic checking, and forecasting. In the 
identification process, values of p, d, and q are specified using 
correlogram and partial correlogram. Estimation is then made 
commonly through the Maximum Likelihood method or OLS 
using the specified values. Diagnostic checking is performed by 
checking whether residuals are white noise before forecasting is 
carried out (Box and Jenkins, 1976).

4.1.1. BJ model identification using ACF and PACF
Model identification is the first procedure done in Box-Jenkins (BJ) 
methodology to identify the appropriate p, d, and q values. This 
is done through autocorrelation function, partial autocorrelation 
function, and the respective correlograms. The choice for the 
appropriate model is based on the following guidelines provided 
in Table 2.

Figure 2 in the appendices provides the results of the ACF and 
PACF, and the corresponding correlograms for all the series 
considered. It is observed that the ACF of private consumption 
series is significant at the first lag while the PACF exponentially 
dies down. This suggests an MA (1) process. The ACF and PACF 
of the export series are significant with spikes at the 5th lags, 
suggestive of probable MA (5) process. Finally, the results for the 
GDP series are similar to those of the private consumption series 
since they have significant spikes for ACF at the first lag and an 
exponential decay of the PACF, indicating an MA (1) process.

4.1.2. BJ models estimation
Once the models have been identified, the next BJ process requires 
an estimation of the identified models. Our tentative models were 
of MA (1), MA (5) and MA (1) for the private consumption, exports 
and GDP series, respectively. The following results in Table 3 are 
obtained from our estimation.

The estimation output above are significant results at <1% for all 
the models.

4.1.3. BJ models diagnostics
To establish whether the model is reasonable enough to fit the data, 
diagnostics are performed. This is done by obtaining the residuals 
with their respective ACF and PACF and establishing whether they 
are white noise. Residual graphs for the series used in this case 
are presented in Figure 3 in the appendices section. As observed, 
the residuals have random movements reflecting the white noise 
nature. Therefore, our chosen models are appropriate for the study.

4.1.4. BJ step 4: forecasting
Forecasting is the final procedure in BJ methodology. It’s done to 
make projections into the future for the values of the series. This 
study made an ex-post forecast for the period 2013q1-2017q4. A 
comparison of the real and the forecast graphs for the three series 
between the periods 2013q1 and 2017q4 is provided in Figure 4. 
As can be seen, the fit is perfect, especially during the early periods 
for all series except for exports in the later periods.

4.2. The Vector Autoregressive Model (VAR)
The VAR models are a seminal work of Chris Sims derived from 
his famous critique of large-scale traditional macro-econometric 
models. They are essentially multivariate linear time series models 
that capture the joint dynamics of multiple time series by treating each 
endogenous variable as a lagged function of all endogenous variables 
in the system (Sims, 1980). They are famously used for forecasting 
and structural analysis. The VAR process starts with the specification 
and estimation of reduced-form VAR to model diagnostics. Once 
models satisfy the diagnostics requirement, they are better used 
for forecasting or structural analysis to conduct impulse response 
analysis and forecast error variance decomposition. For instance, 
consider yt vector at time t constituted by n variables.

yt = [y1,t y2,t…yn,t]
’

 yt = G0 + G1 y1−1…G2t-2 + Gp yt−p) + et (6a)

where:
G0 = (n*1) vector of constants
G1 = (n*n) vector of coefficients
et = (n*1) vector of white noise innovations
White noise innovations are considered to be serially uncorrelated 
with zero and finite variance and have the following variance-
covariance structure.

E[et] = 0

,if t=
E[e  e ]

0 othe iserw
Ω τ

= Ω


Ω is not diagonal and the error terms of individual equations can 
be contemporaneously uncorrelated.

Table 2: Model identification criteria
Model Typical ACF pattern Typical PACF pattern
AR(p) Decays exponentially Significant spikes through 

lags p
MA(q) Significant spikes 

through lags q
Declines exponentially

ARMA (p, d) Exponentially decays Exponentially decays



Figure 2: ACF and PACF graphs of the series
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Figure 3: Residual graphs, ARIMA models

Source: Authors’ calculations

Figure 4: Forecast comparison graphs for ARIMA models

Source: Authors’ calculations
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Table 3: Estimation output for the Models selected
Model Variable Coefficient Std. Error t-Statistic Prob.
dln_consa µ −0.001385 0.000959 −1.444070 0.1540

MA (1) −0.815960 0.078915 −10.33977 0.0000
R-squared 0.411861 S.E. of regression 0.032140 Durbin-Watson stat 2.025428
dln_expsa µ 0.055317 0.016894 3.274443 0.0018

MA (5) 0.350120 0.128604 2.722454 0.0085
R-squared 0.411861 S.E. of regression 0.079988 Durbin-Watson stat 1.695918
dln_gdp μ −0.001323 0.000905 −1.461985 0.1491

MA (1) −0.778596 0.093094 −8.363581 0.0000
R-squared 0.284926 S.E. of regression 0.028189 Durbin-Watson stat 1.695366

 y1,t = g11t y1,t−1 + g12 y2,t−1 + e1,t (6b)

 y2,t = g11t y1,t−1 + g12 y2,t−1 + e1,t (6c)

VAR models equally have matrix representations. For instance, 
one-lagged matrix notation for the variables considered in this 
study can be represented as follows:
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 21 22 23 1 2
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t t

t t
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gdp g g g g

e
e

p ed

−

−

−

       
      = + +      
              

(7)

where the left-hand side matrix is a vector of autoregressive 
processes while those on the left represent matrices of coefficients, 
one-period AR processes, and white noise innovations respectively. 
Previously stated assumptions hold for the white noise innovations.

4.2.1. VAR estimation and specification
VARs are estimated using consistent and efficient OLS estimators 
executed equation by equation. In specifying the VAR model, 
endogenous variables are selected based on economic theory or 
empirical justifications. Non-stationary data is usually transformed 
and other exogenous variables such as constant, time trend and 
dummy variables may also be included in the model while 
taking note of the parsimonious requirement for the model. The 
stationarity of the VAR model is accessed by checking if the roots 
of the characteristic AR polynomial are invertible. After the initial 
estimation of the VAR model, the lag section is performed based 
on various information criteria which trade-off parsimony and 
reduction in the sum of squares. Initial lag selection is based on 
the rule of thumb with p = 1, p = 4 and p = 12 for annual, quarterly 
and monthly data, respectively. After choosing an appropriate 
lag using various information criteria such as Akaike, Schwarz, 
and Hanna-Quinn, estimation and diagnostics are performed, 
after which forecasting is carried out using the newly estimated 
VAR model. These procedures are keenly observed in this study 
as follows.

4.2.2. VAR specification: Lag selection
Lag selection is a crucial element of the VAR specification. 
The following in Table 4 are the results obtained from the lag 
specification procedure in our VAR model. It can be observed 
the 7th lag is the most preferable lag having been chosen by 
more criteria (Final prediction error and Akaike information 
criterion).

4.2.3. VAR model diagnostics: stationarity
We estimate the stability of the VAR model using the inverse roots 
of the characteristic polynomial. Our results for this procedure are 
presented in Figure 5 in the appendices and they show that the 
inverse roots of the characteristic polynomial lay within the unit 
cycle, suggesting that our VAR model is stationary.

4.2.4. Residual diagnostics: Residual graphs
To ensure whether our stationary VAR is correctly specified, we 
perform residual diagnostics by obtaining the residual graphs of 
our VAR model presented in the Figure in 6. As it can be inferred, 
the residuals have random movements reflecting their white noise 
nature. Therefore, our chosen VAR model is correctly specified.

4.2.5. VAR forecasting
Forecasting is one of the main applications of the VAR model. 
We estimated the VAR model and obtained forecast values. 
Figure 7 in the appendices shows a comparison of the real and the 
forecast graphs for the three series between the periods 2013q1 
and 2017q4. As shown, the fit looks plausible, especially for the 
private consumption and export series.

4.3. Exponential Smoothing
Exponential smoothing is an initial empirical work of Holt (1957) 
and Brown (1959) on forecasting models for inventory control 
systems. This method assigns greater weight to the most recent 
series to make up for the latest fluctuations in the data. Forecast 
values are obtained by smoothing past values of series in an 
exponential process that decays over the mean of the data.

Smoothing parameters assigned offer density to each observation. 
The most widely used types of exponential smoothing are Simple 
Exponential Smoothing (SES) and Holt-Winters’ methods which 
are used on stationary data and series with seasonal components, 
respectively. This study adopts SES. The model can be expressed 
in form of the following equation:

 ( )t 1 t t 1Y Y 1ˆ S+ −=∝ + − ∝  (8)

Table 4: Lag selection for the VAR model
Lag LogL LR FPE AIC SC HQ
0 356.7443 NA 8.19e-09 −10.10698 −10.01062 −10.06870
1 397.1225 76.14174 3.34e-09 −11.00350 −10.61804* −10.85039
2 414.6454 31.54113 2.62e-09 −11.24701 −10.57246 −10.97907
3 428.8616 24.37076* 2.27e-09 −11.39605 −10.43241 −11.01328
4 443.4393 23.74084 1.95e-09 −11.55541 −10.30268 −11.05781*
5 448.8404 8.333027 2.19e-09 −11.45258 −9.910757 −10.84015
6 460.2504 16.62605 2.08e-09 −11.52144 −9.690523 −10.79418
7 472.3846 16.64120 1.94e-09* −11.61099* −9.490979 10.76890
8 478.8532 8.316761 2.16e-09 −11.53866 −9.129561 −10.58174
*Indicates lag order selected by the criterion. LR: sequential modified LR test statistic (each test at 5% level), FPE: Final prediction error, AIC: Akaike information criterion, SC: Schwarz 
information criterion, HQ: Hannan-Quinn information criterion

Figure 5: Inverse roots of characteristics polynomial

Source: Authors’ calculations
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Source: Authors’ calculations

Figure 6: Residual graphs for the VAR model

Figure 7: Forecast comparison graphs for VAR models

Source: Authors’ calculations

where: t 1Ŷ +  = forecast value of the next period, ∝  = indicates the 
weight for the most recent observation. Yt = actual data point in 
the current period. (1–∝) St−1 = weights for the next most recent 
observation. Widening the forecast horizon through continuous 
substitution of the estimated series exponentially expands the 
series as shown in the following equation.

 

( ) ( )
( ) ( ) ( )

2
t+1 t t t 1 t 2

3 t 1 t
t 3 1 0

Y =S =µY +µ 1 µ Y + µ 1 µ Y

+

ˆ

 µ 1 µ Y …+…µ 1 µ Y  + 1 µ S

− −

−
−

− −

− − −  (9a)

A naïve representation of ex-ante forecast for the chosen variables 
in this study for the year 2014 can be illustrated as follows:

 ( )2014 2013 20121   C Cons Forecasted conon s=∝ + − ∝  (9b)

 ( )2014 2013 20121   Exps Exps Forecasted Exps=∝ + − ∝  (9c)

 ( )2014 2013 20121   g gdp Forecasted gddp p=∝ + − ∝  (9d)
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Exponential smoothing methods draw their popularity from their 
easiness to compute, accuracy and simplicity (Ostertagova and 
Ostertag, 2012). The comparison of the real and the forecast 
graphs for the three series between the periods 2013q1 and 2017q4 
using exponential smoothing is presented in Figure 8. It can be 
observed that forecast values plausibly fit the actual values for 
all the series.

4.4. Forecast Evaluation
Given the presence of many forecasting methods, researchers are 
treated to dilemma given the absence of a specific yardstick to 
compare the competing models. However, the consensus is the 
preference of models that ensure accuracy by minimizing forecast 
errors associated with each model, Ryu and Sanchez (2003). 
Forecast accuracy is generally measured using the mean square 
error (MSE), root mean square error (RMSE), mean absolute 
percentage error (MAPE), Thiel’s U1 and Thiel’s U2 statistics.

4.4.1. MAE
This method takes into the degree of dispersion by assigning all 
errors with equal weights to measure overall accuracy. It measures 
the deviation from the original values. The closer the MAE to 
zero, the better the goodness of fit and thus the better the forecast. 
Models with the MAE are chosen as preferable among competing 
models. MAE is represented by the following equation.

 MAE
n

e
t

n

t�
�
�1
1

| |� (10)

4.4.2. MSE
MSE assigns greater to larger errors to measure overall accuracy 
(average square deviation of forecast values). Similarly, good 

fits tend to have MSE nearly equal to zero. Thus, the closer the 
MSE of a model to zero, the preferable the model. MSE take the 
following representation:
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(11)

4.4.3. RMSE
This is simply the square the root of MSE and shows the degree 
of seriousness of the forecast error denoted in the dimensions of 
the actual and forecast values. This has similar interpretations as 
the MSE in the choice of the most preferable model.

 MSE �  (12)

4.4.4. MAPE
This criterion is a relative measure of MAE which provides 
relatives performances of different forecast items. The lower the 
percentage MAPE, the better the forecast model.

 MAE=
1

n

e

y
t

n

t

t�
�
1

100
| |

%  (13)

4.4.5. Theil’s U
Thiel’s U is a normalized measure of the total forecast accuracy. 
There are two types of Thiel’s U. The first Thiel’s U1 is a measure 
of forecast accuracy (Theil, 1958, pp 31-42); The second Thiel’s 
U2 is a measure of forecast quality.
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Figure 8: Forecast comparison graphs for Exponential Smoothing

Source: Authors’ calculations
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where Ai represents the actual observations and Pi the corresponding 
predictions for the case of U1 whereas in Thiel U2 they represent 
proposed U2 as a pair of predicted and observed changes. Perfect 
forecasts are those with U1 closer to the 0 bound while worst 
forecasts are those closer to 1. U2 can be interpreted as the RMSE 
of the proposed forecasting model divided by the RMSE of a no-
change model. U2 values lower than 1.0 show an improvement 
over the simple no-change forecast.

4.5. Forecast Model Selection Criteria
From Table 5 above, considering the RMSE and MAE, ARIMA 
model provides better performance compared to VAR and Exponential 
smoothing in an inter-model analysis. We observe that the respective 
RMSE and MAE of the ARIMA model (0.038945 and 0.029059 for 
dln_consa, 0.079034 and 0.067008 for dln_expsa and 0.045760 and 
0.030414 for dln_gdpsa) are much lower than the respective RMSE 
and MAE values for the VAR (0.046662 and 0.033823 for dln_consa, 
0.090192 and 0.065262 for dln_expsa and 0.047286 and 0.034870 
for dln_gdpsa) and exponential smoothing (0.067013 and 0.047326 
for dln_consa, 0.101399 and 0.069019 for dln_expsa and 0.076805 
and 0.052021 for dln_gdpsa). This implies that ARIMA minimizes 
the seriousness and dispersion of the forecast errors and provides 
better goodness of fit for the forecast as compared to other models 
based. Additionally, ARIMA better minimizes percentage errors and 
provides better forecast accuracy as indicated by lower MAPE and 
Thiel U1 respectively. Although Thiel’s U2 values for VAR were not 
computed, ARIMA still performs better than exponential smoothing 
by recording lower values which show improvement over the 
naïve forecast. Although ARIMA, outperforms all the models in all 
scenarios, VAR has also shown consistent better performance over 
exponential smoothing over the three series.

5. CONCLUSION

ARIMA provides consistent better performance over VAR and 
Exponential and Exponential smoothing in all measures of 

accuracy. This implies that it minimizes absolute, percentage 
and mean deviation of errors from the original values. It 
also performs better on a normalized scale vindicated by its 
lower values of the Thiel’s U1. VAR follows ARIMA in better 
performance in all measures of accuracy, although its Thiel’s 
U2 measures couldn’t be computed. These findings are in 
contrast to Bilgili (2002) which established a preference for a 
combination of VAR-ES over ARIMA, Combining and Add-
factor method.

Therefore, ARIMA provides better forecast performance than VAR 
and Exponential smoothing on the latest and expanded series of 
crucial variables of the Turkish economy.
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