
IICPT
lnqi Jounrl of Chcmlcd

rrd Pctrclc[m Engincrin3

lraqi Journal of Chemical and Petroleum Engineering
Vol.B No.2 (June 2007) 1'4

Urlvcnity of Brghdrd
Coll!8c of Englncrln8

Drag Forces under Longitudinal Interaction
of Two Particles

Abbas H. Sulaymon'and Sawsan A. M. Mohammed"
' 
Environmental Engineeriig Deparlment - College of Engineering - University of Baghdad - Iraq

" Chemical Engineering Deparlmenl - College of Engineering - University of Baghdad - Iraq

Abstract
Direct measurements of drag force on two interacting particles arranged in the longitudinal direction for particle

Reynolds numbers varyingfrom I0 lo 10" are conducted using a micro-force measurement system. The e/fect of the
interparticle distance and Reynolds number on the drag forces is examined. An empirical equation is obtained to
describe the effect of the interparlicle distance (l/d) on the dimensionless drag.
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Introduction
The knowledge of the particle drag force is important in

ttre flow analysis of particulate and multiphase flow systems.
For an isolated particle or for particles in dilute system,

the particle drag force can be obtained theoretically or
semi-empirically. However, in concentrated particulate
systems, particle interaction become important and thus
the particle drag force in these systems may deviate
significantly from that of an isolated particle.

Theoretical work on the drag force of interacting
particles is limited to very low Reynolds number, due to
the nonlineariry of the equation governing the flow
motion at higher Reynolds number. The only
multiparticle system from which the drag force can be
rigorously determined analytically is a two-particle
system. Stimson and Jeffery fll employed a bipolar
coordinate system to solve the velocity field of a slow-
moving fluid flowing around two equal-sized particles
aligned in the flow direction. The major research efforts
on the drag force of individual interacting particles have
mainly focused on unbounded Stokes flows Happle and
Brenner [2]. They reported that for all the centerline
orientations the particle drag force is lower than that of a
single particle.

Outside the Stokes flow regime, there have been only a
few fundamental studies dealing with the drag force of a
small number of particles.

Lee and Tusji et al [3] conducted experiments on the
interactions between two particles at Reynolds number
about l0a and Reynolds number from 102 to 103,
respectively. Their results showed that the drag force of the
trailing particle decreased with decreasing distance
between particles, but the particle drag force increased as
the other particle approached from the transverse direction.

For lower Reynolds number, Rowe and Henwood [4]
presented a diagram of the drag ratio versus angular
displacement at three different separation distances for
Re = 96. Zhu et al [5] used a micro balance to measure
the drag force on two interacting particles arranged in the
longitudinal direction for Re from 20 to 130. They
reported a similar trend in the drag ratio versus separation
distance for the trailing particle.

Yuan and Prosperetti [6] evaluated the "true drag
coefticient" of a pair of bubbles rising in line in the
intermediate Reynolds numbers range (50<Re900). They
showed that the drag coefficient of the leading bubble was
almost the same as the one of the single bubble; however
the one of the trailing bubble greatly decreased due to the
flow field generated by the leading bubble.
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Typical results of the drag of the trailing particle under
the influence of the leading particle are illustrated in
Fig. 3. The drag is non-dimensionalized by the drag force
of a single non-interacting particle under the same
Reynolds number. The interactive distance (l) is also
expressed in a dimensionless form Vd.

Fig. 3 shows that the drag ratio of the trailing particle
decreases exponentially with decreasing l/d and reaches a
minimum at the contact position, which agrees with the
results of Rowe and Henwood [4] and Tsuji et al Il].
The reduction in the drag ratio is caused by the wake
effect.

+ R c . l l
{* R!'82
+Rc '93
+Rc.485
+Rc.928
+Equatlon ( 3 )

7 t 9

Fig. 3 Experimental data for the variation in the drag ratio
with inter-particle distance

An empirical relation is obtained to describe the effect
of the interparticle distance l/d on the dimensionless drag
of the trailing particle. The empirical equation takes the
exponential form [2]:

yd : 5 to l0 and asymptotically approaches the single
sphere value.

The reason for the drag ratio reduction with decreasing
inter-particle according to Zhu et al. [5] is that the
particle interaction renders the wake vortex of the leading
particle longer than that of a single non-interacting
particle.

It is also found that the curves for different Reynolds
number may cross each other at l/d of about I to 3. At a
small l/d, the drag ratio of a higher Reynolds number
decrease faster within the Reynolds number range tested.

Gonclusions
l. An empirical relation is obtained in this investigation

to degcribe the drag force variation of a single particle
trailing in the wake of a leading particle.

2.The drag ratio of the trailing particle decreases
exponentially with decreasing lld and reaches a
minimum at the contact position, but the effect of

, interaction disappears at a distance larger than l/d of
about 5 to l0 and asymptotically approaches the single
sphere value.

3. It is found that the curves for different Reynolds
number may cross each other at l/d of about I to 3.

Nomenclature
drag coefficient (-)
drag coefficient ofan isolated sphere (J
sphere diameter (m)
drag force (N)
drag force of an isolated sphere (N)
gravitational acceleration (m /s2)
the distance between the centers of spheres (m)
Reynolds number based on the sphere diameter
(ud /v) (-)

u sphere velocity (m /s)
Greek letters

lrr dynamic viscosity of fluid (kg/m.s)
pr density of fluid (kg/m3)
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Where Fp is the drag force of an interactive particle and
Fpo is the drag force of a single non-interacting particle.
The coefficients are determined at as, A:1.0 and B= 0.5,
thus equation 2 canbe approximately written as:

FD - gJL=r-"*o(.-0.51)

F,ro C,ro 
^\ 
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Equation 3 is examined at two limits of the separation
distances between two spheres. As I goes to infiniry, the
second term in the equation vanishes and the drag ratio
becomes unity as expected. At contact (l/d=l), the drag
ratio equals about 0.4, which gives the minimum value of
the drag ratio.

The drag is aflected by the interaction, it decreases
with decreasing distance between the spheres, but the
eftbct of interaction disappears at a distance larger than
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