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Abstract – This paper aims to provide a discussion of the methods used in the synthesis of CuO 
nanoparticles. A review of the CuO nanoparticle synthesis method was carried out from 65 

articles from 2000 to 2021. The CuO nanoparticle synthesis methods described in this paper are 

electrochemical, sonochemical, sol-gel, biogenic, green synthesis, and hydrothermal methods. 

Each method used to synthesize CuO nanoparticles has advantages and disadvantages. Based on 

their advantages, electrochemical, sonochemical, green synthesis, and biogenic methods are 

environmentally friendly methods. Moreover, the hydrothermal and biogenic methods are simple 

methods with easy preparation. In its utilization, CuO nanoparticles can be used to divert heat 

energy. The addition of a volume of CuO nanoparticles into the nitrate salt can increase the 

thermal diffusivity and thermal conductivity used in solar power plants. Among the methods 

described, the hydrothermal method is the most effective and efficient technique. This is because 

the method is simple (without using any surfactant template), easy to vary the temperature, 
reactant concentration, and time variables on the growth of nanostructures. This paper is expected 

to provide some considerations regarding the synthesis method of CuO nanoparticles that can be 

used on an industrial scale based on the advantages of each method. 
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I. Introduction 

Nanotechnology in Indonesia has been developed 

since 2004. Until now, Indonesia has produced various 

nanotechnology-based products in various fields 

including agriculture, food, textile, automotive, 

household, oil, cosmetics, health, renewable energy, and 

other industries [1]. Currently, many studies focused 

more on nanoparticle research. This is because 

nanoparticles have several advantages, namely cheap, 

high yield under mild reaction conditions, high surface 

area, being physically stable, and reducing reaction time 

[2]. 
One of the nanotechnology products in Indonesia is 

CuO nanoparticles. CuO (Copper Oxide) nanoparticles 

are one of the transition metal oxide nanoparticles that 

have become highly desirable materials for many 

applications. Metal oxides are generally characterized by 

a very wide bandgap [3] whereas CuO nanoparticles are 

p-type oxide semiconductors with a bandgap of 1.2 - 1.5 

eV [4]. One of the uses of nanoparticles is in solar cells 

[3]. Solar power or solar cells is one viable source of 

sustainable energy. However, like many renewable 

energy technologies, the self-conversion of solar energy 

suffers from shortages due to intermittent solar resources 

[5]. Molten salt has potential as a Heat Transfer Fluid 

(HTF) and thermal storage in solar power plants. 

However, organic HTF is very unstable at high 
temperatures. Thus, the addition of CuO nanoparticles to 

it will increase the stability in the highly oxidative 

liquefaction of nitrate salts [6]. 

In addition, CuO nanoparticles have unique catalytic, 

optical, and electrical properties [7]  The unique 

properties of these particles allow CuO nanoparticles to 

be applied in various fields [8], such as photocatalytic 

reactions [9-10],  antibacterial activity [11-16], non-

enzymatic glucose sensor [17], polymer solar cells[18], 

inertness sensor [19], oxide architectural pores [20] 

ammonia sensing [21], antifungal agents [22], and CuO 
nanoparticles are also used in dry cell batteries and 

animal feeding supplements to combat copper deficiency. 

The methods that can be used in the synthesis of CuO 

nanoparticles include electrochemical methods [12], 

sonochemistry [23], sol-gel [24], green synthesis [25], 

hydrothermal [26], and biogenic [27]. Each method has 

its advantages and has different results so it is necessary 

to do a review. 

https://www.ijeca.info/
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Therefore, the purpose of this paper is to provide a 

discussion of several methods of synthesizing CuO 

nanoparticles based on their advantages and 

disadvantages to obtain a more effective and efficient 

method of synthesizing CuO nanoparticles. This paper is 

expected to provide an overview of the manufacture of 

CuO nanoparticles and help provide some considerations 
to be applied on the industrial scale for the manufacture 

of CuO nanoparticles. Several analysis methods were 

also added, including X-Ray diffraction (XRD), scanning 

electron microscope (SEM), transmission electron 

microscope (TEM), Fourier transform infra red (FT-IR), 

and so on. 

II.  Study on Methods in The Synthesis of 

CuO (Copper Oxide) 

Table 1 shows several methods of synthesizing CuO 

(Copper Oxide) nanoparticles along with their synthesis 

results, weaknesses, and strengths. Methods that can be 

used to synthesize CuO nanoparticles are 

electrochemical, sonochemical, sol-gel, green synthesis, 

biogenic, and hydrothermal methods.  

Table 1. Methods in the synthesis of CuO nanoparticles 
Ref Material Method Result Advantage Disadvantages 

[12] 

Copper sheet 

(anode), 

platinum sheet 

(cathode), 

TBAB 

(electrolyte) 

Electroche

mical 

The absorption band of CuO nanoparticles 

is in the range of 550-600 nm. The copper 

particles show a height of about 570 nm. 

In the IR spectrum, the peak appears at 

3298 cm-1. Microstructure SEM of the 

electrochemical reduction of copper oxide 

nanoparticles showing solid 

agglomeration. The shape is irregular with 

the non-uniform distribution. HRTEM 

showed spherical CuO nanoparticles with 

a size of 5-10 nm and a monoclinic 

structure. 

Environmentally friendly 

and efficient in 

providing new 

opportunities for the 

rapid screening of 

various metal 

nanoparticle syntheses as 

well as for the 

development of new 

drugs for materials 

scientists 

The reaction that occurs 

can cause a layer (double 

layer) attached to the 

outside of the electrode to 

increase the resistance that 

occurs and reduce the 

current. 

[23] 

CuN2O6.3H2O 

and NaOH 

Sonochem

istry 

CuO particles obtained by the reaction of 

fewer than 20 minutes have a particle size 

of 80 nm. Meanwhile, the 30-minute 

reaction resulted in particle size of 45 nm. 

Extended time will result in particle size 

which tends to increase. An increase in the 

calcination temperature leads to complete 

CuO crystallization, accompanying well-

defined and uniform crystalline particles 

with a particle size of ~50-70 nm. 

Environmentally 

friendly, easy to prepare 

at low temperatures, 

minimal by-products.  

Uneven distribution of 

particles 

[24] 

Glacial acetic 

acid 

andCuCl2.2H2O 

Sol-gel SEM shows the heterogeneous distribution 

of the synthesized CuO nanoparticles. 

XRD pattern of CuO nanoparticles shows 

a single phase with a monoclinic structure 

The mole ratio controls the size of the 

CuO nanoparticles. The size of CuO 

nanoparticles is 16 nm. 

Can be carried out at 

room temperature and 

accurately control 

chemical and physical 

characteristics. 

Relatively long processing 

time. 

[25] 

Ixora coccinea 

and 

CuSO4.5H2O 

Green 

Synthesis 

Mean size of CuO nanoparticles 300 nm 

(SEM), 80-110 nm (TEM) It was found 

that ultrasonication improves the 

distribution of nanoparticles in the liquid 

by preventing cluster formation. The 

Green synthesis method is a biologically 

reliable process that has been established 

for the synthesis of CuO. nanoparticles. 

Environmentally 

friendly, low cost, and 

non-toxic synthesis 

method, produces large-

scale nanoparticles. 

The raw materials are hard 

to find. 

[26] 

Ethanol, NaOH, 

and 

Cu(CH3COO)2 

Hydrother

mal 

The results showed that the CuO 

nanoparticle structure has a monoclinic 

structure with a single crystal phase. The 

structure and morphology of CuO 

nanocrystals can be controlled by 

changing the concentration of the 

reactants. The rate of heat degradation to 

methylene blue can reach 92.1%. 

Simple (without using 

any surfactant template), 

it is easy to vary the 

variables of temperature, 

reactant concentration, 

and time on the growth 

of nanostructures. 

Particle size and shape 

can be controlled. 

Equipment costs are 

expensive, it is difficult to 

control the stoichiometry 

of the solution, 

hydrothermal slurries are 

corrosive, and the use of 

high-pressure vessels will 

be dangerous in the event 

of an accident. 

[27] 

young guava 

leaves, 

Cu(CH3COO)2.

H2O 

Biogenic The particle size of CuO nanoparticles is 

11.07 nm. CuO nanoparticles show 

excellent degradation efficiency for 

industrial dyes, namely Nile blue (NB). As 

well as CuO catalysts were found to be 

reusable for photocatalytic dye 

degradation.  

Simple, eco-friendly, and 

economical. 

Difficult implementation 

on a large scale and the 

need in maintaining cell 

cultures, control size, 

shape, and crystallinity. 
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III. Synthesis of CuO Nanoparticles 

CuO nanoparticles can be synthesized by several 
methods. Review is needed to compare which method is 

more effective and efficient. The review of the CuO 

nanoparticle synthesis method was carried out from 65 

articles from 2000 to 2021. Based on the synthesis 

method that has been reviewed, there are several kinds of 

nanoparticle synthesis methods, namely electrochemical, 

sonochemical, sol-gel, green synthesis, hydrothermal, 

biogenic. 

 

IV. Result and Discussion  
IV.1. Electrochemical Method 

 

The electrochemical method is one of the many 

available methods for synthesizing metal oxides in the 

nanodomain due to its simplicity, low-temperature 

operation, and commercial feasibility [28]. 

Electrochemical is a method based on oxidation-

reduction (redox) reactions. Electrochemical systems 
include electrochemical cells and electrochemical 

reactions [29]. The basic equipment of electrochemical is 

to use two electrodes and an electrolyte solution in the 

process. Overall the electrochemical method uses two 

inexpensive electrodes. The bulk metal used as anode 

will be converted into a metal group which in this case is 

Cu. Tetrabutylammonium bromide (TBAB) in the 

electrolyte is used as a stabilizer. The electrochemical 

method is a process in which bulk metal is oxidized at 

the anode and metal cations will migrate to the cathode 

resulting in reduction with the formation of metal or 
metal oxide in a zero oxidation state. Agglomeration with 

the formation of unwanted metal powders is prevented by 

the presence of an ammonium stabilizer. The anode will 

dissolve slowly and lead to the formation of then 

passivation with active TBAB [12]. 

The electrodes used in the synthesis of CuO 

nanoparticles are copper sheet (anode) and platinum 

sheet (cathode). The electrolyte used was 0.01 M 

tetrabutylammonium bromide (TBAB) and acetonitrile in 

a ratio of 4:1. The current used is 6 mA/cm2. Electrolysis 

is carried out in a nitrogen atmosphere. The resulting 

copper oxide nanoparticles will be dark brown [12].  
The obtained nanoparticles must be characterized, 

this is to find out that the nanoparticles obtained are the 

desired CuO nanoparticles. The characterization of 

nanoparticles can be done using UV-Visible [4, 12, 30], 

FT-IR spectrophotometer [7, 4, 31-32], XRD [4, 7, 10, 

12], and SEM [4, 10, 12]. UV-Visible can be used to 

determine when the precursor turns into CuO 

nanoparticles. The maximum absorption bands reported 

are 550-600 nm [12] and 638-642 nm [4]. This 

absorption band is closely related to the surface plasmon 

resonance peak of CuO nanoparticles. 
The peaks of the IR spectrum that appeared were 

reported with different results from one researcher to 

another. The reported IR spectrum peak is 3424-3437 

cm-1 which can be attributed to the hydroxyl group which 

is the hygroscopic nature of CuO nanoparticles [4]. The 

characteristics of CuO nanoparticles using an FT-IR 

spectrophotometer can be shown in Figure 1. 

 
Figure 1. (a) IR spectra pattern of CuO nanoparticles with TBAB 0.01 

M, (b) X-ray diffraction pattern of CuO nanoparticles using TBAB 

[12]. 

 

The average particle size of the synthesized 

nanoparticles was characterized by XRD and TEM. XRD 
results of CuO nanoparticles showed that the calculated 

average particle size was 5-10 nm [12]. Figure 2 shows 

the HRTEM results of CuO nanoparticles which are 

spherical and 5-10 nm in size [12]. Other studies reported 

that the average particle size obtained was 5-30 nm [4, 

31] and had a monoclinic structure [4, 12, 31]. These 

results were confirmed by XRD and TEM. In addition, 

CuO nanoparticles measuring 4.0 nm have been reported 

to have been successfully synthesized [7]. The size and 

nanoparticles of copper oxide depend on several 

parameters used (electrode, electrolyte, temperature, 
electrolysis time, current, solution, and cell shape 

dimensions). 

 
Figure 2. HRTEM CuO nanoparticles are spherical and 5-10 nm in size 

[12]. 

 

The surface morphology of CuO nanoparticles was 
investigated using an SEM. SEM microstructure of 

electrochemical reduction derived from copper 

nanoparticles shows solid agglomeration [4,12]. SEM 

microstructure of CuO nanoparticles is shown in Figure 

3. 

 
Figure 3. SEM of CuO nanoparticles covered with 0.01 M TBAB [20]. 
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The electrochemical method is an easy and less time-

consuming method with the highest nanoparticle purity 

[4]. In addition, the electrochemical process is 

environmentally friendly and provides new opportunities 

for the synthesis of metal nanoparticles. The 

electrochemical method is considered good for use as 

new drug development. Although the electrochemical 
method has several advantages, this method also has 

several disadvantages, namely, the reaction that occurs 

can cause a layer (double layer) to be attached to the 

outside of the electrode so that it increases the resistance 

that occurs and reduces the current [12]. 

IV.2. Sonochemical Method 

Sonochemistry is a method of synthesizing materials 

using sound energy to induce physical and chemical 

changes in a liquid medium. The chemical effect of 

ultrasound produces acoustic cavitation, which is the 

formation and growth of foam in the liquid. The 
frequency used in the sonochemical method is a 

frequency in the range of 20 kHz - 2 MHz [29]. The 

basic principle of the sonochemical method is the 

displacement of sound waves that form and collapse the 

bubbles resulting in a local increase in temperature and 

pressure, causing physical and chemical changes in the 

material [33]. The schematic of the equipment used in the 

sonochemical method is shown in Figure 4. 

 
Figure 4. Schematic of Sonochemical Method Equipment [29]. 

 

The materials used in the synthesis of CuO 
nanoparticles by sonochemical methods are copper 

nitrate trihydrate (CuN2O6.3H2O) and sodium hydroxide 

(NaOH) with polyvinyl as the initial precursor [23]. 

Synthesis of CuO nanoparticles begins by dissolving 

NaOH in deionized water. The resulting solution is then 

added to CuN2O6.3H2O for 30 minutes slowly drop by 

drop. Sonication was carried out with the VCX 750 

model. Several other researchers used different models in 

sonication such as the Branson 102C [33] and the 

ultrasound-assisted chemical reduction model UC-20A 

[8]. Sonication is carried out until the desired product is 

completely precipitated. The precipitated product was 
then calcined at different temperatures in the range of 

400-700 oC for 2 hours. The thermal behavior of the 

product was investigated by Thermogravimetry (TG) 

powder in the open air with the heating rate used was 10 
oC/min [23]. 

Characterization is done through several instruments. 

To characterize the structural and microstructural 

properties of CuO nanoparticles an X-ray diffractometer 
was used which in this synthesis used Panalytical x'Pert 

Pro MPD with radiation used was Cu-Kα operating at 40 

kV and 30 mA, respectively. The SEM (Scanning 

Electron Microscope) used is the JEOL JSM-6510 model 

[23]. 

Thermo-gravimetric and thermal-differential analysis 

of CuO nanoparticles were sonicated for 30 minutes. In 

this sonication, it is seen that there are 2 weight losses at 

a temperature of 180-250 oC and at a temperature of 500-

700 oC as shown in Figure 5. The first decrease is due to 

evaporation of polyvinyl alcohol and deionization in the 
mixed solution while the second decrease is due to 

oxidation of copper metal in the air. resulted in the 

crystallization of CuO  [23]. 

 
Figure 5. TG and DTA curves of the precipitated product sonicated for 

30 minutes [33]. 

 

The diameter of CuO nanoparticles obtained by 

sonochemical methods is 50 nm [19]. These results have 

been confirmed by TEM (Transmission Electron 

Microscope) and SEM (Scanning Electron Microscope). 

With a similar method, CuO nanoparticles can also be 

produced which are 80 nm before calcination and 70 nm 

after being calcined at 500 oC for 2 hours [34]. The 

results of the calcination of the sample at a temperature 

of 400-500 oC and the XRD pattern of the sample 

showed that good CuO particle powder was only 

obtained by a sonochemical process [23]. The results of 
XRD (X-Ray Diffraction) CuO nanoparticles calcined 

and sonicated at different temperatures and times are 

shown in Figures 6 and 7. 
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Figure 6. XRD pattern of calcined CuO nanoparticles at different 

temperatures [23]. 

 

 
Figure 7. XRD Pattern of sonicated at different times [23]. 

 

The size of the CuO nanoparticles obtained can be 

influenced by the sonication time carried out as well as 

the Kalisani temperature. A longer sonication time will 

result in smaller particle size compared to a lower 

sonication time. CuO nanoparticles obtained by the 

reaction of fewer than 20 minutes produce particles of 
about 80 nm, whereas if the reaction is prolonged to 30 

minutes the resulting particle size is 45 nm. This result is 

thought to be due to sufficient energy supplied to the 

system by ultrasound after a certain time and can induce 

nucleation disintegration. The results will be inversely 

proportional in the sense that the size will increase after 

extending the sonication time to 40 minutes. This is 

thought to be due to changes in the crystal structure 

caused by the abundant energy of ultrasound after the 

critical time has elapsed [23]. The effect of temperature 

also causes changes in the size of the resulting particles. 

As the calcination temperature increases, the particle size 
will increase or increase. This is because the formation of 

crystallization of CuO nanoparticles is complete and well 

defined and uniform with a particle size of 50-70 nm 

[23]. Figure 8 shows the SEM results regarding the 

morphology of CuO nanoparticles at various calcination 

temperatures, namely 400, 500, 600, and 700 oC. The 

morphology of nanoparticles can be affected by the pH 

of the surfactant. When the pH is set to 8 the morphology 

looks like leaves while after the pH is raised to 11 the 

morphology changes to like a lumpy flower [33]. 

 
Figure.8. SEM morphology of CuO nanoparticles by sonochemical 

method calcined at various temperatures, namely 400, 500, 600, and 

700 oC [23]. 

 
The sonochemical method has several advantages, 

namely easy preparation at low temperatures [18], can 

produce products with fine particles with nanometer 

dimensions  [35], more uniform particle size distribution 

with higher phase purity. higher [33], reproducible [8], 

and the product can be used to remove environmental 

pollutants extensively [2]. The drawback of the 

sonochemical method is the uneven distribution of 

particles [23]. 

IV.3. Sol-gel Method 

Another method for the synthesis of CuO 
nanoparticles is the sol-gel method [24, 36-39]. Synthesis 

of CuO nanoparticles the sol-gel method can use several 

reactants, including CuCl2.6H2O [36], Lantana camara 

extract and CuCl2 2H2O [37], [Cu(CH3COO)2.H2O]  

[38], Cu(CH3COO)2 with high purity [39], and glacial 

acetic acid and CuCl2.2H2O [54]. The sol-gel method is 

carried out in several stages as shown in Figure 9. 

 
Figure 9. The process of making CuO nanoparticles using the sol-gel 

method [39]. 
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The nanoparticle synthesis process using the sol-gel 

method started with glacial acetic acid added to 

CuCl2.2H2O then heated to 100 oC. NaOH is added after 

mixing the reactants to make the pH equal to 7. The color 

of the stirred solution changes rapidly from green to 

black and a large amount of black precipitate forms 

immediately. The precipitate was centrifuged and washed 
with distilled water under vacuum and dried at room 

temperature [24]. NaOH was added to solutions of 

different concentrations at 60 oC and stirred for 2 hours 

then dried at 50 oC [39]. Cu(NO3)2 is dissolved in 

distilled water until dissolved. Then acetic acid was 

added to the solution and heated to 100 oC and stirred 

using a magnetic stirrer for 60 minutes, and acetic acid 

was then added with NaOH. The sole was heated and 

stirred for 1 hour then allowed to stand for 1 day. 

Centrifugation was carried out at 3000 rpm, and a bluish-

green precipitate was obtained. Then the precipitate is 
annealed. Annealing was carried out at 400 oC for 4 

hours then at 1000 oC, using a Lindberg furnace [40]. 

Characterization was carried out using several 

instruments such as XRD, TEM, and UV-Vis [39], FTIR 

in the range of 4000.00 to 400.00 cm-1, thermogravimetry 

with SDT Q 600, and SEM [40]. The structure and 

morphology of the synthesized CuO nanoparticles were 

investigated using XRD and SEM. The surface 

morphology of CuO nanoparticles was examined by 

SEM scanning with the nanostructures visible and 

showing the heterogeneous distribution of the 

synthesized CuO nanoparticles. The nanoparticle size in 
this method is 16 nm and the nanoparticle size becomes 

smaller with increasing base concentration [24]. The 

result of the characterization of SEM is shown in Figure 

10. 

  
Figure 10. Surface morphology of CuO nanoparticles using SEM at (a) 

400 oC and (b) 1000 oC  [40]. 

 

XRD results show a single phase and a monoclinic 

structure. The intensity and peak position closely match 

the library data. The results of the characterization of 

XRD are shown in Figure 11 [39]. 

 
Figure.11. XRD pattern of samples prepared at various pHs  [18]. 

 

 The morphological and size distribution were 

examined by TEM. Figure 12 shows that the CuO 

nanoparticles are spherical with uniform distribution with 

an average diameter of 4.5 nm [39]. 

 
 

Figure 12. TEM results and particle size distribution of CuO 

nanoparticles [39]. 

 

Figure 13. FT-IR spectrum of CuO nanoparticles shows 

three peaks of the vibration of Cu-O observed at 420.7, 

472, and 631.5 cm-1 [39]. 

 
Figure 13. FT-IR spectrum of CuO nanoparticles at (a) 400 oC and (b) 

1000 oC [40]. 

 

UV-Vis result is shown in Figure 14. As can be seen, 

an adsorption peak is observed at 350 nm. The calculated 

band gap values are 4.08 eV [39].  
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Figure 14. UV-Vis spectra and Tauc plots of CuO [39]. 

 

The result of another study using 3 samples, namely 
A, B, and C, was found that the particle size of CuO 

nanoparticles increasing with the calcination temperature. 

This is caused by the agglomeration of particles at high 

temperatures. The particle sizes of CuO A, B & C 

nanoparticles were 23, 25, and 28 nm. The reflectance 

appears above 830 nm for the three samples and the 

corresponding band gaps are 4.16, 4.17, and 4.16 eV for 

samples A, B, and C, respectively. From the SEM 

results, it appears that CuO nanoparticles become porous 

balls and the balls were aggregated with the calcination 

temperature [41]. 

The sol-gel method offers many advantages 
compared to other synthesis methods, such as particle 

size, has a high homogeneity of form, uses low raw 

materials, and can be produced on a large scale [42]. The 

sol-gel method can synthesize nanoparticle materials at 

room temperature, can produce most metals, and 

accurately control chemical and physical characteristics 

[24]. This method is the easiest method that requires low 

temperatures and is the most economical [40]. The sol-

gel method is considered to have great potential for the 

manufacture of nanoparticles from copper and copper 

oxide [43]. This method is also free from toxic and 
hazardous materials [44]. The drawback of the sol-gel 

method is the relatively long time in the synthesis 

process [24]. 

IV.4. Green Synthesis Method 

The synthesis of CuO nanoparticles can be carried out 

using the green synthesis method [25, 45-49] can be 

carried out using several reactants, namely a solution of 

copper (II) sulfate and leaf extract of Ixora coccinea [25], 

Kalopanax pictus [45], Punica granatum [46], Abutilon 

indicum [47], CuCl2.2H2O and gum karaya [48], 

Syzygium alternifolium [49], and Aloe vera leaf extract 

and Cu(NO3)2  [50]. An illustration of the synthesis of 
CuO nanoparticles is shown in Figure 16. 

 

 
Figure.16. Illustration of the synthesis of CuO nanoparticles using the 

green synthesis method [47]. 

 

The preparation of plant extracts is done by collecting 

the leaves, cleaned, and cut into small pieces. The leaves 

are then washed with distilled water. The leaves are then 
stored in a measuring flask filled with water and kept in a 

heating mantle until boiling. Heating was stopped when 

the solution turned brown. The leaf extract was then 

cooled and filtered [25]. The synthesis process was 

carried out using a solution of copper (II) sulfate. A 

solution of copper(II) sulfate is a solution that has been 

stored overnight at room temperature so that bioreduction 

is possible and the copper salt is converted to copper 

oxide. The solution was centrifuged at 10,000 rpm using 

a 50 mL falcon tube for 20 minutes and washed several 

times with distilled water. Then the supernatant solution 
was discarded and the nanoparticles were transferred to 

another container. The obtained nanoparticles must be 

dried in an oven to remove the moisture content [25]. 

There is a direct correlation between pH value, salt 

concentration, polydispersity index, and CuO 

nanoparticle size with biological methods. The 

correlation depends on the concentration of Cu2+ ions in 

the solution, the enzymes released by the strain, and the 

pH of the solution. The results show the size distribution 

of the nanoparticles dispersed in the liquid to ensure the 

average size of the CuO nanoparticles. The 

polydispersity index measures the second moment of the 
nanoparticle population size distribution [25]. 

Nanoparticle characterization was carried out using 

several techniques including FT-IR, SEM, TEM [50], 

and UV-Vis spectrophotometer [25], and XRD (PAN). 

analytical equipment: XPERT-PRO).  

SEM results revealed that CuO nanoparticles have a 

high tendency to agglomerate. From the analysis of the 

TEM images, it was found that CuO nanoparticles were 

concentrated at certain positions indicating their tendency 

to aggregate. The result of characterization by TEM 

result is shown in Figure 17.  

 
Figure.17. TEM results of synthesized CuO nanoparticles [25]. 
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Characterization of CuO nanoparticles using a UV-

Vis spectrophotometer, namely the UV spectrum of CuO 

nanoparticles showed an abnormal capacity of CuO 

nanoparticles to absorb UV light in the wavelength range 

from 200 to 300 nm. SEM results revealed the 

aggregation ability of CuO nanoparticles whereas TEM 

revealed the average CuO nanoparticle size had been 
reduced to 5 nm by sonication of nanoparticles in acetone 

base liquid. The result of characterization by UV-Vis 

spectrophotometer is shown in Figure 18.  

 
 

Figure 18. UV-Vis spectrum of CuO nanoparticles synthesized with 

various concentrations of leaf extract [25]. 

 

The FT-IR peak obtained at the time shows bond 

vibrations such as Cu-O and O-H in the CuO material. So 

that the synthesis of CuO nanoparticles using the green 

synthesis method was successfully carried out [25]. The 

results of characterization by FT-IR are shown in Figure 
19. 

 
Figure 19. FT-IR spectrum of synthesized CuO nanoparticles [25]. 

 

The green synthesis method is more advantageous 

compared to other biological methods because it 

eliminates the use of cell culture and produces 

nanoparticles on a large scale [25]. The green synthesis 

method is also an environmentally friendly method with 

well-defined sizes, shapes, and mono dispersions [51]. 

The green synthesis method needs considerable attention 

because the protocol is cheaper than the basic synthetic 

method [52]. In addition, the green synthesis method has 
the ability as an antimicrobial agent against fish bacterial 

pathogens [50]. One of the disadvantages of this method 

is that the raw materials for the synthesis are relatively 

difficult to find [25]. 

IV.5. Hydrothermal Method 

The hydrothermal method is a water-solvent heating 

process that involves heating the reactants in a closed 

container using water. In a closed container, the pressure 

increases and the water remains as a liquid. Heating 

water above its normal boiling point of 373 K is called 

superheated water. Conditions in which the pressure 
increases above atmospheric pressure are known as 

hydrothermal conditions. Hydrothermal synthesis is 

usually carried out at temperatures below 300 oC [29]. 

Sample preparation using the hydrothermal method 

was carried out without the use of surfactants [53]. The 

procedure in the synthesis of CuO nanoparticles by the 

hydrothermal method is to dissolve Cu(CH3COO)2.H2O 

4 g in 50 ml of water. Next, 40 mL of an aqueous 

solution of sodium hydroxybiogenicide (1 M/L) was 

added dropwise into the Cu(CH3COO)2.H2O solution. 

Then, 90 mL of the solution was transferred and sealed in 
a Teflon-coated stainless steel autoclave at 110 oC for 2 

hours. Finally, the autoclave is removed and naturally 

cooled to room temperature. After the reaction stopped, 

the black precipitate was washed with deionized water 

and ethanol and then dried at 90 oC [26]. CuO 

nanoparticles can also be synthesized using CuSO4.5H2O 

and NaOH. Where from these materials CuO powder will 

be produced which is stored in a vacuum desiccator to 

reduce the remaining solvent in the CuO powder [54]. 

The technique for characterizing CuO nanoparticles 

namely the size and morphology of the CuO 

nanostructures was examined by SEM (JEOL JSM-5900, 
Japan) connected to the attached EDS and the phase 

identification of the sample was examined by XRD (type 

Dmax III-A, Rigaku Co., Japan) using radiation. Cu-Kα 

incidence, tube voltage 40 kV, and current 30 mA. The 

scanning range is from 20 to 60o 2θ with a scan speed of 

4◦/min. The particle size was then calculated from the 

XRD spectrum using the Scherrer equation. The FT-IR 

spectra were recorded as KBr pellets using an ABB 

Bomen MB 100 spectrometer at wavenumbers between 

400 and 4000 cm−1. The characterization technique is the 

XRD obtained on the Bruker D2 Phaser XRD system. 

Surface morphology by SEM was studied using a 

scanning electron microscope (JEOL JSM 840A) 

coupled with an energy dispersive X-ray analyzer (EDX) 
[55]. TEM and selected area diffraction patterns (SAED) 

were recorded using a Philips CM-200 instrument. 

Finally, FT-IR analysis was applied to determine the 

surface functional groups, using FT-IR spectroscopy 

(Bruker ATR), wherein the spectra were recorded from 

400 to 4000 cm−1 [56]. 

Figure 20 shows the XRD pattern of samples made 

by the hydrothermal process at 110 oC for 2 hours with 

different concentrations of copper acetate. All diffraction 

peaks can be indexed as monoclinic CuO phases with 

lattice constants a = 4.68Ao, b = 3.43Ao, c = 5.13Ao, and 

β =99.26o or 99.47 which, which is consistent with the 

values in standard card (JCPDS 80-0076 or JCPDS 05 

0661), as previously reported. No other impurities were 

detected by XRD analysis, which indicates the phase 
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purity of the CuO nanostructures. And the main peaks 

located at 2θ = 35.5o and 38.7o are indexed as crystal 

planes (0 0 2) and (1 1 1), respectively. The expansion of 

all the peaks recorded in the spectrum indicates the 

presence of nanoscale crystallites. In addition, with 

increasing Cu(CH3COO)2 concentration from 0.06 M/L 

to 0.7 M/L (from pattern 1a to pattern 1i), the diffraction 
peaks were highest and narrowest when the copper 

acetate concentration was 0.2 M/L. , which illustrates 

that the crystallization and size of CuO nanostructures 

increase maximally  [26]. 

 

 
Figure 20. XRD pattern of CuO nanostructures made by hydrothermal 

approach at different concentrations of copper acetate: (a) 0.02 M/L, (b) 

0.08 M/L, (c) 0.1 M/L, (d) 0.2 M/L, (e ) 0.3 M/L, (f) 0.4 M/L, (g) 0.5 

M/L, (h) 0.6 M/L, (i) 0.7 M/L [26]. 

 

The concentration of copper acetate used will affect 

the morphological size of the CuO nanoparticles, the 

greater the concentration of the reactant (Copper acetate), 

the greater the size of the CuO particles. The general 

morphology of the synthesized CuO products prepared 

by the hydrothermal route at different reactant 

concentrations was analyzed by FESEM and the results 

are shown in Figure 21 [22]. With the increase in the 

concentration of Cu(CH3COO)2, the morphology of the 

CuO nanostructure has a large change. The floral 
morphology like CuO nanostructures was obtained at 0.4 

M/L, as shown in Figure 21(a), which indicates that the 

flower-like CuO nanostructures are composed of 

irregular nanosheets about 70 nm wide and 1.7 m long. 

With increasing reactant concentration, the morphology 

of the flower-like CuO nanostructures disappeared, and 

scattered plume-like nanosheets were formed, as shown 

in Figure 21(b). The nanoplate size is about 400 nm wide 

and 900 nm long. When the reactant concentration is 

equivalent to 0.6 M/L, the morphology changes to a 

spindle-like nanostructure. Thus, the morphology of CuO 

nanocrystals can be controlled by changing the 
concentration of the reactants [26]. 

 
Figure 21. FESEM images of CuO nanostructures prepared under 

different concentrations of copper acetate at 110 C for 2 hours: (a) 0.06 

M/L, (b) 0.4 M/L, (c) 0.6 M/L [26]. 

 

Besides acting as a precipitate, NaOH is also very 
important in changing the shape of CuO particles. When 

NaOH is not used, the CuO particles produced are 

spherical, but when NaOH with a concentration of 1M is 

used, the resulting CuO particles form in layers. Figure 

22 shows the morphology of the nanostructures grown 

with NaOH or not under the same conditions. When the 

synthesis process was carried out without NaOH, a 

Hericium erinaceus-like morphology of CuO was 

obtained, as shown in Figure 22(a). However, with 

increasing NaOH concentration to 1 M/L, there was a 

change in the morphology and layered structure of the 
CuO nanostructure, which we can conclude from Figure 

22(b). That is, NaOH plays an important role to 

determine the morphology of CuO nanostructures 

because OH is strongly associated with reactions that 

form nanocrystals [26]. 

 

 
Figure 22. FESEM images of CuO nanostructures prepared with 0.4 

M/L copper acetate at 110 C for 2 hours: (a) without NaOH, (b) 1.0 

M/L NaOH [26]. 

 

The effect of temperature will make the diffraction 
peaks higher and sharper, this will affect the size of the 

CuO particles. at a temperature of 110-140 oC CuO 

particle size is around 2000 nm, when the temperature is 

raised to 170 oC the CuO particles produced shrink to 

500 nm. Figure 23 shows FESEM images of the 

synthesized CuO nanostructures made by the 

hydrothermal route at different temperatures. It can be 

seen that each of these lamellar structures. With 

increasing temperature, the morphology of CuO 

nanostructures changes slightly so that the nanosheet 

length becomes shorter, as shown in Figure 23(a-c). 

From Figure 23(d), we can see that when the 
hydrothermal temperature is up to 170 oC, CuO 

nanosheets are about 600 nm long and 200 nm wide [26]. 
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Figure 23. FESEM images of CuO nanostructures prepared at different 

reaction temperatures: (a) 110 oC, (b) 140 oC, low (c) and high 

magnification (d) images at 170 oC  [26]. 

 

The final effect is the duration of the reaction, 

although this factor only slightly affects the results. By 

prolonging the reaction time, the resulting diffraction 

peaks will be higher and narrower, therefore the size of 

the CuO particles produced will be smaller. The 

morphology of the synthesized CuO products under 

different reaction times was observed using FESEM 

analysis and is shown in Figure 24. From low-

magnification FESEM images of CuO nanosheets. 
Compared with the morphology of CuO nanosheets at 2 

hours, the CuO nanostructures at 12 hours became 

clearer and had a smaller size. The reaction time has little 

influence on the morphology and structure of the 

product. 

Figure 24. FESEM images of CuO nanostructures prepared under 

different reaction times (a) 2 h, (b) 12 h [26]. 
 

The hydrothermal method is an effective method to 

obtain the desired crystals, such as mild conditions, 
controlled morphology, low aggregation, and high 

crystallinity. In addition, the hydrothermal method is also 

relatively simple and easy to vary the variables of 

temperature, reactant concentration, and time on the 

growth of nanostructures [26]. In addition, the 

hydrothermal method can control the size and shape of 

the nanoparticles [29]. The disadvantages of this method 

are that it requires expensive equipment and it is difficult 

to control the stoichiometry of the solution [26]. Another 

disadvantage of the hydrothermal method is that 

hydrothermal slurries are corrosive, and the use of high-

pressure vessels will be dangerous in the event of an 
accident [29]. 

IV.6. Biogenic Method 

The biogenic method of CuO nanoparticles was 

prepared at room temperature by coprecipitation 

technique with several cation modifications. Briefly, in 

this experiment, 0.1 M solution of copper acetate 

Cu(CH3COO)2.H2O (purity 98.0%) and 40 mL plant 

extracts (such as algae) were stirred constantly for 30 
minutes. Then, 0.2 M NaOH aqueous solution was added 

dropwise to the reaction mixture and allowed to stand for 

4 hours. Next, the reaction solution was incubated 

overnight at room temperature for the deposition of the 

nanoparticles as a precipitate. The precipitate was 

separated by centrifugation at 5000 × g for 10 min, the 

precipitate was washed with deionized water, and dried 

at 80 °C for 12 h. CuO dry powder was calcined at 400 

°C for 4 hours to obtain CuO nanoparticles [57]. After 

the nanoparticles are calcined, they are cooled to room 

temperature for further exploration through 
photocatalytic characterization and application [27]. 

According to the available literature, it was 

observed that the secondary moieties (alkaloids, 

flavonoids, polyphenols, and terpenoids) present in plant 

extracts tend to have a high enough potential to reduce 

the acetate group of metal salts through chelation [5]. 

Especially, the –OH group plays an important role in the 

synthesis of metal nanoparticles [58]. During the 

calcination process, the breaking of the bond between the 

metal salt and the –OH group causes the formation of 

metal oxide nanoparticles with the removal of water 

molecules [59-60]. A possible mechanism for the 
synthesis of CuO nanoparticles is described in Figure 25. 

 
Figure 25. Schematic for stepwise synthesis procedure of CuO 

nanoparticles [27]. 

 

The functionality of the biogenic CuO nanoparticles 

was analyzed by the FTT-IR. The morphology and size 

of the synthesized nanoparticles were measured using 

UV-vis, FE-SEM, and JEOL 2100 TEM. The elemental 
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composition of CuO nanoparticles was evaluated using 

XRD spectroscopy [27]. 

The ultraviolet-visible spectrum of the biogenic 

CuO nanoparticles synthesized with plant extracts is 

shown in Figure 26(a). The colloidal buffer of the final 

product showed a strong absorption band at 282 nm, 

which confirmed the formation of CuO nanoparticles. 
The absorption band at 282 nm is associated with the 

transition between the electron bands of the copper metal 

core present in the CuO nanoparticles [50]. The presence 

of protein-like molecules in the leaf extract is responsible 

for the reduction of Cu metal salts to form CuO 

nanoparticles [46]. The bandgap of the synthesized CuO 

nanoparticles was determined by the Tauc plot method 

[61], which involves plotting (αhν) 1/2 versus, as shown 

in Figure 26(b). In the Tauc plot, is the absorption 

coefficient and is the light energy. Furthermore, h is the 

Planck's constant of 6.626 × 10−34 Js [39]. 

XRD spectra of biogenic CuO nanoparticles 

showed a series of diffraction peaks at 32.63, 35.67, 

38.78, 48.88, 58.34, 61.69, 68.16, and 75.32°. Which is 

associated with (110), (111), (202), (020), (113), (311), 

and (004) CuO monoclinic planes, respectively. The 

presence of a diffraction peak (between 2θ = 35–39°) 

confirmed the formation of CuO [62]. The XRD data 
obtained from the synthesized CuO nanoparticles are 

very similar to the monoclinic crystalline spectrum of 

CuO nanoparticles (eJCPDS 05 0661) which can be seen 

in Figure 26(c) [27]. 

FT-IR (Perkin Elmer, USA) was used to identify the 

functional groups present in CuO nanoparticles 

biosynthesized by the KBr pellet procedure. The visible-

ultraviolet spectrum was measured from 200 to 600 nm 

in quartz using a UV-visible spectrophotometer (Model 

UV-2600, Shimadzu Inc. 01197). The surface functional 

groups of biogenic CuO nanoparticles were investigated 

by FT-IR spectroscopy. As shown in Figure 26(d), the 

spectrum of the synthesized CuO nanoparticles showed 

the main vibrational peaks at 530, 1088, 1628, 2842, and 

3750 cm-1. The strong bands at 1088 and 530 cm−1 are 

caused by CuO vibrations [50]. The 2842 cm
−1

 band is 

due to the C=O alkanes of the proteins present on the 

surface of the nanoparticles, respectively. These bands 

are associated with protein residues present on the 

surface of the nanoparticles after the synthesis process. In 

this study, it was assumed that the protein present in the 
leaf extract was responsible for the reduction of the 

acetate group of metal salts to nanoparticles and acted as 

a stabilizing and capping agent for CuO nanoparticles 

[46]. FT-IR also suggested the presence of a hydroxyl 

group (band at 3750 cm−1) on the surface of the 

synthesized CuO nanoparticles, which is thought to act as 

a stabilizer during the synthesis of biogenic CuO 

nanoparticles [46, 63-64]. 

 

 
 

Figure 26. Spectral analysis of synthesized biogenic CuO nanoparticles: 

(a) UV vis, (b) Tauc plot, (c) XRD, and (d) FT-IR [27]. 

 

The morphological characteristics of the 

synthesized CuO nanoparticles were evaluated by FE-

SEM. As shown in Figures 27(a and b), the nanoparticles 

exhibited a spherical morphology as coarse 

agglomerates. The same sample was used for EDX 

analysis. As shown in Figure 27(c), the agglomerated 

CuO nanoparticles contained 91.72 and 8.28% by weight 

Cu and O, respectively. The presence of other elements 

even from the leaf extract was negligible. Most of the 

remaining leaf extract molecules were removed during 
the washing and calcination processes of the synthesized 

nanoparticles CuO. However, due to the presence of 

carbon molecules in the leaf extract, a small amount of 

carbon may be present on the surface of the synthesized 

CuO nanoparticles in the form of capping [27]. As shown 

in Figure 28, the prepared CuO nanoparticles are 

spherical with a uniform size distribution of 2-6 nm [27]. 

 

 
 

Figure 27. FE-SEM of synthesized biogenic CuO nanoparticles with (a) 

200 nm (inset: square showing element mapping) and (b) 100 nm scale 

bars. Moreover, (c) for the EDX spectrum of CuO nanoparticles [27]. 

 
The specific surface area of the synthesized CuO 

nanoparticles was found to be 52.6 m2/g with a total pore 

volume of 0.197 cm3/g and an average pore diameter of 

14.98 nm as described in Figure 28. S1 in Supplementary 

Information (SI). Note that all related information 
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referring to the Figure is also provided in the SI. The 

relative pressure (p/po) is 0.985. In addition, the 

aggregation kinetics of CuO nanoparticles has been 

investigated through a particle size analyzer using NaCl 

as an electrolyte at different concentrations (20, 40, and 

60 mM)  [65]. A very small change in mean particle size 

was observed even at 60 mM NaCl concentration 
Similarly, control experiments (without NaCl) showed 

negligible variation in particle size after 60 min which 

signifies stability of the synthesized nanoparticles. 

 

 
 

Figure.28. TEM micrograph of synthesized CuO nanoparticles: (a) 50 

nm and (b) 20 nm scale rods [27]. 

 

There are advantages to this method, namely the 

procedure is simple, the equipment required is 

environmentally friendly, and does not require high 

costs. However, this method also has drawbacks, namely 

the difficulty of implementing on a large scale and the 
need to maintain cell cultures and it is difficult to control 

the size, shape, and crystallinity [27]. 

V. Conclusion 

CuO nanoparticles are oxide semiconductors that 

have unique properties and have many applications in 

several fields and are useful in everyday life. One of its 
uses is that it can be used to divert heat energy. The 

addition of a volume of CuO nanoparticles into the 

nitrate salt can increase the thermal diffusivity and 

thermal conductivity used in solar power plants. CuO 

nanoparticles can be synthesized from several methods: 

(1) electrochemistry, (2) sonochemistry, (3) sol-gel, (4) 

green synthesis, (5) hydrothermal, and (6) biogenic 

methods. Each method has its results and advantages. 

Among the methods described, the hydrothermal method 

is the most effective and efficient method for industrial 

scale. This is because the method is simple (without 

using any surfactant template), it is easy to vary the 
variables of temperature, reactant concentration, and time 

on the growth of nanostructures. This paper is expected 

to provide some considerations regarding the synthesis 

method of CuO nanoparticles that can be used on an 

industrial scale based on the advantages of each method. 
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