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ABSTRACT

This research focuses on the empirical comparative analysis of three models of option pricing: (a) The implied volatility daily calibrated Black–Scholes 
model, (b) the Cox and Ross univariate model with the volatility which is a deterministic and inverse function of the underlying asset price and (c) the 
Kou jump diffusion model. To conduct the empirical analysis, we use a diversified sample with options written on three US indexes during 2007: 
Large cap (Standard and Poor 500 [SP 500]), Hi-Tech cap (Nasdaq 100) and small cap (Russell 2000). For the estimation of models parameters, we 
opted for the data-fitting technique using the trust region reflective algorithm on option prices, rather than the more common maximum likelihood or 
generalized method of moments on the history of the underlying asset. The analysis that we conducted clearly shows the supremacy of Kou model. We 
also notice that it provided better results for the Nasdaq 100 and Russell 2000 index options than for the SP 500 ones. Actually, this supremacy comes 
from the ability of this model to be as close as possible of market participant’s behavior thanks to its double exponential distribution characterized by 
three main properties: (a) Leptokurtic feature, (b) psychological specificity of investors and (c) memory-less feature.

Keywords: Jump-diffusion, Kou Model, Leptokurtic Feature, Trust-Region-Reflective Algorithm, US Index Options 
JEL Classifications: C3, C8, G12, G13

1. INTRODUCTION

Theoretical models that are interested in evaluating options 
are generally based on two key elements: The process of the 
underlying asset and the market price of the risk factor. The 
Black–Scholes (BS) model (1973) is based on the assumption 
of a lognormal diffusion process with a constant instantaneous 
volatility. Being the benchmark for derivative assets valuation, 
this model has been, during the last 30 years, the target of several 
empirical studies that have revealed a number of limitations. On 
the one hand, the assumption of log normality of the underlying 
asset has been widely rejected by the autoregressive conditional 
heteroskedasticity literature. On the other hand, the assumption 
of a diffusion process was also rejected by the existence of heavy 
tails of the distribution of returns. Finally, the effect of debt raised 
(Black, 1976), and the existence of a possible correlation between 

the process and the volatility of the underlying asset (Heston, 
1993), Nandi (2000) indicated a complex relationship between 
asset returns and volatility. These empirical limits pushed theorists 
to develop alternate models. Research undertaken thereafter 
considered three approaches:

The univariate models: These are models that have maintained 
the no-arbitrage assumption of the BS model, but gave up the 
assumption of geometric brownian motion. Included are the 
constant elasticity variance model (CEV) of Cox and Ross (1975) 
and Cox (1996) and more recently the trinomial or implied 
binomial tree models of Derman and Kani (1994) and Dupire 
(1994).
• The stochastic volatility models: These models are based on 

the assumption of a volatility of the underlying asset evolving 
in a stochastic manner by following a diffusion process, 
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Heston (1993), Hull and White (1987), Wiggins (1987), and 
the hybrid jump-diffusion process of Duffie et al. (2000)

• The jump diffusion models: That has replaced the underlying 
asset classical diffusion process. Out of which the Merton 
model (1976) remains the most popular.

Very recent studies have attempted to combine these three 
approaches, such as studies by Jones (2003) and Skiadopoulos 
(2000) who have respectively proposed a stochastic generalization 
of the CEV process and the binomial tree model.

Although alternative models have started to appear few years after 
the original BS model, their empirical investigation was hampered 
by several factors. First, market data for options were and still 
remain difficult to collect. Then, the new models are generally 
much more complicated than the BS model and validating them 
empirically needed advanced programming works. Finally, the 
introduction of the concept of risk for certain jump processes 
or of the stochastic volatility models raised the problem of the 
evaluation of this variable.

It is only by the 90s that we began to witness the appearance of 
serious empirical research on this level with the development of 
computers and the progress in mathematical and econometric 
research such as the Fourier inversion technique used by Heston 
(1993), or the non-linear squares technique used by Bakshi et al. 
(1997), Bates (1996a; 1996b), Dumas et al. (1998).

This paper proposes to compare the empirical performance of three 
alternatives to the BS model that belong to three different classes. 
First, the ad-hoc BS model that is praised by practitioners for its 
simplicity and effectiveness. It is simply the BS classical model 
with a daily implied volatility calibration from option pricing. 
Although such procedure seems unorthodox and inconsistent 
with the assumptions of the BS classical model, it provides 
quite suitable results in the evaluation of options, where in his 
paper entitled “How to get the right option price with the wrong 
model?” Berkowitz (2001) showed that, thanks to the daily 
volatility calibration, the ad-hoc BS model arrived to provide 
close performances to those of stochastic volatility models in 
terms of evaluation “in sample.” The second model is the CEV 
model developed by Cox and Ross (1975) better known by the 
abbreviation CEV model that belongs to the class of univariate 
models. By opting for a non-stationary process of the underlying 
asset volatility that is negatively correlated to the price of the 
asset, the CEV model adjusts for some empirical realities: 
(a) The change in volatility over time, (b) the inverse relationship 
between volatility and the price of the underlying asset. The third 
alternative is the jump-diffusion model of Kou (2002) which 
proposes a hybrid process for the underlying asset, consisting 
of a first “diffusion” component the same as in the BS model 
and a second “jump” component following a double exponential 
process. Such a model allows us to understand two major empirical 
phenomena: The Kou model leads to a probability distribution with 
heavy tails (a frequently observed phenomenon of the underlying 
assets distributions) which simply means a greater probability 
for extreme values. Then the Kou model is able to integrate the 
phenomenon of negative skewness (more probability for negative 

outcomes) through the jump signs, by proposing negative jumps 
for the underlying asset return, the model affects more probability 
for negative achievements.

The empirical approach will be structured as follows: We begin 
by presenting the structure of the database used in this study. 
Options traded on the Chicago Board Options Exchange (CBOE) 
during the year 2007 for the three stock indexes Standard and 
Poor 500 (SP 500), Nasdaq 100 and Russell 2000 for a total of 
26, 968 call options (the reason is to check whether technology 
and or small stocks behave in a different manner than those 
stocks that represent best the US economy). Then we conduct 
a comparative analysis between the ad-hoc BS, the CEV model 
and the jump-diffusion Kou model. This analysis aims to verify 
the validity of the assumptions made by each of these models 
by comparing the model prices to market options prices. The 
comparative analysis will also detect any structural bias that 
would affect the performance of each of the three theoretical 
models.

2. CEV MODEL OF COX AND ROSS

Cox and Ross (1975) developed a pricing model of calls that 
verifies the negative relationship between return volatility of the 
underlying asset and its price. In this model, the variance of returns 
is a deterministic function of the underlying asset price and its 
elasticity with respect to price is constant. Specifically, the model 
assumes that the instantaneous rate of return of the underlying 
asset evolves according to the following process:

1 .   . .dS dt S dz
S

  −= +  (1)

µ is the drift rate of the underlying asset return,

δ.Sθ−1 is the instantaneous standard deviation of the underlying 
asset return with δ a strictly positive constant,

dz is a standard Wiener process which follows a normal distribution 
with expectation E(dz)=0 and variance Var(dz)=dt.

The major difference with the BS model is that the volatility 
of returns of the underlying asset δ.Sθ−1 is based on the price 
of the asset. However, if θ = 1, the CEV model coincides with 
the BS model. Whereas, when θ deviates from 1, the process 
that characterizes the underlying asset becomes non-stationary. 
The negative correlation between asset prices and volatility, as 
evidenced by several empirical studies will be checked only if 
θ < 1.hs, the variance elasticity of the underlying asset returns is 
given by,
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We notice that the elasticity is negative only if θ < 1.

Considering an underlying asset that pays no dividend, a price that 
follows the process described in Equation (1), and a constant risk-
free rate r, using the CEV model of Cox, the price of a European 
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call under the risk-neutral probability is equal to the present value 
of the cash-flow expected at maturity:

( ). * .  0,ˆ  r
v tC e E Max S K−  = −   (3)

Cv is the theoretical price calculated using the CEV model, of a 
European call with exercise price K and maturing in τ years,

ˆ
tE  is the expectation operator under the risk-neutral probability,

S* is the expected price of the underlying asset at the call maturity.

Once we identify the distribution of S*, the underlying asset price 
at maturity following the CEV diffusion process as shown by 
Equation (1), we can determine the theoretical price of the call.

Cox’s equation for evaluating options under the CEV assumption 
is defined as follows:
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function.

However, this model continues to consider the parameters δ and θ 
as constants, which does not seem to be a very realistic assumption 
especially when it comes to evaluating options on stock indexes. 
Indeed, if one refers to the idea of a constant negative elasticity, we 
could end up in a vicious circle, since any decline in the stock index 
will increase volatility. This latter increases market fears and causes 
a further decline in the index. With such a mechanism, we may end 
up with a volatility that tends to infinity along with a stock index 
which tends to zero. Such a situation is unlikely. One solution to this 
problem would be to recalibrate the CEV model on a periodic basis 
to update its δ and θ structural parameters like the ad-hoc BS model, 
we proceed to the daily calculation of the structural parameters of 
the CEV model from option prices. For the remainder of this article, 
we will denote model with calibration by CEV.

3. KOU JUMP-DIFFUSION MODEL

The model is quite simple in its logic. The logarithm of the 
underlying asset price is assumed to follow a hybrid jump-

diffusion process. The first component of the process is similar to 
that of BS geometric Brownian motion. The second component 
corresponds to a “Poisson” process jumps with amplitudes 
distributed according to the double exponential distribution. The 
model assumes that the underlying asset price volves according 
to the following process:

( )
( ) ( ) ( )( )

1
 .  .  1

 
N t

ii

dS t
dt dW t d V

S t
 

=
 = + + − − ∑  (5)

W(t) is a standard Brownian motion,

N(t) is a Poisson process with a frequency λ.

Vi is a sequence of positive random variables independently and 
identically distributed such that Y = Log(V) follows a distribution 
with an asymmetric double exponential density function:

( ) { } { }
1 2. .

1 20 0. .  . .y y
y y yf y p e q e  − −

≥ <= +  (6)

η1 > 1; η2 > 0

Where, q > 0; p + q = 1, represent the probabilities of upward and 
downward jumps. The drift μ and the volatility σ are assumed to 
be constants and the Brownian motion and jumps are assumed to 
be one dimensional. In other words,
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Where ξ+ and ξ− are two exponential random variables with means 

1 2
1 1and ,    respectively, and the notation ≜ means equal in 

distribution. Y is the random variable representing the jumps 
that may affect the underlying asset rate of returns. ξ+ and ξ− are 
respectively the amplitudes of the upward and downward jumps.
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 is part of the volatility of 

the underlying asset due to jump risk. This will provide:

Var(S) = σ2 + Var(Y) (8)

There are three interesting properties of the double exponential 
distribution which are fundamental to the model. First, the 
distribution has the leptokurtic feature. This feature that governs 
the jump size distribution is consistent with the empirical 
distribution that characterizes the underlying asset rate of return. 
Then, the double exponential distribution has the memory less 
property. In other words, the current achievements depend, in one 
way or another, on the past achievements. Finally, this distribution 
has a psychological and economic justification. Indeed, it has been 
demonstrated through several empirical studies that markets tend 
to have an overreaction and under-reaction towards various good 
or bad news (Fama, 1998; Barberis et al., 1998). We can then 
interpret the jumps as a market response to new external market 
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information. Thus, in the absence of external information, the 
price of the underlying asset should move according to a Brownian 
motion. Good or bad news occur according to a Poisson process 
and the price of the underlying asset changes in response to this 
news, according to the distribution that governs the size of the 
jump. This distribution can be used to model the overreaction 
(through heavier tails) and the under-reaction (through a larger 
peak). Therefore, the diffusion model with double exponential 
jumps can be interpreted as an attempt to build a simple model 
within the traditional framework of random walk and market 
efficiency that takes into account investor’s attitudes towards 
risk as well.

The European call valuation formula, according to the Kou jump-
diffusion model, is given by:
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X: The probability function of the Kou jump-diffusion model.
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The price of the corresponding put Ψp(0), can be inferred through 
the call-put parity:

Ψp(0)−Ψc(0)=K.e−r.T−S(0) (10)

The Kou model also presents analytical solutions for the evaluation 
of American options, look back options, and other exotic options.

4. OVERVIEW OF THE DATABASE

The final sample used concerns call options on three U.S. indexes, 
the Nasdaq 100, SP 500 and Russell 2000. The final sample that 
combines all categories of options includes 26,968 call options 
traded on the CBOE during 2007and distributed as follows: 7151 
options for the Nasdaq 100 index; 12,499 options for the SP 500 
and finally 7138 options for the Russell 2000 Index. We then 
compiled abstract tables which show the main properties for each 
of the three groups identified.

The final sample is obtained by applying five filters. First, all the 
options with an average price <50 cents were removed. Then the 
options with a spread which is the difference between the ask 
price and bid price divided by the mid-price of this option, where 
that spread represents more than 50% of the average call price 
are removed. These first two filters are meant to eliminate calls 
with a large spread in relation to bid-ask quotations reported by 
the database. We also removed options with a moneyness which 
deviates from the range (−10%, 10%). Indeed, the options that are 

deep out-of-the-money (OTM) or deep-in-the-money (ITM) are 
illiquid and have a low time value which substantially affects the 
predictive power of the estimated parameters value.

Next, we eliminated options with <6 days or over 100 days to 
expiration. The former have almost zero time premiums while 
the latter are illiquid. Finally, all options that do not meet the no-
arbitrage assumption are eliminated. The majority of observations 
eliminated correspond to deep ITM calls.

Table 1 describes the properties of the final sample of SP 500 
calls to be used for our empirical study. The sample is dominated 
by at-the-money (ATM) options with 5599 observations (44.8% 
of the final sample) followed by ITM options with 3970 
observations (31.7% of the sample) and finally OTM options 
with 2930 comments (23.5% of the sample). Referring to the 
criterion of time to expiration, we realize that the sample is 
dominated by options of short and medium term maturities with 
respectively 4792 (38.3% of the sample) and 4496 observations 
(36% of the sample). The long-term options represent only 25.7% 
of the final sample with 3211 observations. The average price of 
SP 500 calls varies from $ 89.13 (long term deep ITM options) 
to $ 0.67 (short term deep OTM calls). The spread ranges from 
2.2% of the call mid-price (long term ITM calls) to 48.2% (short 
term deep OTM calls).

Similarly, the properties of the final sample for Nasdaq 100 and 
Russell 2000 are respectively summarized in Tables 2 and 3.

Table 1: Properties of the final sample of the SP500 calls
Moneyness (%) Time-to-expiration (days) Sub-total

6-30 31-60 61-100
OTM

−10, −6 $0.67 $1.1 $2.31
0.482 0.408 0.305

33 363 599 995
−6, −3 $1.3 $3.72 $7.84

0.317 0.194 0.136
571 843 521 1935

ATM
−3, 0 $5.75 $12.74 $20.11

0.149 0.103 0.083
1221 1089 581 2891

0, 3 $22.94 $29.6 $37.31
0.073 0.064 0.053
1147 1012 549 2708

ITM
3, 6 $82.34 $84.58 $89.13

0.024 0.024 0.022
693 730 502 1925

6, 10 $49.68 $53.88 $59.95
0.039 0.037 0.033
831 755 459 2045

Sub-total 4496 4792 3211 12,499
Prices reported in the table respectively represent the calls mid-price, the effective 
spread (defined as the difference between the bid and ask price of the option divided 
by its average price) and finally the total number of observations for each sample 
subcategory moneyness/time-to-expiration. The sample period is spread over the whole of 
2007 for a total of 12,499 observations. The moneyness equals (S−K.e−r.t)/K.e−r.t. S means 
the spot level of the SP 500. K stands for the strike price, (r) for the risk-free interest 
rate which corresponds to the maturity of the call and (t) the call time-to-expiration. 
OTM, ATM and ITM calls denote the out-of-the-money, at-the-money and in-the-money 
options. Source: Authors
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5. PARAMETERS ESTIMATION AND 
PERFORMANCE MODELS

In order to have a clearer view of the limits of the BS model, we 
represented the evolution of the implied volatility as a function 
of moneyness and time-to-maturity for 2 days arbitrarily chosen 
in our sample. We then obtained two surfaces of the implied 
volatility that highlight the dual structural bias plaguing the 
BS model (Figure 1a and b). The surface traces the evolution 
of volatility across different levels of moneyness and time-to-
expiration. Each point on the surface corresponds to an implied 
volatility obtained through reversing of the BS formula. Indeed, 
referring to these surfaces, we realize that the implied volatility 
generated from the BS model is not unique in space or constant in 
time, which is inconsistent with the hypothesis of log normality 
of the price of the underlying asset on which is based the BS 
model.

Figure 1 the shows two surfaces of the implied volatility for 
2 separate days in the sample. The surface traces the evolution 
of volatility across different levels of moneyness and time-to-
expiration. Each point on the surface corresponds to an implied 
volatility obtained from the SP500 call mid-price, through 
reversing of the BS formula.

The most dramatic change in the volatility is recorded for 
short term options with a volatility smile where OTM and 
ITM options show significantly different volatilities than 
ATM options. Any theoretical model, which presents itself 
as a serious alternative to the BS model, should provide a 
significant improvement mainly to short term options. As the 
time-to-expiration increases, the change in implied volatility 
becomes more moderate with a decreasing pace, commonly 
called the sneer where the most ITM options show the highest 
volatility.

As both phenomena smile and sneer are synonymous with a 
probability distribution with negative skewness and excess 
kurtosis, any acceptable alternative model to BS should propose 
a distribution that integrates these two aspects. Thus, one can 
moderate the effect of the time-to-expiration and the moneyness 
as two generating sources of estimation bias.

5.1. Alternate Models Parameter Estimation:  
Trust-Region-Reflective (TRR) Algorithm
A solution to the parameters estimation problem would be to use 
the maximum likelihood or generalized method of moments to 
identify these estimates from the history of the underlying asset. 
Maekawa et al. (2008) have used this technique to estimate the 
parameters of the Kou model in the Japanese market with more 
than 1, 000 observations out of Nikkei 225 from June 1, 1992 
to December 31, 2002. Then they used the market prices of 
European call options for Nikkei 225 from September 10, 1999 
to December 12, 2002 to evaluate the empirical performance of 
the Kou model. Such a solution can be binding as it requires the 
collection of a large volume of historical data that eventually leads 
to low predictive power estimates. In order to address this gap, 
practitioners and researchers have chosen to derive the estimates 

Table 2: Properties of the final sample of the Nasdaq 100 calls
Moneyness (%) Time-to-expiration (days) Sub-total

6-30 31-60 61-100
OTM

−10, −6 $1.72 $5.92 $14.03
26.5% 18.2% 12.8%

213 712 755 1680
−6, −3 $5.18 $16.71 $29.09

16.9% 11.5% 12.4%
339 486 416 1241

ATM
−3, 0 $16.36 $36.06 $49.44

10.6% 11.3% 11.9%
356 455 401 1, 212

0, 3 $39.9 $58.16 $72.51
9.8% 9.5% 8.8%
336 439 377 1152

ITM
3, 6 $71.77 $86.46 $100.04

7.3% 6.9% 6.6%
276 382 258 916

6, 10 $111.57 $121.26 $133.81
4.9% 5% 5%
274 422 254 950

Sub-total 1794 2896 2461 7151
Prices reported in the table respectively represent the calls mid-price, the effective 
spread (defined as the difference between the bid and ask price of the option divided by its 
average price) and finally the total number of observations for each sample subcategory 
moneyness/time-to-expiration. The sample period is spread over the whole of 2007 for 
a total of 7, 151 observations. The moneyness equals (S−K.e−r.t)/K.e−r.t. S means the spot 
level of the Nasdaq 100. K stands for the strike price, (r) for the risk-free interest rate which 
corresponds to the maturity of the call and (t) the call time to expiration. OTM, ATM and 
ITM calls denote the out-of-the-money, at-the-money and in-the-money. Source: Authors

Table 3: Properties of the final sample of Russell 2000 calls
Moneyness (%) Time-to-expiration (days) Sub-total

6-30 31-60 61-100
OTM

−10, −6 $1.17 $2.69 $5.72
29.7% 17.2% 9.6%

122 541 568 1231
−6, −3 $2.35 $6.25 $10.89

19.6% 8.8% 6.9%
284 470 484 1238

ATM
−3, 0 $5.98 $12.36 $17.7

9.8% 5.9% 4.7%
350 457 463 1270

0, 3 $14.7 $21.4 $26.68
5.2% 3.9% 3.4%
330 441 466 1237

ITM
3, 6 $27.24 $32.59 $37.51

3.1% 2.6% 2.4%
290 411 423 1124

6, 10 $43.13 $47.72 $51.03
1.9% 1.8% 1.8%
257 497 464 1218

Sub-total 1633 2817 2868 7318
Prices reported in the table respectively represent the calls mid-price, the effective 
spread (defined as the difference between the bid and ask price of the option divided by its 
average price) and finally the total number of observations for each sample subcategory 
moneyness/time-to-expiration. The sample period is spread over the whole of 2007 for 
a total of 7, 318 observations. The moneyness equals (S−K.e−r.t)/K.e−r.t. S means the spot 
level of the Russell 2000. K stands for the strike price, (r) for the risk-free interest rate 
which corresponds to the maturity of the call and (t) the call time to expiration. OTM, 
ATM and ITM calls denote the out-of-the-money, at-the-money and in-the-money options. 
Source: Authors
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of the structural parameters from observed option prices. This 
solution has introduced the concept of the implied volatility for the 
BS model. However, the application of such a technique is more 
complicated with models that involve several structural parameters 
at the same time and using much more developed mathematical 
tools than for the case of the BS model.

For this study, we chose to derive the estimates of the structural 
parameters of the Kou model from instant cross sectional price of 
options for each day of the sample solving nonlinear curve-fitting 
(data-fitting) problems in least-squares sense means to find a set 
of parameters β that solve the least squares minimization problem.

( ) ( )( ) 2
min min , i i

i

f F xdata ydata   = − ∑  (11)

The optimization algorithm used for the least squares 
minimization is the TRR. The basic idea behind the TRR approach 
is as follows: Suppose you are at a point β in n-space and you 
want to move to a point with a lower function value f. First, we 
have to approximate f (β) with a simpler function q which is 
defined by the first two terms of the Taylor approximation to 
F at β. This approximation should reasonably reflect the behavior 
of f in a neighborhood N around the point βi. A trial step si is 
computed by minimizing (or approximately minimizing) over 
N. This N is called the trust region and the improved point βi+1 
should also be in this region. N is usually spherical or ellipsoidal 
in shape. The trial step si = βi+1−βi is found by approximately 
solving the equation.

( )( )min , iq s s N ∈  (12)

Where,

( ) 1  
2

T T
i sq s s g s H= +  such that ||Dis|| ≤ Δi (13)

Where, g is the gradient of f at the current point β, H is the 
Hessian matrix, D is a diagonal scaling matrix, Δi is a positive 
scalar corresponding to the trust region size. The trust region is 
adjusted from iteration to iteration. If the computations show that 
the approximate function qi at the current point βi fit the original 
problem well, the trust region can be enlarged. Otherwise, it 
must be shrunk, Byrd et al. (2000). The approximation approach 

followed is to restrict the trust-region sub problem to a two-
dimensional subspace V. In our algorithm, we choose V as the 
linear space spanned by v1 and v2, where v1 is in the direction of 
the gradient g, and v2 is either an approximate Newton direction, 
i.e., a solution to,

H.v2 = −g (14)

In summary, the TRR algorithm involves the following steps:
1. Formulate the two-dimensional trust-region subproblem
2. Solve (12) to determine the trial step si.
3. If f(βi + si) < f(βi), then βi + 1 becomes the current point; 

otherwise βi + 1 = βi
4. Update Δi
5. If the gradient is below a chosen tolerance, the algorithm ends; 

otherwise, repeat and increment i.

Such a technique can significantly reduce the number of 
observations required to estimate and leads to a significant 
improvement in the performance of the evaluation models, Bates 
(1996a; 1996b), Dumas et al. (1998), Bakshi et al. (1997). The 
estimation procedure is as follows:

Step 1: For a well-defined sample, we collect m options, such 
as m is greater than or equal to (n + 1) where n is the number of 
parameters to estimate. In the case of the Kou model, n = 4. Cimarket  
is the market price of the ith call. CiKou  is the theoretical price of the 
ith call calculated using the Kou model. The difference between 
these two prices will depend on the vector ϕ = {σ, λ, η1, η2}. For 
each option (i), we define:

( ) ( ) ( ), ,  , , 
market Koui i i i i i iC t K C t K   = −  (15)

Step 2: We find the vector of parameters that minimizes the sum 
of squared errors between the observed prices and the theoretical 
prices of options.

( )
2

1
 min

N
ii

SSE   
=

≡ ∑   (16)

These two steps are repeated for each option and for each day 
in our sample. The objective function SSE is defined as the sum 
of squared errors, in dollars, of call options prices. The use of 
nonlinear least squares should provide a fair comparison between 

Figure 1: (a) Standard and Poor (SP 500) calls implied volatility surface, June 8, 2007, (b) SP 500 calls implied volatility surface,  
December 10, 2007

Source: Authors
ba
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the three models. We obtain structural parameters estimated 
through option prices for the ad-hoc BS model (implied volatility), 
CEV(0, δ) and Kou’s jump-diffusion {σ, λ, η1, η2}.

5.2. Results of the Estimation
Estimates of the structural parameters of the CEV and the Kou 
jump-diffusion models are included in Table 4 (SP 500), Table 5 
(Nasdaq 100) and Table 6 (Russell 2000).

For the CEV model, estimates show a poor negative correlation 
between the level of the SP 500 index and its volatility. Indeed, as 
θ tends to 1, the CEV model tends to the BS model. Such a result 
is quite logical since the SP 500 index representing the U.S. equity 
market has strongly rebounded after the technology bubble and 
volatility indices have stabilized afterwards. This may explain the 
poor negative correlation generated by the nonlinear least squares, 
which only reflect the renewed confidence of market participants.

For the Kou jump-diffusion model, estimates are quite reasonable 
for a fairly diversified stock index, such as the SP 500, especially 
during stable times. According to the estimation results, the market 
participants anticipate to achieve an average of 3.514 jumps per 
year with average amplitude of −3.51% per jump. The overall 
average volatility that is measured by the variance represents 1.44% 
(being a standard deviation of 11.98%), distributed between 1.05% 
to the “diffusion” component (or standard deviation 10.24%) and 
0.39% for the “jumps” component (being a standard deviation of 
6.23%). In other words, the diffusion process contributes to 73% 
in the overall risk of the underlying asset against only 23% for 
the “jumps” component. The same procedure was repeated for 
options on Nasdaq 100 and Russell 2000.

For the Nasdaq 100 options, daily estimates are close to each other 
as shown by the standard deviation of the estimated parameters, 
equal to 0.0216, with an average of 0.9509. The same observation 
is valid for δ with a standard deviation of 0.0528 and an average of 
0.2252 estimates. However, the daily calibration of the structural 
parameters of the model using nonlinear least squares remains 
useful given the sensitivity of the option price to forecast volatility 
parameters used in the calculation of theoretical prices.

Estimates of Kou model implicit parameters from Nasdaq 
100 options show that there is an average of 5.796 jumps per 
year. The average amplitude of the jump is equal to −3.925%, 
where the average amplitude is calculated using the following 

formula: E Y
p q( ) = −
 1 2

. Y is the amplitude of the jump on the 

index return. p and q are respectively the probabilities of upward 
and downward jumps. p = q = 0.5. The Nasdaq 100 has an overall 
instantaneous variance equal to 3.68% (an overall standard 
deviation of 19.18%). Jumps contribute to 14.4% on the actual 
index volatility against 85.6% for the component “diffusion” 
process. However, it is worth noting that compared to the SP 500 
options, the estimated parameters for the Nasdaq 100 options show 
a significantly higher overall volatility and negative amplitude of 
jumps three times larger than the SP 500 options. Such a result 
stems from the different characteristics of the two indexes. While 
the SP 500 contains the 500 largest market capitalization of the 

U.S. economy, the Nasdaq 100 is limited to the 100 most highly 
capitalized technology companies naturally belonging to one of 
the riskiest sectors of the American economy.

Table 4: Estimation of structural parameters for CEV and 
Kou models – SP 500 options
Parameters Mean±Standard deviation

CEV Kou
θ 0.8963±0.0429
δ 0.2036±0.0481
σ 0.1024±0.011
λ 3.514±1.174
η1 379.179±180.957
η2 13.746±3.112
For each day of the sample, the structural parameters of the CEV Cox and 
jump-diffusion Kou models are estimated by minimizing the sum of squared errors 
between the observed option price and its theoretical price determined by each of 
the two models. These estimates will be realized for each day of the sample using 
the technique of nonlinear least squares. The table brings forward the estimates and 
the corresponding standard deviation for each parameter. CEV refers to Cox’s CEV 
model (1976) whereas Kou refers to the Kou’s jump-diffusion model (2002). θ and δ are 
the structural parameters of the CEV model and correspond to the elasticity of volatility 
and to a positive scalar. σ, λ, η1, η2 are the structural parameters to be estimated for 
the model of Kou. σ designates the portion of the volatility generated by the diffusion 
process component. λ refers to the average number of jumps per year. η1 and η2 
respectively control the amplitude of upward jumps (η1) and downward jumps (η2). The 
average amplitude is equal to p/η1−q/η2. p and q denote the probabilities of an upward or 
a downward jumps. p=q = 0.5. Source: Authors. CEV: Constant elasticity variance,  
SP 500: Standard and Poor 500

Table 5: Estimation of structural parameters for CEV and 
Kou models – Nasdaq 100 options

Mean±Standard deviation
Parameters CEV Kou
θ 0.9509±0.0216
δ 0.2252±0.0528
σ 0.1776±0.3313
λ 5.7906±1.9921
η1 243.3514±91.365
η2 12.104±3.001
For each day of the sample, the structural parameters of the CEV Cox and 
jump-diffusion Kou models are estimated by minimizing the sum of squared errors 
between the observed option price and its theoretical price determined by each of 
the two models. These estimates will be realized for each day of the sample using 
the technique of nonlinear least squares. The table brings forward the estimates and 
the corresponding standard deviation for each parameter. CEV refers to Cox’s CEV 
model (1976) whereas Kou refers to the Kou’s jump-diffusion model (2002). θ and δ are 
the structural parameters of the CEV model and correspond to the elasticity of volatility 
and to a positive scalar. σ, λ, η1, η2 are the structural parameters to be estimated for 
the model of Kou. σ designates the portion of the volatility generated by the diffusion 
process component. λ refers to the average number of jumps per year. η1 and η2 
respectively control the amplitude of upward jumps (η1) and downward jumps (η2). The 
average amplitude is equal to p/η1−q/η2. p and q denote the probabilities of an upward or 
a downward jumps. p=q = 0.5. Source: Authors. CEV: Constant elasticity variance

Table 6: Estimation of structural parameters for CEV and 
Kou models – Russell 2000 options

Mean±Standard deviation
Parameters CEV Kou
Θ 0.9555±0.0214
Δ 0.1982±0.0334
Σ 0.1654±0.0233
Λ 6.221±2.66
η1 153.6922±86.0209
η2 15.6833±4.0418
CEV: Constant elasticity variance
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Compared to SP 500 and Nasdaq 100 options, the estimated 
parameters for the Russell 2000 options show a global volatility 
that is much higher than that of SP 500 options but lower than 
that Nasdaq 100 options. Although the Russell 2000 is the most 
diversified index grouping 2000 American firms, the “size” effect 
still works in favor of the SP 500 Index. Whereas, the Nasdaq 
100 index continues to be penalized by both low diversification 
and more volatile stocks even though it contains firms with 
significantly larger market capitalization than those of the Russell 
2000.

For each day of the sample, the structural parameters of the CEV 
Cox and jump-diffusion Kou models are estimated by minimizing 
the sum of squared errors between the observed option price and 
its theoretical price determined by each of the two models. These 
estimates will be realized for each day of the sample using the 
technique of nonlinear least squares. The table brings forward 
the estimates and the corresponding standard deviation for each 
parameter. CEV refers to Cox’s CEV model (1976) whereas Kou 
refers to the Kou’s jump-diffusion model (2002). θ and δ are the 
structural parameters of the η2are the structural parameters to be 
estimated for the model of Kou. σ designates the portion of the 
volatility generated by the diffusion process component. λ refers to 
the average number of jumps per year. η1 and η2 respectively control 
the amplitude of upward jumps (η1) and downward jumps (η2). 
The average amplitude is equal to p/η1−q/η2. p and q denote the 
probabilities of an upward or a downward jumps. p=q=0.5.

Daily estimates of the two parameters θ and δ release respective 
averages of 0.9555 for the parameter θ, and 0.1982 for the 
parameter δ. These estimates show an almost zero correlation 
between the level of the Russell 2000 index and its volatility, 
as evidenced by the estimate of θ which is much closer to 1, the 
threshold for which the CEV model coincides with the BS model.

For the Kou jump-diffusion model, estimates show that there 
is an average of 6.22 jumps per year - the highest number of 
jumps compared to SP 500 and Nasdaq 100 indexes. The average 
amplitude of the jump, equal to −3.925%, is identical to that 
of the options on Nasdaq 100. The Russell 2000 index has an 
instantaneous variance equal 3.065% (being a total standard 
deviation of 17.51%). Jumps contribute to 10.73% on the 
actual volatility of the index against 89.27% for the component 
“diffusion” process.

5.3. Performance Models
Three criteria were used to conduct a comparative analysis between 
the three models:
• The mean squared errors: This is the average of the squared 

differences between the observed price of the option and its 
theoretical price calculated using each of the three models. 
This measure gives more weight to ITM calls compared to 
other options in the sample.

• The mean absolute error: At first, the absolute value of the 
difference is calculated for each option between the observed 
mid-price of the option and its theoretical price. Then, the 
average difference was reported at the observed mid-price. 
This will calculate the percentage of the estimation error for 

each model. Such a measure tends to give greater weight to 
evaluation errors related to the calls OTM at the expense of 
other options.

• The frequency: This is the number of times where each model 
has led to the estimation error (mean absolute error) that is 
lowest compared to the other two models.

This comparative analysis will be conducted by sub-sample 
“moneyness/time-to-expiration” instead of testing the performance 
of the three models for the entire sample as a single compact 
component. Such an approach should allow a better understanding 
of the elements that may represent sources of estimation bias for 
our theoretical models. The results are summarized in Tables 7-9 
respectively for the SP 500, Nasdaq 100 and Russell 2000 indexes.

Table 7 summarizes these criteria divided into nine sub-samples 
that are usually based on the moneyness and time-to-expiration. 
The jump-diffusion model of Kou largely outperforms the CEV 
and ad-hoc BS models for all subcategories of the table. The 
superiority of the model becomes more evident as one moves away 
from the ATM calls and notably for ITM ones where the average 
relative error records its lowest level throughout the sample.

This result was predictable since the Kou model was the only 
one of the three models studied to take into account the aspect of 
the leptokurtic distribution of the underlying asset. Thus, excess 
kurtosis can be integrated via the amplitude and frequency of 
jumps while the negative skewness was present throughout the 
anticipated jump sign (negative jumps).

We also note that the performance of the model does not seem to 
suffer a lot from moneyness or time-to-expiration changes. The 
performance of the Kou model can be explained by several factors. 
First, the choice of a double exponential distribution, which 
characterizes the jumps, has improved the quality of estimates 
since it is more likely to reflect the extreme. Then, the technique 
of the structural parameters estimation of the model based on the 
nonlinear least squares has identified estimates based on option 
prices rather than time series of returns of the SP 500 index, as 
Bates (2000) showed that only sporadic jumps with large amplitude 
are able to achieve results that deviate significantly from the BS 
model. But such jumps are difficult to detect from the time series 
of the underlying asset.

Once we examine the performance of the CEV model, we note 
that even though we have applied the same method to estimate 
the Kou model (The estimate of the model structural parameters is 
made with nonlinear least squares technique using cross sectional 
SP 500 options prices) and have made a daily calibration of the 
structural parameters, the performance of the CEV model remains 
widely below those of the Kou model.

The CEV model provides the worst results for ITM options where 
he concedes the second position to the ad-hoc BS model for both 
short-term options, medium and long-term options. We can explain 
this result by the poor negative correlation between the index 
level and its volatility especially that we know that 2007 was a 
relatively “quiet” year. The inverse relationship between the price 
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Table 7: In-sample performance evaluation models for SP 500 options
Moneyness (%) Time-to-expiration (days)

6-30 31-60 61-100
Kou CEV BS Kou CEV BS Kou CEV BS

OTM
−10, −6 0.101 0.339 0.451 0.045 0.568 4.654 0.09 1.22 14.189

46.5% 88.1% 71.3% 18.8% 70.1% 146.8% 11.04% 55.2% 142.3%
(15) (0) (18) (322) (4) (37) (556) (31) (12)

−6, −3 0.058 0.332 3.856 0.095 0.646 12.731 0.147 1.236 26.815
18.6% 46.2% 129.8% 8.87% 24.5% 103.4% 3.83% 14.9% 55.4%
(456) (66) (49) (642) (189) (12) (431) (88) (2)

ATM
−3, 0 0.123 2.731 8.254 0.114 3.668 18.894 0.188 3.297 26.268

6.52% 26.3% 62.7% 2.45% 14.1% 30.5% 1.72% 7.6% 17.6%
(1102) (108) (11) (1040) (42) (7) (493) (50) (38)

0, 3 0.169 2.231 5.09 0.096 2.032 13.89 0.232 1.862 24.173
1.57% 6.6% 8.3% 0.82% 4.6% 7.9% 0.97% 3.1% 7.1%
(881) (148) (118) (824) (68) (106) (380) (78) (91)

ITM
3, 6 0.191 2.669 1.573 0.14 8.489 5.785 0.255 16.318 14.107

0.55% 2.8% 1.9% 0.49% 5.1% 2.8% 0.64% 6.4% 3.9%
(630) (94) (107) (644) (4) (107) (401) (0) (58)

6, 10 0.311 1.167 0.921 0.309 5.116 2.884 0.2 19.862 7.501
0.47% 1% 0.9% 0.5% 2.4% 1.5% 0.39% 4.7% 2.3%
(449) (118) (113) (530) (75) (125) (464) (4) (34)

Table 7 shows the three criteria used to assess the quality of the estimate of each of the three valuation models. These three criteria are, in order of appearance in the table, the mean 
squared errors, the mean absolute error and the frequency (in parentheses). The mean squared error is calculated from the squared deviations and calculated for each of the options in the 
sample using the theoretical price and the observed price. The mean absolute error is the average of the absolute values of differences between the theoretical option price and observed 
price, divided by the observed prices. Frequency reports the number of calls for which each of the three theoretical models released the lowest mean absolute error compared to the two 
other models. These three criteria are calculated for each moneyness/time-to-expiration sub-sample. The moneyness is equal to (S−K.e−r.t)/K.e−r.t. S means the spot level of the SP 500 
index. K stands for the strike price while (r) stands for the risk-free interest rate corresponding to the maturity of the call and (t) the time-to-expiration. OTM, ATM and ITM calls denote 
the out-of -the-money, at-the-money and in-the-money. Source: Authors. CEV: Constant elasticity variance, BS: Black–Scholes, SP 500: Standard and Poor 500

Table 8: In-sample performance evaluation models for Nasdaq 100 options
Moneyness (%) Time-to-expiration (days)

6-30 31-60 61-100
Kou CEV BS Kou CEV BS Kou CEV BS

OTM
−10, −6 0.155 0.504 5.058 0.386 2.06 11.906 0.43 6.6 11.793

18.8% 47.6% 129.4% 12% 27.7% 78.7% 2.9% 20.1% 28.8%
(176) (23) (12) (520) (139) (6) (644) (35) (17)

−6, −3 0.399 2.836 9.295 0.883 5.913 11.121 1.471 5.362 4.772
11.3% 27.4% 73.4% 4.2% 12.2% 23.5% 1.9% 5.8% 7.3%
(276) (58) (5) (403) (74) (9) (302) (60) (54)

ATM
−3, 0 1.216 23.685 7.791 1.451 21.17 3.52 2.641 10.917 4.389

5% 33.5% 22.3% 1.9% 14% 5.3% 1.5% 6% 3.5%
(330) (4) (22) (375) (1) (79) (315) (43) (43)

0, 3 2.492 12.797 1.984 3.468 9.06 5.395 4.072 5.007 21.202
2.2% 9.4% 3% 1.4% 4.6% 3.2% 1.2% 2.4% 5.7%
(224) (19) (93) (322) (51) (66) (289) (79) (9)

ITM
3, 6 1.086 6.988 9.138 3.226 16.31 19.484 3.519 30.643 48.983

1% 2.7% 3.8% 0.9% 3.9% 4.8% 0.7% 5.1% 6.6%
(192) (59) (25) (340) (32) (10) (251) (3) (4)

6, 10 1.419 16.446 20.176 3.858 38.755 35.235 5.164 79.557 73.52
0.7% 2.9% 3.7% 0.8% 4.4% 4.6% 0.6% 6.4% 6.2%
(216) (29) (27) (372) (31) (15) (247) (1) (4)

Table 8 shows the three criteria used to assess the quality of the estimate of each of the three valuation models. These three criteria are, in order of appearance in the table, the mean 
squared errors, the mean absolute error and the frequency (in parentheses). The mean squared error is calculated from the squared deviations and calculated for each of the options in the 
sample using the theoretical price and the observed price. The mean absolute error is the average of the absolute values of differences between the theoretical option price and observed 
price, divided by the observed prices. Frequency reports the number of calls for which each of the three theoretical models released the lowest mean absolute error compared to the two 
other models. These three criteria are calculated for each moneyness/time-to-expiration sub-sample. The moneyness is equal to (S−K.e−r.t)/K.e−r.t. S means the spot level of the Nasdaq 100 
index. K stands for the strike price while (r) stands for the risk-free interest rate corresponding to the maturity of the call and (t) the time-to-expiration. OTM, ATM and ITM calls denote 
the out-of-the-money, at-the-money and in-the-money. Source: Authors, CEV: Constant elasticity variance, BS: Black–Scholes, SP 500: Standard and Poor 500
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of the underlying asset and its volatility was first introduced to the 
options with the argument of the leverage effect. In the absence of 
such an effect for indexes, the only plausible argument to explain 
this inverse relationship would be the panic effect in the presence 
of downside market movements. This could be explained by the 
inability of the CEV model to figure kurtosis excess that has always 
characterized the performance of indexes.

Finally, the ad-hoc BS model has usually a good performance 
for at-the-short term options. For ITM options it provides the 
best performance ahead of the CEV model and rivaling with the 
Kou model which is another less expected result. Once more, this 
result confirms that the short term ITM options are less sensitive 
to the choice of models and structural parameters. However, 
as one moves towards OTM options, the generated results are 
deteriorating in a spectacular way including a time-to-expiration 
above 30 days. Unfortunately, the daily calibration of volatilities 
was not able to offset these biases due to the unrealistic assumption 
of the lognormal asset price. Such a hypothesis is unable to 
integrate the phenomena that are empirically proved of high 
kurtosis and non-zero skewness.

The results for the Nasdaq 100 options in Table 8 confirm those 
already presented in Table 7 for the SP 500 options. The main 
conclusions are maintained for Russell 2000 options in Table 9 
except for the CEV model which was less efficient than it was for 
the SP 500 and Nasdaq 100 options. Also, the ad-hoc BS model 
was outperformed in most sub-samples, especially for ATM and 
ITM options. This result was expected as long as the estimation of 

the structural parameters of the Cox model showed a θ = 0.9555 
against 0.8963 for the SP500 and θ = 0.9509 options for Nasdaq100 
options. Nonetheless, let’s remember that the more θ is close to 1, 
the greater the CEV model coincides with the BS model.

5.4. Estimation Errors and Regression
We conduct a regression analysis to identify the factors responsible 
of the estimation errors for all the three models. By estimation 
error, we mean the mean absolute error ϑi(t) which is a function of 
moneynessi(t) the degree of moneyness, τi(t) the time to expiration, 
and of spreadi(t) the spread relative to the ith call observed at 
date (t). This regression performed using the technique of ordinary 
least squares will be applied to each of our three indexes. It will 
cover all 12,499 SP 500 calls, the 7151 Nasdaq 100 calls and 
the 7318 Russell 2000 calls. The regression equation is of the 
following form:

ϑi(t) = β0 + β1moneynessi(t)+β2∙τi(t) + β3∙spreadi(t) + εi(t) (17)

Regression for SP 500 options (Table 10) shows that, regardless 
of valuation models, all variables have a significant explanatory 
power at the confidence level of 1% estimation errors. In other 
words, the estimation errors of the three valuation models are, in 
part, due to moneyness, time-to-expiration or spread bias.

The magnitude of this bias differs, however, from one model to 
the other. The moneyness bias is the highest for the ad-hoc BS 
model. The percentage of the estimation error for this model is 
expected to increase by 5.347 points every time the moneyness 

Table 9: In-sample evaluation performance models for Russell 2000 options
Moneyness (%) Time-to-expiration (days)

6-30 31-60 61-100
Kou CEV BS Kou CEV BS Kou CEV BS

OTM
−10 0.027 0.53 0.133 0.035 0.129 0.314 0.14 1.722 0.468
−6 0.118 0.64 0.327 0.054 0.462 0.24 0.033 0.266 0.122

(94) (2) (26) (495) (0) (46) (516) (17) (35)
−6, 0.061 0.198 0.555 0.043 0.353 0.491 0.08 0.489 0.278
−3 0.107 0.233 0.425 0.025 0.104 0.132 0.013 0.058 0.041

(211) (64) (9) (376) (69) (25) (347) (57) (79)
ATM

−3, 0.103 2.025 1.167 0.057 1.923 0.409 0.1 1.799 0.241
 0 0.051 0.256 0.244 0.012 0.114 0.048 0.011 0.074 0.015

(326) (17) (7) (385) (0) (72) (286) (2) (175)
0, 0.164 2.147 0.933 0.056 1.282 0.509 0.136 0.975 0.810
3 0.018 0.114 0.068 0.007 0.054 0.018 0.009 0.035 0.024

(289) (14) (27) (321) (27) (92) (372) (54) (39)
ITM

3, 0.237 0.666 0.892 0.066 1.053 0.793 0.125 1.63 1.651
 6 0.011 0.024 0.025 0.005 0.026 0.016 0.006 0.03 0.03

(204) (60) (26) (323) (30) (58) (388) (26) (9)
6, 0.356 1.204 0.904 0.172 2.722 0.972 0.124 6.052 1.992
10 0.009 0.022 0.176 0.006 0.031 0.135 0.004 0.048 0.024

(193) (30) (33) (348) (41) (108) (440) (2) (22)
Table 9 shows the three criteria used to assess the quality of the estimate of each of the three valuation models. These three criteria are, in order of appearance in the table, the mean 
squared errors, the mean absolute error and the frequency (in parentheses). The mean squared error is calculated from the squared deviations and calculated for each of the options in the 
sample using the theoretical price and the observed price. The mean absolute error is the average of the absolute values of differences between the theoretical option price and observed 
price, divided by the observed prices. Frequency reports the number of calls for which each of the three theoretical models released the lowest mean absolute error compared to the two 
other models. These three criteria are calculated for each moneyness/time-to-expiration sub-sample. The moneyness is equal to (S−K.e−r.t)/K.e−

r.t. S means the spot level of the Russell 
2000 index. K stands for the strike price while (r) stands for the risk-free interest rate corresponding to the maturity of the call and (t) the time-to-expiration. OTM, ATM and ITM calls 
denote the out-of-the-money, at-the-money and in-the-money. Source: Authors. CEV: Constant elasticity variance, BS: Black–Scholes, SP 500: Standard and Poor 500



Abbasi, et al.: Kou Jump Diffusion Model: An Application to the SP 500, Nasdaq 100 and Russell 2000 Index Options

International Journal of Economics and Financial Issues | Vol 6 • Issue 4 • 20161928

decreases by one point. Yet, the bias of the moneyness decreases 
with the CEV model. Hence, the error estimation should increase 
by 1.517 points every time the moneyness decreases by one 
point. That is to say that the CEV model offers a better diffusion 
process than the ad-hoc BS model. Finally, the bias of moneyness 
is lower for the Kou jump- diffusion model. The error estimation 
of this model should increase by only 0.319 points every time the 
moneyness decreases by one point. This improvement is due to 
a better process modeling of the underlying asset, thus a better 
volatility estimate thanks to the introduction of jumps in addition 
to the diffusion process.

The bias of the residual time is much more discreet than the 
moneyness for all of the three models. This is due to the daily 
calibration which allows updating the structural parameters. 
Such a result is consistent with other studies that have shown that 
with such a calibration, the BS model was able to mimic, in an 
acceptable manner, the stochastic volatility models, Bakshi et al. 
(1997), Bates (2003), Berkowitz (2001).

The same observation is valid for the CEV model that has been 
able best to mitigate the time-to-expiration bias factor. This 
performance is due to two factors. First, the daily calibration of 
the model parameters has been updated daily. Then, using the 
process proposed by the CEV model, the volatility does not change 
in a purely stochastic manner but is inversely related to the price 
of the underlying asset, as demonstrated by several empirical 
studies, Heston and Nandi (2000), Jones (2003), Nandi (1998). 
Regression releases the same trends for Nasdaq 100 options as 
shown in Table 11.

Unlike the SP 500 and Nasdaq 100 options, the ad-hoc BS model 
for Russell 2000 options no longer suffers from the moneyness 
bias with an estimated coefficient close to zero (−0.01) and in 
addition insignificant at the 1% and 5% levels. This result is 
surprising when compared to estimates for the SP 500 (−5.347) and 
Nasdaq 100 (−1.778) moneyness coefficients. Also, the coefficient 
on the bias of the residual time (−0.292) is significantly lower, 
in absolute value, than the estimates found for the Nasdaq100 
options (−1.208).

These results give an idea of the progress made by the ad-hoc 
BS and clearly visible in Table 12 where the model has claimed 
the second place to CEV model of Cox. The Kou jump-diffusion 
model continues meanwhile to outperform the ad-hoc BS and CEV 
models with estimated coefficients very close to zero.

6. CONCLUSION

The present work was interested in empirically validating three 
evaluation options models, the ad-hoc BS model, the Cox CEV 
model and the Kou jump-diffusion model using call options, 
negotiated during the year 2007, on the SP 500 index, the Nasdaq 
100 index and the Russell 2000 index. The CEV model uses a 
diffusion process with the volatility which is a deterministic and 
inverse function of the underlying asset price. The Kou model offers 
meanwhile a hybrid model with a hybrid jump-diffusion process 
where volatility evolves in a stochastic manner. In order to perform 

these calculations, we must first estimate the structural parameters 
for all of the three models. To do so, we choose the nonlinear least 
squares econometric technique on cross sectional option prices.

A comparative analysis between the three models, based on the 
evaluation of the theoretical price of 12, 499 options on the SP 
500; 7, 151 options on the Nasdaq 100 and 7, 318 options on the 
Russell 2000, shows a clear superiority of the Kou jump-diffusion 
model which vastly outperforms the two other models for the 
entire sample. This result shows that the implied distribution 
over the underlying asset is generally different from the objective 
distribution. The first is determined by the mood of market 
participants and their expectations for the future, while the second 
is simply based on the history of the underlying asset price without 
considering the psychological aspect of market participants.

Table 10: Regression results for the SP 500 options
Models Parameters R2

adjusted

Constant Moneyness Time Spread
Ad-hoc BS 0.233*** −5.347*** −0.207** 1.879*** 0.306

(0.023) (0.272) (0.098) (0.155)
CEV 0.085*** −1.517*** −0.113*** 0.848*** 0.604

(0.004) (0.055) (0.019) (0.027)
Kou 0.023*** −0.319*** −0.128*** 0.325*** 0.438

(0.002) (0.025) (0.009) (0.015)
Table 10 shows the regression results for equation (17). The endogenous variable, 
designated by ϑi(t), is the mean absolute error calculated at date (t) equal to the absolute 
value of the difference between the theoretical and observed prices of the ith option 
price divided by the observed price. moneynessi(t), τi(t), spreadi(t) are respectively the 
degree of moneyness, time-to-expiration and the spread relative to the ith call observed 
at the date (t). The moneyness is equal to (S−K.e−r.t)/K.e−r.t. The spread will be equal to 
the difference between the bid and ask price of the option divided by its mid-price. ε is 
the residual term. Ad0hoc BS is the Black-Scholes model with a daily implied volatility 
calibration. CEV model is the Cox CEV with a daily calibration of elasticity. KOU is 
the jump-diffusion model of Kou. The regression is performed for each of the 3 models 
using all 12,499 SP 500 calls which constitute our sample. The sample period spans 
2007. The coefficient estimates appear in the first line for all three models. Figures in 
parentheses are standard deviations of the estimates. ***to mean that the estimate is 
significant to the 1% error. **to indicate that it is significant to the 5% error. Source: 
Authors. CEV: Constant elasticity variance, BS: Black–Scholes, SP 500: Standard and 
Poor 500

Table 11: Regression results for the Nasdaq 100 options
Models Parameters R2

adjusted

Constant Moneyness Time Spread
Ad-hoc BS 0.0357** −1.778*** −1.208*** 3.162*** 0.522

(0.0169) (0.107) (0.053) (0.137)
CEV 0.131*** −1.124*** −0.658*** 0.774*** 0.419

(0.008) (0.048) (0.028) (0.056)
KOU 0.016*** −0.220*** −0.232*** 0.469*** 0.269

(0.004) (0.025) (0.013) (0.034)
Table 11 shows the regression results for Equation (17). The endogenous variable, 
designated by ϑi(t), is the mean absolute error calculated at date (t) equal to the absolute 
value of the difference between the theoretical and observed prices of the ith option 
price divided by the observed price. moneynessi(t), τi(t), spreadi(t) are respectively the 
degree of moneyness, time-to-expiration and the spread relative to the ith call observed 
at the date (t). The moneyness is equal to (S−K.e−r.t)/K.e−r.t. The spread will be equal to 
the difference between the bid and ask price of the option divided by its mid-price. ε is 
the residual term. Ad-hoc BS is the Black-Scholes model with a daily implied volatility 
calibration. CEV model is the Cox CEV with a daily calibration of elasticity. KOU is the 
jump-diffusion model of Kou. The regression is performed for each of the three models 
using all 7, 151 Nasdaq 100 calls which constitute our sample. The sample period spans 
2007. The coefficient estimates appear in the first line for all three models. Figures in 
parentheses are standard deviations of the estimates. ***To mean that the estimate is 
significant to the 1% error. **To indicate that it is significant to the 5% error. Source: 
Authors. CEV: Constant elasticity variance, BS: Black–Scholes, SP 500: Standard and 
Poor 500
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We also notice that the Kou model provided better results for the 
Nasdaq 100 and Russell 2000 index options than for the SP 500 
ones, despite the fact that empirical analysis has focused on the 
same period. This improvement has its origin in the very nature 
of each of the three indexes. Thus the Nasdaq 100 is much less 
diversified than the SP 500 while the Russell 2000 is composed 
of small cap stocks. These effects of both “diversification” and 
“size” mean that the Nasdaq 100 and Russell 2000 have a much 
more unstable volatility than that of the SP 500. In other words, 
these two indexes have a greater probability for the realization of 
extreme values that is consistent with the assumptions of jump-
diffusion models.
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Table 12: Regression results for the Russell 2000 options
Models Parameters R2

adjusted

Constant Moneyness Time Spread
Ad-hoc BS 0.029*** −0.01 −0.292*** 1.472*** 0.575

(0.004) (0.028) (0.018) (0.023)
CEV 0.053*** −0.734*** −0.154*** 1.418*** 0.634

(0.004) (0.03) (0.018) (0.024)
KOU 0 0.039*** −0.047*** 0.436*** 0.327

(0.003) (0.013) (0.008) (0.01)
The table shows the regression results for Equation (17). The endogenous variable, 
designated by ϑi(t), is the mean absolute error calculated at date (t) equal to the absolute 
value of the difference between the theoretical and observed prices of the ith option 
price divided by the observed price. moneynessi(t), τi(t), spreadi(t) are respectively the 
degree of moneyness, time-to-expiration and the spread relative to the ith call observed 
at the date (t). The moneyness is equal to (S−K.er.t)/K.e−r.t. The spread will be equal to 
the difference between the bid and ask price of the option divided by its mid-price. ε is 
the residual term. Ad-hoc BS is the Black-Scholes model with a daily implied volatility 
calibration. CEV model is the Cox CEV with a daily calibration of elasticity. KOU is 
the jump-diffusion model of Kou. The regression is performed for each of the 3 models 
using all 7, 318 Russell 2000 calls which constitute our sample. The sample period 
spans 2007. The coefficient estimates appear in the first line for all three models. Figures 
in parentheses are standard deviations of the estimates, where ***To mean that the 
estimate is significant to the 1% error and **To indicate that it is significant to the 5% 
error. Source: Authors. CEV: Constant elasticity variance, BS: Black–Scholes, SP 500: 
Standard and Poor 500


