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Abstract 
In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However, 

these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611 
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network 
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, cv , dv , ρ∆ , dc µµ / , 

σ . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52% 
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the 
developed ANN correlation noticeably improved prediction of dispersed phase hold up. The developed correlation also 
shows better prediction over a wide range of operation parameters in RDC columns. 
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Introduction 
In the design and scale up of RDC, it is necessary to 

explore the hydrodynamic behavior, mass transfer 
mechanism, and hold up effect within the equipment 
under different operating conditions. Dispersed phase 
hold up represents the total drop population in RDC 
column is defined as the ratio of dispersed phase to the 
volume of the column. The effect of the hold up on the 
performance of an extraction column is the most 
important hydrodynamic characteristic, because hold up 
is related to the interfacial area between the phases by: 
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Where x is the dispersed phase hold up and 32d  is the 

sauter mean diameter. And the hold up is related to the 
rate of mass transfer (W) via (a) by: 

caVKW ∆= ...  (2) 

Wher K is the mass transfer coefficient, V is volume of 
the column and c∆  is the concentration driving force. 

In solvent extraction the re lationship between mass 
transfer and hydrodynamic performance is complex and 
there are many types of contactors each requiring a 
special understanding. Numerous experimental studies of 
dispersed phase hold up, drop size, mass transfer and 
mixing behavior within contactors have been reported 
[1]. 

In order to determine the interfacial area of the 
dispersion for the mass transfer calculation using 
equation (2) either of the following should be known: 
1. The drop residence time in the contactor. 
2. The fraction of the column occupied by the dispersed 

phase hold up. 
In agitated contactors the residence time distribution is 

rather complex and dispersed phase hold up is therefore 
usually used for the estimation of interfacial area. 

Virmijs and Karmers [2] investigated performance of 
RDC for various values of the rotor speed, total through 
put and solvent to feed ratio by comparing the separating 
efficiency with the fractional volume of the dispersed 
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phase under the same circumstances it was found that 
under certain condition the efficiency decreases although 
the hold up of the dispersed phase increases. This effect 
is ascribed to back mixing in continuous phase due to 
entrainment by the dispersed phase. 

The hold up increased by increasing the solvent to feed 
ratio wh ile the total through put is kept constant, and the 
special kind of back mixing in the continuous phase 
impairs the efficiency of the extraction operation. 
Logsdail et.al [3] were the first to introduce the concept 
of dispersed phase hold up for the characterization of 
column design these authors modified the concept of 
relating the slip  velocity sv of the dispersed phase to the 

hold up in a two phase system by: 
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ov is called the characteristic velocity and is defined as 

the mean velocity of the droplets extrapolated to 
essentially zero flow rates at a fixed rotor speed. Many 
correlations have been published relating the dispersed 
phase hold- up to the characteristic velocity in the form of 
equation 4 with additional factors for column size 
constriction and droplets coalescence and break up which 
could not be easily applied due to the amount of 
information required specially for ov . Some selected 

reliable correlations are given in table (1). However these 
correlations fail to predict hold up over a wide range of 
conditions. Thus this work was initiated in order to 
develop a general correlation using artificial neural 
network. 

 

Artificial Neural Network (ANN) 

From an engineering view point ANN can be viewed as 
non linear empirical models that are especially useful in 
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representing input-output data. Making predication, 
classifying data, reorganization patterns, and control 
process. ANN which will be referred to as a node in this 
work and is analogous to a single neuron in the human 
brain. The advantages of using artificial neural network 
in contrast with first principles models or other empirical 
models are [4-6], 
1. ANN can be highly non linear. 
2. The structure can be more complex and hence more 

representative than most other empirical models. 
3. The structure does not have to be prespecified. 
4. Quite flexible models. 

(ANN) have been increasingly applied to many 
problems in transport planning and engineering, and the 
feed forward network with the error back propagation 
learning rule, usually called simply Back propagation 
(Bp), has been the most popular neural network [7]. 

 

Back-propagation 

Back propagation was one of the first general 
techniques developed to train multi-layer networks, 
which does not have many of the inherent limitations of 
the earlier, single -layer neural nets. A back propagation 
net is a multilayer, feed forward network that is trained 
by back propagating the errors using the generalized 
Delta rule [8]. 

The steps for back- propagation training can be shown 
as follows [9]: 
1. Initialize the weights with small, random values. 
2. Each input unit broadcasts its value to all of the hidden 

units. 
3. Each hidden unit sums its input signals and applies its 

activation function to compute its output signal. 
4. Each hidden unit sends its signal to the output units. 
5. Each output unit sums its input signals and applies its 

activation function to compute its output signal. 
6. Each-output unit updates its weights and bias: 

The conventional algorithm used for training a MLFF 
is the Bp algorithm, which is an iterative gradient 
algorithm designed to minimize the mean-squared error 
between the desired output and the actual output for a 
particular input to the network [10]. Basically, Bp 
learning consists of two passes through the different 
layers of the network: a forward pass and backward pass. 
During the forward pass the synaptic weights of the 
network are all fixed. During the backward pass, on the 
other hand, the synaptic weights are all adjusted in 
accordance with an error-correction rule [11]. 

The algorithm of the error back-propagation training is 
as given below [10]: 
Step 1: initialize network weight values. 
Step 2: sum weighted input and apply activation function 

to compute output of hidden layer 
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i
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Where, hj: The actual output of hidden neuron j for input 
signals X. 
 Xi: Input signal of input neuron (i). 
Wij: Synaptic weights between input neuron hidden 
neuron j and i.  
f : The activation function. 
 
Step3: sum weighted output of hidden layer and apply 

activation function to compute output of output 
layer. 
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j
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Where Ok: The actual output of output neuron k. 
Wjk: Synaptic weight between hidden neuron j and output 

neuron k. 
 
Step 4: Compute back propagation error 

( ) 
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Where f’: The derivative of the activation function. 
dk: The desired of output neuron k. 

 
Step 5: Calculate weight correlation term 

( ) ( )1−∆+=∆ nWhnW jkjkjk αηδ  (7) 

 
Step 6: Sums delta input for each hidden unit and 
calculate error term. 

( )∑= ijijkkj WXfW 'δδ  (8) 

Step 7: Calculate weight correction term 

( ) ( )1−∆+=∆ nWXnW ijijij αηδ  (9) 

Step 8: Update weights 

( ) ( ) ( )nWnWnW jkjkjk ∆+=+ 1  (10) 

Step 9: Repeat step 2 for a given number of error 
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Where p is the number of patterns in the training set. 

Step 10: End 

Bp is easy to implement, and has been shown to produce 
relatively good results in many applications. It is capable 
of approximating arbitrary non-linear mappings. 
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However, it is noted that two serious disadvantages in the 
Bp algorithm are the slow rate of convergence, requiring 
very long training times, and getting stuck in local 
minima. The success of Bp methods very much depends 
on problem specific parameter settings and on the 
topology of the network [9]. 
 
The Activation Function used with the Back-
Propagation 

There are three transfer functions most commonly used for 
back propagation, but other differentiable transfer functions 
can be created and used with back propagation if desired. 
These functions are tansig, logsig, and purelin. The function 
logsig generates outputs between 0 and 1 as the neuron's net 
input goes from negative to positive infinity. Alternatively, 
multilayer networks may use the tan sigmoid transfer 
function. Occasionally, the linear transfer function purelin is 
used in back propagation networks. [8]. 

If the last layer of a multilayer network has sigmoid 
neurons, then the outputs of the network are limited to a 
small range. If linear output neurons are used the network 
outputs can take any value. In the present simulation the 
tansig is used. 

 
Modeling Correlation of ANN  

The modeling of ANN correlation began with the 
collection of large data bank followed by the learning file 
which was made by randomly selecting about 70% of the 
data base to train the network. The remaining 30% of 
data is then used to check the generalization capability of 
the model. The last step is to perform a neural correlation 
and to validate it statistically. So that the steps of 
modeling are:- 

 
Collection of Data 

 The first step   is collection of data.. Many 
investigators studied the hydrodynamics of RDC based 
on the dispersed phase hold up. In this model about 611 
experimental points have been collected for mass transfer 
from continuous to dispersed phase (c—>d), for mass 
transfer from dispersed to continuous (d—>c) and for the 
case of no mass transfer in RDC. The data were divided 
into training and test sets: the neural network was trained 
on 70% of the data and tested on 30%. The data includes 
nine chemical systems with a large range of rotary speed, 
velocity of both continuous and dispersed phase as well 
as the physical properties for each chemical system. All 
of these parameters are input to neural network and there 
is one output; it is the hold up of dispersed phase. 

 

The Structure of Artificial Neural Network 

In this work, a multilayer neural network has been 
used, as it is effective in finding complex non-linear 

relationships. It has been reported that mu ltilayer ANN 
models with only one hidden layer are universal 
approximates. Hence, a three layer feed forward neural 
network is chosen as a correlation model. The weighting 
coefficients of the neural network are calculated using 
MATLAB programming. Structure of artificial neural 
network built as:- 
1. Input layer: A layer of neurons that receive information 

from external sources and pass this information to the 
network for processing. These may be either sensory 
inputs or signals from other systems outside the one 
being modeled. In this work six input neurons in the 
layer and there is a set of (427) data points available for 
the training set. 

2. Hidden layer: A layer of neurons that receives 
information from the input layer and processes them in 
a hidden way. It has no direct connections to the 
outside world (inputs or output). All connections from 
the hidden layer are to other layers within the system. 
The number of neuron in the hidden layer is twenty one 
neurons. This gave best results and was found by trial 
and error. If the number of neurons in the hidden layer 
is more, the network becomes complicated. Results 
probably indicate that, the present problem is not too 
complex to have a complicated network routing. 
Hence, the results can be satisfactorily achieved by 
keeping the number of neurons in hidden layer at a best 
value of twenty one neurons. 

3. Output layer: A layer of one neuron that receives 
processed information and sends output signals out of 
the system. Here the output is the hold up of dispersed 
phase in RDC. 

4. Bias: The function of the bias is to provide a threshold 
for activation of neurons. The bias input is connected 
to each of hidden neurons in network. 
The structure of muiti layer ANN modeling is 

illustrated in figure (1). 
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Training of Artificial Neural Network 

The training phase starts with randomly chosen initial 
weight values. Then a back-propagation algorithm is 
applied after each iteration, the weights are modified so 
that the cumulative error decreases. In back-propagation, 
the weight changes are proportional to the negative 
gradient of error. More details about this learning 
algorithm is shown in figure (1). Back-propagation may 
have an excellent performance. This algorithm is used to 
calculate the values of the weights and the following 
procedure is then used (called "supervised learning") to 
determine the values of weights of the network:- 
1. For a given ANN architecture, the value of the weights 

in the network is initialized as small random numbers. 
2. The input of the training set is sent to the network and 

resulting outputs are calculated. 
3. The measure of the error between the outputs of the 

network and the known correct (target) values is 
calculated. 

4. The gradients of the objective function with respect to 
each of the individual weights are calculated. 

5. The weights are changed according to the optimization 
search direction. 

6. The procedure returns to step 2. 
7. The iteration terminates when the value of the 

objective function calculated using the data in the test 
approaches experimental value.  
The trial and error to find the best ANN correlation 

model is shown in table 2. 
 

Table (2) Network parameters in ANN model 

Network Parameters 

  

Structure 
 

MSE 

 

No. of 

iteration 
 

Learning 

rate 
 

Momentum 

coefficient 
 

Transfer 

function 
 

[6-16-1] 

 

0.1  

 

2590 

 

0.7  

 

0.9  

 

Tan sigmoid 

 

[6-18-1] 

 

0.01 

 

4321 

 

0.65 

 

0.9  

 

Tan sigmoid 

 
[6-21-1] 

 

0.0001 

 

9103 

 

0.75 

 

0.9  

 

Tan sigmoid 

 

 
With reduced MSE (Mean Square Error) the network is 

more accurate, because MSE is defined as: 
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Where p is the number of patterns in training set, k is 

the number of iterations, p
kd  is the desired output, p

kO  

is the actual output. 
The learning process includes the procedure when the 

data from the input neurons is propagated through the 
network via the interconnections. Each neuron in a layer 

is connected to every neuron in adjacent layers. A scalar 
weight is associated with each interconnection. 

Neurons in the hidden layers receive weighted inputs 
from each of the neurons in the previous layer and they 
sum the weighted inputs to the neuron and then pass the 
resulting summation through a non-linear activation 
function (tan sigmoid function). 

Artificial neural networks learn patterns can be equated 
to determining the proper values of the connection 
strengths (i.e. the weight matrices wh and wo illustrated in 
figure 1) that allow all the nodes to achieve the correct 
state of activation for a given pattern of inputs. The 
matrix, bias, and vector, given equations (14), (15), and 
(16) illustrate the result of coefficient weights for ANN 
correlation , where wl is the matrix containing the weight 
vectors for the nodes in the hidden layer, Wo is the vector 
containing the weight for the nodes in the output layer 
and is the bias. 

 
 

 
 
 
 
 
 (14) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (15) 
 
 
 
 
 
 
 
 
 
 (16) 
 
 
 

 



Prediction of fractional hold up in RDC column using artificial neural networks 

IJCPE Vol.8 No.4 (December 2007) 36 

Simulation Results 
The network architecture used for predicting hold up is 

illustrated in figure (1) consist of six inputs neurons 
corresponding to the state variables of the system, with 
21 hidden neurons and one output neuron. All neurons in 
each layer were fully connected to the neurons in an 
adjacent layer. The prediction of ANN correlation result 
is plotted in figure (2) compares the predicted hold up 
with experimental hold up for training set 

 

 

Figure (2) Comparison between experimental and 
predicted hold up in training set 

 

 

Figure (3) Comparison between experimental and 
predicted hold up in testing set 

 

Test of the Proposed ANN 

The purely empirical model was tested on data that 
were not used to train the neural network and yielded 
very accurate predictions. Having completed the 
successful training, another data set was employed to test 
the network prediction hold up. We made use of the same 
model to generate (184) new data values. The result of 

prediction is plotted with experimental values as shown 
in figure (3). 

 

Statistical Analysis 

Statistical analysis based on the test data is calculated 
to validate the accuracy of the output for pervious 
correlation model based on ANN. The structure for each 
model should give the best output prediction, which is 
checked by using statistical analysis. The statistical 
analysis of prediction is based on the following criteria: 

 
1. The AARE (Average Absolute Relative Error) should 
be minimum: 
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Where N here is the number of data points. x is the hold 
up. 
2. The standard deviation should be minimum. 
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3. The correlation coefficient R between input and output 
should be around unity. 

( )( )

( ) ( )∑∑

∑

==

=

−−

−−
=

N

i
predictionprediction

N

i
erimentalerimental

N

i
predictionipredictionerimentalierimental

xxxx

xxxx
R

1

2

1

2
expexp

1
)(exp)(exp  (19) 

 
Where erimentalxexp =hold up mean of experimental points, 

predictionx =hold up mean for prediction points. 

 
The literature correlations (in table 1) were used to 

estimate the hold up. These correlations show a poor 
agreement between the prediction and experimental hold 
up value compared with ANN correlation. Table (3) gives 
information of comparing these correlation with ANN 
prediction in testing set. 

 
 
Table (3) Comparison of ANN and previous literature 

correlations in testing set 
Correlation AARE% S.D% R 
Kastkin(1962) 51.93 32.55 0.695 
Murakami(1978) 41.29 23.94 0.7914 
Hartland(1987) 32.79 22.59 0.778 
Kalaichelvi(1998) 32 27.63 0.726 
ANN (this work) 6.52 9.21 0.998 
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Conclusions 
The ANN correlation shows noticeable improvement in 

the prediction of dispersed phase hold up. The neural 
network correlation yield an AARE of 6.52% and 
standard deviation of 9.21%, which is better than those, 
obtained for the selected literature correlations. Also 
ANN correlation yielded improved predictions for variety 
of liquid systems and a wide range of operating 
parameters. The number of input units and output units 
are fixed to a problem (here, 6 and 1 respectively) but the 
choice of the number of the hidden units is flexible. In 
this work best results were obtained employing 21 hidden 
neurons. 

Nomenclature 
a Interfacial mass transfer area m2/m3 
b Bias  

c∆  Concentration driving force kg/m3 

32d  Sauter mean diameter  

Dr Diameter of rotary disk m 
Ds Stator ring opening m 
Dt Diameter of RDC column M 
f The activation function  
f' The derivation of the activation function  
g Gravitational constant m/s2 
hi The actual output of hidden neuron j  
K Mass transfer coefficient  ̀ m/s 
n Number of input neurons  
N Speed of rotor dist rps 
Ok The actual output  of neuron k  
P The number of patterns in the training set  
R Correlation coefficient  
V Volume of column m3 

vc Velocity of continuous phase m/s 
vd Velocity of dispersed phase m/s 
vo Characteristic velocity m/s 
vs Slip velocity m/s 
W Rate of mass transfer kg/s 
Wij Synaptic weights between input and hidden 

neuron 
 

Wjk Synaptic weights between input and output 
neuron 

 

x Hold up  
Xi Input vector  
x  Mean hold up  
zc Height of compartment m 
z t Height of RDC column M 

Greek symbols 

α  Momentum to accelerate the network 
convergence process 

 

kδ  The error term  

η  The learning rate  
µ  Viscosity kg/m.s 
σ  Interfacial tension N/m 
ρ  Density kg/m3 

ρ∆  Density difference kg/m3 

Subscripts 

c Continuous phase  
d Dispersed phase  
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