

Optimal Controller Design and Dynamic Performance Enhancement of High Step-up Non-Isolated DC-DC Converter for Electric Vehicle **Charging Applications**

Rajanand Patnaik Narasipuram^{1, 2*}, Narendra Kumar Muthukuri^{1, 2}, Subbarao Mopidevi²

¹Eaton India Innovation Center, Vehicle Group, Pune, INDIA ² Laboratory of Electric Vehicles-EV Lab, Department of Electrical & Electronics Engineering, Vignan's Foundation for Science Technology and Research, INDIA

*Corresponding author E-mail: rajanand.ee@gmail.com

Abstract – Ideally, traditional boost converters can achieve a high conversion ratio with a highduty cycle. But, in regular practice, due to low conversion efficiency, RR reverse-recovery, and EMI (electromagnetic interference) problems, the high voltage gain cannot be performed, whereas CIBC (coupled inductor-based converters) can achieve high voltage gain by re-adjusting the turn ratios. Even though the leakage inductor of the CI (coupled inductor) makes some problems like voltage spikes on the main connectivity switch, high power dissipation, and voltage pressure can be minimized by voltage clamp. In this paper, a non-isolated DC-DC converter with high voltage gain is demonstrated with 3 diodes, 3 capacitors, 1-inductor, and a coupled inductor. The main inductor is connected to the input to decrease the current ripple. The voltage stress at main switch S is shared by diode D_1 and capacitor C_1 and the main switch is turned ON under zero current, hence it turns to low switching losses. This paper proposes two controllers like proportionalintegral (PI) controller and fuzzy logic (FLC) for dc-dc converter. Furthermore, it demonstrates the operation, design, mathematical analysis, and performance of DC-DC converter using controllers for efficient operation of the system is performed using simulations in MATLAB 2012b.

Keywords: EV, Electric Vehicles, proportional integral, PI, On-Board Charger, fuzzy logic, FL, DC-DC

Received: 08/11/2022 - Revised 28/11/2022 - Accepted: 05/12/2022

I. Introduction

Generally, environmental problems are caused by using non-renewable energy resources like fossil fuels, coal energies, etc. So by using PV, wind, and Tidal energy the environmental problems are reduced. This energy's applied at the input side or Distribution generation (DG) systems. Due to the climatic effects the voltage gain will be reduced [1-3]. It's the major drawback of using renewable energy sources. Moreover, it's an effective method, by using PV panels the number of PV cells is connected in series so that output voltage across the PV panel will be improved. A dark effect cannot be obtained

[4-5]. The main advantages are a large transmission ratio, excessive voltage gain, and small size [6-8]. Input current ripples are the main consideration by using photo voltaic and fuel cell applications. Moreover, similar advantages are getting by using an ideal converter but during the practical conditions due to less Transmission efficiency, reverse recovery, and EMI problems high voltage gain will not achieve [9-10], [28]. However, many converters with different new techniques have been introduced for getting high voltage gain and high transmission efficiency [11], [24].

Switched capacitors [11-13] and voltage lift techniques [14-16] have been introduced for improving the voltage gain. High current ripples at the input side are the main disadvantage so it reduces the performance and efficiency of the converter. Recently there are many nonisolated coupled inductors-based converter are presented with different voltage clamping circuits [19-25]. They have the merit of high voltage gain; recovery of the leakage inductor's energy and low switching voltage stress are the main features and have the main drawback of high input current ripple. This makes problems in tracking the maximum power point (MPP) of PV panels. The proposed converter Figure 1 has excessive voltage gain by maintaining the required turn ratio. Moreover, using a Leakage inductor across the coupled inductor [17-19] produces voltage spikes across the main switch so it leads to more power discharge. By providing voltage clamping circuits the power stored in the leakage inductor will be recovered. So, it's very important to provide voltage clamping circuits across the main switch S.

Figure. 1. Schematic of Non-Isolated DC-DC converter

The inductor is connected in series to the input side for minimizing the ripple currents at the input side. The voltage stress across switch S is shared by diode D_1 and capacitor C_1 and the main switch is turned on under zero current switching and conduction losses also decreased.

II. Operating principle and Analysis

Operating principle and analysis, consider to 1) all capacitors C and inductors L & L_m are taken large beyond any ripple voltages and currents, 2) Only leakage inductance I_{LK} is considered.

II.1. CCM Analysis of the non-isolated dc-dc Converter

It consists of 5 time intervals in a single switching period. Figure. II to Figure. VII shows a flow of the

current path in CCM mode. The N_S current of the nonisolated coupled inductor is:

$$i_{LS} = \frac{i_{Lm} - i_{Lk}}{n} \tag{1}$$

There is no simultaneous change in $i_L \& i_{LS}$, the study state performance is given below.

Mode I [$t_0 < t < t_1$]: S and D₃ are in conduction. In this period iLk is increased & equal to _{iLm.} This mode of operation ends when I_{LK} equals I_{LM}.

The equation of i_{LK} ,

$$i_{Lk} = \frac{1}{L_K} \int_{t_0}^{t_1} \left(V_{C1} - V_{C2} + \frac{V_0 - V_{C3}}{n} \right) dt$$
(2)

The operating period of this mode is very small, where the value of L_K is less and V_{LK} is high. L becomes magnetized due to V_1 , ending of this first mode, I_{D3} becomes zero due to the secondary current of the inductor. Using KCL, I_S can take as

Figure 2. First Mode of Interval [t_o-t₁]

Mode II [$t_1 < t < t_2$]: In this period the switch is still ON. The i_{LK} improved and became more than then i_{LM} . The i_{LK} equation is written as follows:

$$V_{Lk2} = \frac{\left(i_{Lk(t2)} - i_{Lk(t1)}\right)}{DT_S} L_{K_{j}} i_{Lk} = ni_{D2} + i_{Lm} \quad (4)$$

 D_2 ON due to N_S current. Thus, the D_2 current improved from zero. Due to N_S current, the C_3 is charged . C_1 energy is discharged through the coupled inductor and C_2 . L is energized because of V_1 . This period ends when S is OFF Using KVL the equations can be written as:

$$V_L = V_1 \tag{5}$$

$$V_{Lm} = V_{C2} - V_{C1} - V_{Lk2} \tag{6}$$

$$V_{C3} = (n+1)V_{C1} - nV_{C2} - nV_{Lk2}$$
(7)

Figure 3 shows the second mode of the interval [t1-t2]. Where n is the turns ratio of coupled inductor = N_S/N_P

Mode III [$t_2 < t < t_3$]: switch S is OFF, i_L current flows through D_1 and makes it conduction. D_1 and D_2 currents are written as:

$$i_{D1} = i_L + i_{Lk} + i_{D2} \tag{8}$$

$$i_{D2} = \frac{i_{Lk} - i_{Lm}}{n} \tag{9}$$

The i_{Lk} is de-energized continuously until its equals the i_{Lm} . At this time i_{D2} becomes zero.

 i_{LK} can be expressed as follows:

$$i_{Lk} = \frac{1}{L_k} \int_{t_0}^{t_1} \left(\frac{V_{C3}}{n} - V_{C2} \right) dt \tag{10}$$

According to the above equation, less value of leakage inductor and high –ve voltage causes a high current slope. Operating time is also small in this mode. Due to the de-energizing of inductors L and V_1 the C_1 is charged. This mode is when D_2 OFF. Figure 4 shows the Third mode of the interval [t2-t3]

Figure 4. Third mode of the interval [t₂-t₃]

Mode IV [$t_3 < t < t_4$]: The C₁ is charged by V₁ and storage energy in L. the leakage inductor voltage becomes charged in this mode. Its voltage is written as follows:

$$V_{Lk4} = \frac{\left(i_{Lk(t4)} - i_{Lk(t3)}\right)}{d_4 T_S} L_K, \ i_{Lk} = -n i_{D3} + i_{Lm}(11)$$

Where d_4T_s is the time interval of this period. C_0 is energized due to N_s current. D_1 current will be written as:

$$i_{D1} = i_L + i_{Lm} - (n+1)i_{D3}$$
(12)

This period ends when D_1 current becomes zero. However, the slope of i_{Lm} is less than i_{LK} , according to equation (1), the slop i_{D3} is +ve. In this mode the V_L , V_{Lm} , can be expressed as:

$$V_L = V_1 - V_{C1}$$
(13)

$$V_{Lm} = -V_{C1} - V_{Lk4} \tag{14}$$

$$V_{Lm} = V_{C1} + V_{C3} + nV_{C2} + nV_{Lk4}$$
(15)

Figure 5 shows the fourth mode of the interval [t3-t4].

Figure 5. Fourth mode of the interval $[t_3-t_4]$

Mode V [$t_4 < t < t_5$]: D₃ is still conducting in this period. Due to i_{D3} , the C₀ is energized. The i_{D3} is expressed as:

$$i_{D3} = \frac{i_L + i_{Lm}}{n+1}, i_{Lk} = \frac{-n}{n+1} \left(i_L - \frac{i_{Lm}}{n} \right)$$
 (16)

The diode D_3 and the i_{LK} slope calculate on the i_L , i_{Lm} slope. Eliminating the i_L , i_{Lm} ripples take the slope of i_{D3} and the i_{LK} tends to zero. Then V_{Lk} will become zero. As in this equation, zero currents are possible when S becomes conduction like the beginning mode. In ZCS condition the switch is off. From KVL the voltage equation is written as:

$$V_{Lm} = -V_{C2} - \frac{n}{n+1} V_{Lk4} - \frac{V_{Lk5}}{n+1}$$
(17)
$$V_{L} = V_{1} - V_{C1} - \frac{n}{n+1} (V_{Lk4} - V_{Lk5})$$
(18)

 V_{LK2} & V_{LK4} calculated from the i_{Lk} slope in periods II & IV. C_2 and C_3 are in series with NS and NP, i_{Lk} and i_{Lm} avg. currents are zero, according to Amp-Sec balance law. Considering the balancing law in C_1 , C_2 & C_3 , and C_0 it can be justified that the average value of the diode current is equal to the i_0 . So, the following equation can be obtained from Figure 2,

$$\langle i_{D2} \rangle = I_0 \Rightarrow Di_{D2 peak} = 2I_0 \Rightarrow i_{D2 peak} = \frac{2I_0}{D}$$
(19)

$$\frac{i_{Lk}-i_{Lm}}{n} = i_{D2 \ peak} = \frac{2I_0}{D} \Rightarrow i_{Lk \ peak} = \frac{2nI_0}{D} \quad (20)$$

So, the $_{ripples}$ of the L & L_m are also not considered in the V_{gain} calculation. The i_{stress} of the S and D₁ can be getting as given below:

$$i_{D1peak} = i_L + i_{Lm} + (n+1)i_{D2peak} = \left(\frac{2n+2-nD}{D(1-D)}\right)I_0$$
(21)

By not considering the 3^{rd} mode using this equation, the 4^{th} time interval can be obtained as

$$\langle i_{D1} \rangle = I_0 = \frac{d_4 T_s I_L}{2T_s} \Rightarrow d_4 = \frac{2(1-D)}{n+2} \quad (22)$$

Due to (4) and (19) equations the voltage $V_{Lk2}\xspace$ can be found as:

$$V_{Lk2} = \frac{2nV_0}{D^2} Q, Q = \frac{f_s L_K}{R_L}$$
(23)

Where, $f_{switch and} R_L$, respectively. Join Volt-Sec balance basis on the L_K by neglecting modes 1&3, the following equation is obtained.

$$DT_S V_{LK2} + d_4 T_S V_{LK4} + 0 = 0 \Rightarrow V_{Lk2} - \frac{d_4}{D} V_{Lk4}$$
(24)

Applying Volt-Sec balance basis on the inductors the output is:

$$V_{C1} = \frac{V_1}{(1-D)} - \frac{n^2}{(n+1)(n+2)} V_{Lk4}$$
(25)

$$V_{C2} = \frac{DV_1}{(1-D)} - \frac{n^2}{(n+1)(n+2)} V_{Lk4}$$
(26)

$$V_{C3} = \frac{1+n-nD}{(1-D)} V_1 - \frac{n^2}{(n+1)(n+2)} V_{Lk4} - nV_{Lk2}$$
(27)

$$M = \frac{(n+1)(1-D)D^2}{(n+1)(1+D)D^2 - n^2(-2(1+n)+nD) \times Q} \left[\frac{2+n}{1-D}\right]$$
(28)

As the above expression depends on switching frequency, RL, and ILK value the voltage gain of this new converter is controlled. Whatever, it does not contain significant change on the Vgain. The change of Q on the voltage gain is shown in Fig IV and it's nearly low. For example, $f_s=30$ KHz, $L_K=5uH$, $R_L=200$ & D=0.5, the Q factor value is about 0.96.

The actual V_{gain} is 96% of the conventional $V_{gain}.$ The V_{gain} of the new converter is

$$M_{CCM} = \frac{2+n}{1-D} \tag{29}$$

Figure 6 shows the fifth mode of the interval $[t_5-t_6]$ and Figure 7 presents the current waveforms for the new converter in CCM Mode.

B. Boundary Condition Mode (BCM)

In this mode, at ending of the switching period currents of L and L_m become equal. Equations can be written as follows

$$i_{L min} = -i_{Lm min}$$

(30)

$$i_L(DT_S) = i_L(0) + \frac{1}{L} \int_0^{DT_S} V_1 dt \Rightarrow \Delta i_L = \frac{DV_1}{Lf_S} \quad (31)$$
$$i_{Lm}(DT_S) = i_{Lm}(0) + \frac{1}{Lm} \int_0^{DT_S} V_1 dt$$
$$\Rightarrow \Delta i_{Lm} = \frac{DV_1}{L_mf_S} \quad (32)$$

Operating CCM mode in the new converter, coupled inductor Lm should be in CCM. Since N_S and N_P of the coupled inductor are series to the C_2 and C_3 according to the Amp-Sec balance Law, avg $i_{LK} \& i_{LM}$ is zero. At the end of this switching period, D_3 current reaches zero in CCM. In BCM, D_3 becomes zero at end of the switching period. So the value of i_L , $i_{LK} \& i_{LM}$ becomes zero. At the final end of this operation -the i_{Lm} value is nearly equal to I_L -0.5 Δi_L . If the L_m is in CCM, its maximum value of current is to be semi of its ripple. It implies the L_m is in CCM.

$$L_m \ge \frac{nD}{2f_s \left(\frac{M_{CCM}^2}{R_L} - \frac{D}{2Lf_s}\right)} \tag{33}$$

For operating the converter in CCM, the L_{min} must be calculated. It operates in CCM when the normal value of inductor current is better than the semi of its ripple, using eqn (31) L_{min} can be obtained as

$$I_L \ge \frac{\Delta i_L}{2} \Rightarrow L \ge -\frac{DR_L}{2M_{CCM}^2 f_s}$$
(34)

Figure 8 shows the current waveforms in BCM.

III. Design of the switching components

Voltage and current stress are obtained by selecting the appropriate semiconductors of the new converter, according to the working principle the stress voltages of diodes and switches are formulated as.

$$V_{S} = V_{D1} = V_{C1} = \frac{V_{1}}{\frac{1-D}{(n+1)V_{1}}}$$
(35)

$$V_{D2} = V_{D3} = V_0 - V_{C2} = \frac{(n+1)v_1}{1-D}$$
 (36)

The $D_{2(peak)}$ current is obtained from equation (19). The value of S_{peak} and diode $D_{1(peak)}$ currents is as follows:

$$i_{s peak} = i_{D1 peak} = \left(\frac{2n+2-nD}{D(1-D)}\right) I_0 + \left(\frac{1}{L} + \frac{n}{L_m}\right) \frac{DV_1}{2f_s}$$
(37)

Based on Fig. III and taking equation (37), the current value of $D_{3(peak)}$ can be written as given below:

$$\langle i_{D3} \rangle = I_0 = \frac{i_{D3 \ peak}(2(1-D) - d_4)}{2}$$

$$\Rightarrow i_{D3 \ peak} = \frac{(n+2)I_0}{(n+1)(1-D)}$$
(38)

By neglect, the ESR of the C_0 , the V_0 ripple of the new converter can be given as follow

$$V_{C0}(DT_S) = V_{C0}(0) + \frac{1}{C_0} \int_0^{DT_S} i_{c0}(t) dt$$
$$|\Delta V_{C0}| = \frac{DV_0}{f_S R_L C_0}$$
(39)

According to [1], [18], [28], by taking into consideration a certain ripple value, C_0 size is designed using (39). Then, by taking the ESR of the selected capacitor, the voltage ripple is less than the desired voltage ripple. The peak-peak voltage across the ESR of the Capacitor C_0 can be taken as

$$\Delta V_{C_0}^{ESR} = r_{c_0} \, \Delta i_{c_0 \, max} \Rightarrow \Delta V_{C_0}^{ESR} = r_{c_0} \, \left(\frac{(n+2)V_0}{R_L(n+1)(1-D)} \right)$$
(40)

IV. Modelling of PI Controller

The enhanced PI controller is the commonly used control technique in electric vehicle applications. Figure 9 demonstrates the block diagram of the enhanced PI control technique

Figure 9. Block diagram of proposed PI controller for converter

The error signal e(s) is sent to the PI controller i.e K_p and output control signal Q(s) of the enhanced PI controller of the proposed system is:

$$Q(S) = \left[K_P + \left(\frac{K_i}{s}\right)\right] \times e(s)$$

V. Modelling of FLC

The development of FLC is easier and provides effective flexibility for the sudden change in output loads. In addition, it provides effective and smarter dynamic responses and is very reliable in operation. The FLC set rules are defined below:

- 1. Gaussian Method.
- 2. Sigmoidal Method.
- 3. Trapezoidal Method.
- 4. Π Method.
- 5. Triangular Method.
- 6. Bell Method etc.

Figure 9a shows the Block diagram of the proposed FL controller for the converter.

Figure 9a. Block diagram of proposed FL controller for converter

5.1 Fuzzification

The process of defining the fuzzification matches the input data with the predefined conditions with set rules to examine how well the condition of each rule matches that particular input instance. It gives a mathematical way to demonstrate each input and output variable in traditional language. Figures 9b, 9c, and 9d show the fuzzy membership function of the error input variable with 7 linguistics.

Figure 9c. Membership functions error for change in error

Figure 9d. Membership function for control signal

VI. Simulation Results

The whole analysis is done in MATLAB/Simulink, and analysis takes part in three cases which gives an open loop of dc-dc converter in case I, PV fed dc-dc converter with PI and FL controllers in cases 2 and 3 respectively. Table 1 shows the specifications of the PV module and DC-DC converter.

Specification	Parameters
PV Parameters	
V _{OC}	27V
I _{SC}	3.8A
Parasitic resistor (Ro)	1Ω
Parasitic capacitor (Co)	0.1m _F
DC-DC Converter Parameters	
V _{in}	27V
V _{out}	290V
Capacitors	c1, c2, c3, c4=47M _F
	c0 =180µF
Inductors	320Mh
Coupled-Inductor	Lm=100µH
	n=2.1
Switching frequency	30Khz

Table 1. Circuit Parameters

CASE (I): Open-loop simulation of new non-isolated coupled inductor-based high step-up DC-DC converter

Designed for 225 watts of power and 27 input voltages achieving a high dc voltage of nearly 300 volts having less duty cycle 0.6. The conventional boost converter can achieve the same output voltage, but it requires 0.94 duty cycle for 300 volts. Figure 10 shows the Simulink model of coupled inductor-based dc to dc converter

The output voltage response of the new converter is shown in Figure 10a. It's clear that the output voltage is 300V at 60% duty cycle operates 36% less than conventional converter.

Figure 10b shows the inductor and Diode current responses of coupled inductor converter.

Figure 10c shows the capacitor voltage responses of coupled inductor converter.

converter

Figure 10c. Capacitor Voltage responses of coupled inductor converter

Figure 10d shows the Switch voltage responses (Diodes & main switch) of coupled inductor converter.

Figure 6f shows the comparison of the voltage gains and switch stresses of the main switch for coupled inductor-based converter and boost converter. From the graphs, it is identified that the gain values of the coupled inductor-based converter are more than the boost converter for the same duty cycles. Also, the switch stresses are less for the coupled inductorbased converter compared to the boost converter. Thus, the coupled inductor-based converter is superior in operation to the boost converter and in further sections, the dynamic performance of this converter is verified for the load changes using the PI controller and Fuzzy logic controller.

Figure 10e. Comparisons of voltage gains and switch stress of coupled inductor-based converter and boost converter

CASE (II): closed-loop control simulation of PIcontrolled coupled inductor based dc to dc converter

Figure 11a gives the simulation diagram of the proposed converter at an input voltage is 27 V, load current varies from 0.35 to 0.72 A and Figure 11b shows the voltage and current responses of dc-dc converter using a PI controller.

Figure 11a. Simulink model of PI-controlled coupled inductor based dc to dc converter

Figure 11b. Voltage and current responses of dc-dc converter using PI controller

CASE (II): closed-loop control simulation of fuzzy controlled coupled inductor-based dc to dc converter

The input voltage is 27 V, the output voltage 290V, and the load current are from 0.35 A to 0.72A with the FL controller.

Figure 12a gives the Simulink model of Fuzzy controlled coupled inductor based dc to dc Converter and Figure 12b shows the output voltage and current responses of FLC coupled inductor Converter for a sudden load change at 0.2 sec from 112.5W to 225W

Figure 12a. Simulink model of Fuzzy controlled coupled inductor based

Figure 12b. Output voltage and current responses of FLC coupled inductor Converter for a sudden load change at 0.2 sec from 112.5W to 225W

VII. Comparison Study

Comparison for both PI and FUZZY controlled coupled inductor based dc to dc Converter. Figure 13a presents the Output voltage responses of PI & Fuzzy controlled coupled inductor Converter for a sudden load change at 0.2 sec from 112.5W to 225W

Figure 13a. Output voltage responses of PI & Fuzzy controlled coupled inductor Converter for a sudden load change at 0.2 sec from 112.5W to 225W

Figure 13b shows the Simulink model of the coupled inductor with fuzzy logic controller maintaining the stiff output voltage of 300V even under the changes in the input voltage from 27V to 15V.

Figure 13b. Simulink diagram of a coupled inductor with voltage variations using a fuzzy logic controller

Figure 13c shows the output voltage response of 300V for the converter with fuzzy controller under the changes in the input voltage from 27V to 15V at 0.2 sec.

Figure 13c. Output voltage response for input voltage variations applied at 0.2 sec from 27V to 15V.

Figure 13d shows the comparison for both PI and fuzzy controller when sudden input voltage variations.

Figure 13d. Comparison for both PI and fuzzy controller when sudden input voltage variations

Thus, the fuzzy logic controller works effectively for the range of voltage variations at the input side from 15V to 27V and delivers a stiff voltage of 300V.

$$S = V_S I_S + \sum V_D I_D. \tag{41}$$

VIII. Conclusion

A non-isolated DC-DC converter with high voltage gain is designed and simulated in MATLAB R2012b version. The same output voltage of 300V is achieved for a very smaller duty ratio of 0.65 when compared with the conventional boost converter. It comprises 3-diodes, 3capacitors, 1-inductor, and a coupled inductor are utilized. The pressures switch S is reduced by utilizing the clamping circuit formed with diode D₁ and capacitor C1. The dynamic response of the converter is analyzed for the disturbances on the load side from 112.5W to 225W at 0.2 sec and the output voltage is maintained constant by using the PI and FLC. The PI-controlled converter settles to the desired voltage with a dip of 1.2V at the disturbance point (0.2sec), whereas the fuzzy logiccontrolled converter gives a stiff voltage of 300V without any dip. Also, the fuzzy logic controller is verified for the disturbances at the input side for a range of 15V to the 27V input voltage.

Declaration

- The authors declare that they have no known financial or non-financial competing interests in any material discussed in this paper.
- The authors declare that this article has not been published before and is not in the process of being published in any other journal.
- The authors confirmed that the paper was free of plagiarism.

References

- H. Ardi, A. Ajami, F. Kardan and S. Nikpour, "Analysis and Implementation of a Non-Isolated Bidirectional DC-DC Converter with High Voltage Gain," IEEE Trans. Ind. Electron., Early Access. DOI: 10.1109/TIE.2016.2552139
- [2] H. Ardi, R. Reza Ahrabi, S. Najafi Ravandanagh, "Non-isolated bidirectional DC-DC converter analysis and implementation," IET Power Electron., vol. 5, no. 12, 2014, pp.3033-3044.
- [3] S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, "A Boost Converter with Capacitor Multiplier and Coupled Inductor for AC Module Applications," IEEE Trans. Ind. Electron., vol. 60, no. 4, 2013, pp.1503-1511.
- [4] J. H. Lee, T. J. Liang, and J. F. Chen, "Isolated coupled-inductor-integrated DC–DC converter with non-dissipative snubber for solar energy applications," IEEE Trans. Ind. Electron., vol. 61, no. 7, 2014, pp. 3337–3348.
- [5] R. B. Mohammad, H. Ardi, R. Alizadeh, A. Farakhor, "Non-isolated multi-input-single-output DC/DC converter for photovoltaic power generation systems," IET Power Electron., vol. 7, no. 11, 2014, pp. 2806–2816.
- [6] Y. Zhao, W. Li, Y. Deng, and X. He, "High step-up boost converter with passive lossless clamp circuit for non-isolated high step-up applications," IET Power Electron., vol. 4, no. 8, 2011, pp. 851–859.
- [7] Y. P. Hsieh, J. F. Chen, T. J. Liang and L. S. Yang, "A Novel High Step- Up DC–DC Converter for a Microgrid System," IEEE Trans. Power Electron., vol. 26, no. 4, 2011, pp.1127-1136.
- [8] R. J. Wai, C. Y. Lin, C. Y. Lin, R. Y. Duan, and Y. R. Chang, "High efficiency power conversion system for kilowatt-level stand-alone generation unit with low input voltage," IEEE Trans. Ind. Electron., vol. 55, no. 10, 2008, pp. 3702–3714.
- [9] M. Subbarao, Ch. Sai Babu, S. Satyanarayana, "Digital variable switching frequency controlled integrated power converter for class C and class D appliances", Int. J. Power Electronics, Vol. 11, No. 3, 2020. DOI: 10.1504/IJPELEC.2020.10027750
- [10] S. Mopidevi, RP. Narasipuram, SR. Aemalla, and H. Rajan, "E-mobility: impacts and analysis of future transportation electrification market in economic, renewable energy and infrastructure perspective", Int. J. Powertrains, Vol. 11, Nos. 2/3, 2022, pp.264–284. https://doi.org/10.1504/IJPT.2022.124752
- L. S. Yang, T. J. Liang, and J. F. Chen, "Transformerless DC–DC converter with high voltage gain," IEEE Trans. Ind. Electron., vol. 56, no. 8, 2009, pp. 3144– 3152. DOI: 10.1109/TIE.2009.2022512
- [12] T. J. Liang, J. H. Lee, S. M. Chen, J. F. Chen, and L. S. Yang, "Novel isolated high-step-up DC–DC converter with voltage lift," IEEE Trans. Ind. Electron., vol. 60, no. 4, 2013, pp. 1483–1491.

- [13] F. L. Luo and H. Ye, "Hybrid split capacitors and split inductors applied in positive output super-lift Luo-converters," IET Power Electron., vol. 6, no. 9, 2013, pp. 1759–1768.
- [14] Rajanand Patnaik Narasipuram, "Modelling and simulation of automatic controlled solar input single switch high step-up DC-DC converter with less duty ratio", Int. J. Industrial Electronics and Drives, Vol. 3, No. 4, 2017.
- [15] Rajanand Patnaik Narasipuram, Subbarao Mopidevi, A technological overview & design considerations for developing electric vehicle charging stations, Journal of Energy Storage, Volume 43, 2021, 103225.
- [16] Rajanand Patnaik Narasipuram, "Analysis, identification and design of robust control techniques for ultra-lift Luo DC-DC converter powered by fuel cell", Int. J. Computer Aided Engineering and Technology, Vol. 14, No. 1, 2021, pp.102–129.
- [17] RP. Narasipuram, C. Somu, RT. Yadlapalli, LS. Simhadri, "Efficiency analysis of maximum power point tracking techniques for photovoltaic systems under variable conditions", Int. J. Innovative Computing and Applications, Vol. 9, No. 4, 2018, pp.230–240.
- [18] S. Chaitanya, N. R. Patnaik and C. B. A. Raju, "A Novel Transformerless Asymmetrical Fifteen Level Inverter Topology for Renewable Energy Applications," 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), 2018.
- [19] N. Rajanand Patnaik, Y. Ravindranath Tagore, "Design and Evaluation of PUC (Packed U Cell) Topology at Different Levels & Loads in Terms of THD," in European Journal of Advances in Engineering and Technology, vol. 3, no. 9, 2016, pp. 33-43.
- [20] N. Rajanand Patnaik, Y. R. Tagore and S. Chaitanya, "Advanced seven level transformer-less multilevel inverter topology for PV application," 2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Chennai, 2017, pp. 111-116.
- [21] RP. Narasipuram, "Optimal design and analysis of hybrid photovoltaic-fuel cell power generation system for an advanced converter technologies", Int. J. Mathematical Modelling and Numerical Optimisation, Vol. 8, No. 3, 2018, pp.245–276.
- [22] M. SubbaRao, Ch. Sai Babu, S. Satyanarayana, "Digital Fuzzy Current Mode Controlled Integrated PFC Converter with External Ramp Compensation", Journal of Circuits, Systems, and Computers (JCSC), ISSN:1793-6454, Vol. 27, No. 9, 2018, p.p.1850147-1-23. https://doi.org/10.1142/S0218126618501475
- [23] M. Subbarao, Ch. Sai Babu, S. Satyanarayana," Design and analysis of variable switching frequency controlled integrated switched mode power converter

for class C & class D appliances", Ain Shams Eng Jol., vol. 9, 2018, pp 2849–2858. https://doi.org/10.1016/j.asej.2017.10.008

- [24] N. K. Muthukuri, S. Mopidevi, "Analysis of a Modified Switching Pattern for Packed U Cell-15 Inverter Topology with Advanced Level Shift Carrier Pulse Width Modulation Techniques", Electrica, vol. 21, no. 2, 2021, pp. 272-282. DOI: 10.5152/electrica.2021.20082
- [25] N. K. Muthukuri and S. Mopidevi, "Optimal Controller Design of PUC-15 MLI Topology for Smart Grid Applications with Reduced Power Components," 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN), 2022, pp. 1-4. DOI: 10.1109/ICSTSN53084.2022.9761358