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Abstract

Nowadays, the use of meta-heuristic algorithms (MAs) for tackling complicated engineering is-
sues has shown significant promise, therefore applying MAs to optimum model parameters and PID
parameters can be quite beneficial. As a result, this paper looks at the capabilities of four recently
released resilient MAs in optimizing model parameters and PID parameters for various system
behaviors. Hence, these four meta-heuristic algorithms are used such as Ant Colony Optimization
(ACO), Cultural Algorithm (CA), Invasive Weed Optimization (IWO), and Black Hole Algorithm
(BHA). The key contribution of this study is the employment of many meta-heuristics at the same
time with the same objective function while taking into consideration each algorithm parameters
for identification and control, then compared to traditional techniques such as Least square (LS)
and Reference Model (RM). Thus, the most efficient algorithm is the one that yields the lowest
cost function, has the lowest standard deviation (SD), and uses the least amount of CPU time.
Regarding identification, simulation findings showed that CA algorithm has the best cost, lowest
standard deviation (SD) and fewest CPU time 2.7838e-13, 7.1108e-13 and 3.1395(s), respectively.
As for control system, it is shown that created intelligent-based controllers are more dependable
than reference model controllers in stabilizing the behaviors of the various examined processes, with
the IWO algorithm finds the best gains of PID and converges the fastest with best cost 3.2905e-10
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and CPU time 48.8732(s). Moreover, ACO and BHA both failed to achieve satisfactory results in
terms of accuracy and CPU time compared to others algorithms. Additionally, studies also showed
that optimization methods has good performance, resilient and effective.

Keywords: Identification, Automatic Control, Ant Colony Optimization (ACO), Invasive
Weed Optimization (IWO), Cultural Algorithm (CA), Black Hole Optimization (BHA), PID, Least
Squares, Reference Model.

1 Introduction
A number of scientific and technical disciplines commonly experience identification and control

issues, they also do so in a variety of applications that depend more and more on sophisticated control
techniques.

System identification is the first and most crucial step in the design of a controller. A controller
can be created using a variety of control methods in accordance with a recognized system model to
meet the necessary specifications. The choice of a suitable identification model and an assessment
of the model’s parameters build up system identification. Fortunately, most engineering systems
and industrial processes have well-understood structures, making it easy to develop a certain type of
models that can accurately capture the real system. As a result, the challenge of system identification
is typically simplified to that of parameter estimation.

A fundamental method that is frequently used for parameter estimate is the least-squares approach
[1], both the static and dynamic systems’ parameters have been effectively identified using it. But
only model structures of systems with the attribute of linearity in the parameters are appropriate.
This strategy may be invalid if the model structure is not linear for the parameters [2]. Heuristic
optimization approaches appear to be a more promising strategy and offer an effective way of solving
this challenge [3, 4, 5, 6, 7]. They appear to be a viable replacement for conventional methods.

Proportional integral derivative (PID) controllers have long been employed in process industries
because to their simplicity, usability and reliability. The precise and effective tuning of parameters
is the main challenge for PID controllers. PID parameter tuning is complicated in reality due to the
nonlinearity and time delay that are common in controlled systems. Numerous PID tuning techniques
were put forth. Despite requiring a step input application with paused process, the Ziegler-Nichols
(ZN) approach is experimental and frequently used [8]. The need for prior knowledge of plant models is
one of the disadvantages of this approach. Once the controller has been tuned using the ZN approach,
a good but not ideal system response will be obtained.

Numerous artificial intelligence (AI) approaches, including neural networks, fuzzy systems, and
neuro-fuzzy logic, have been extensively used in the last 20 years to optimize PID controller settings
[9, 10, 11]. Along with these methods, a variety of heuristic approaches have garnered a lot of attention
recently for their high efficacy and capacity to find the best solution in a problem space. These meta-
heuristic optimization algorithms, which include ACO, PSO, AFS, BFO, ABC and other algorithms,
demonstrate their capacity to solve nonlinear design issues in practical applications across almost all
branches of science, engineering, and industry, according to research that have been published, PSO
and ACO are the two most commonly employed algorithms [12]. For examples of these applications
include those that deal with transportation issues such as those involving unmanned aerial vehicles
(UAVs) [13, 14, 15, 16], system identification [3, 4, 5, 6, 7], control system [17, 18, 19, 20], fault
diagnosis, power systems [21, 22] and others application [12].

The PID controller design employing ACO, CA, IWO, and BHA in accordance with the iden-
tified system will also be covered in this work, these methods entail the use of data modeling and
cost function with optimization techniques to adjust PID settings. These controller parameter tech-
niques are based on a cost function that they wish to minimize, for tuning PID controller settings,
there are six (6) commonly used cost functions (Integral Absolute Error (IAE), Integral Square Error
(ISE), Integral Time Absolute Error (ITAE), Integral Time Square Error (ITSE), Mean Square Error
(MSE), Integral Error (IE)) [17]. For instance, in [23] a novel hybrid Ant colony optimization for
DTC control framework has been implemented, the simulation’s results demonstrated the efficiency
of the intelligent ACO-DTC control, which outperforms the traditional DTC in terms of speed, sta-
bility, accuracy, and torque ripples. For the best PID controller design, a improved Invasive weed
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optimization method (IWO) based on chaos theory has been developed, five benchmark functions and
PID controller parameter for DC motor are used to examine the chaotic invasive weed development
process, results on optimization issues demonstrate the faster convergence rate and higher accuracy
of the improved chaotic weed algorithm [18]. In [19] the design of a quantitative PID controller us-
ing Black hole algorithm (BHA) is suggested for Ball and Beam system, According to the findings
simulation, the suggested quantitative PID controller is capable of compensating the ball and beam
system with stable behavior and preferable time response. For unmanned tilt-rotor flight control and
trajectory tracking, proportional-derivative parameters based on particle swarm optimization (PSO)
were developed in [14], for the best tuning of the controllers’ settings, both Particle Swarm Optimiza-
tion (PSO) and traditional Reference Model (RM) approaches are used and then compared. In [15],
a PID quadcopter controller’s parameters were determined via genetic algorithm optimization (GA)
and compared to reference model. In [16] a comparative study of optimized based-control system
of a single-rotor, medium-scale rotorcraft has been made by using cuckoo search (CS), ant colony
optimization (ACO), particle swarm optimization (PSO) and genetic algorithm (GA) compared to
manual tuning the four algorithm perform better, The ACO algorithm converges the quickest in hover
trim settings and determines the optimum gains for the selected goal function, as for forward trim
the optimum algorithm was determined to be GA. In both hover and forward flight, The two tuned
flight controllers were successful in maintaining trim condition and regaining control after an external
disruption.

Although the aforementioned MAs were frequently used to solve various engineering challenges,
there is no one algorithm that can be used to find the best solution for all optimization issues. Certain
algorithms could offer a superior solution to a specific problem, but not to others. So, it’s important
to assess each algorithm’s suitability for a certain optimization issue. As a result, this study looks
at how well four MAs perform when it comes to optimizing model and PID parameters for various
system characteristics. Ant Colony Optimization (ACO), Cultural Algorithm (CA), Invasive Weed
Optimization (IWO), and Black Hole Optimization (BHA) are some of these algorithms. to compare
them we take into account their ease of use, lower run-time, more precise findings, fast convergence,
high convergence accuracy, and good robustness.

This study is organized as follows: Section 2 describes the steps used to identify and control the
analyzed stable and unstable processes using conventional approaches (least squares and reference
model) and intelligent techniques (ACO, CA, IWO and BHA). Four chosen Meta-heuristic algorithms
(MAs) are introduced and described in Section 2.3. In section 3, the recommended PID-based on
ACO, CA, IWO, and BHA controllers for system stabilization are synthesized after the parameters
of the models characterizing the four behaviors are calculated using four intelligent approaches. The
results of the simulation are compiled in Section 4. Finally, a summary of this study is offered in the
last section 5.

2 Conventional and Intelligent Methods Used for Identification and
Control

The topic covered in this section is creating a PID controller for each process based on the reference
model and four selected intelligent algorithms, while also estimating the model parameters using Least
Square (LS), we examine four systems that represent four distinct types of behaviors in order to
undertake this research.

We take into consideration the specified transfer function as a model equation for the four systems.

Gmi (p) = kωn
2

p2 + 2ξωnp + ωn
2 (1)

Therefore, in order to identify each system, the parameters k, ωn and ξ must be estimated.

2.1 Least Square Method (LS)

The basic idea behind this approach is to choose a set of parameters for a model that will be built in
a way that minimizes the sum of squares of the difference between the anticipated and actual values of
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the model [24]. The system’s input-output connection is determined through model identification using
algebraic differential equations. Since Friedrich Gauss’s publication of his least squares estimations
method [1], this methodology has been used. Linear, nonlinear, deterministic, and stochastic plants
can all benefit from it. Controls, optimizations, and fault detection benefited considerably from this
field’s progress [25]. In order to provide an appropriate identification, transfer function models, state-
space models, and polynomial models were calculated.

A vector of measurements is given for the parameter identification:

y = [y1y2 · · · yN ]T (2)

And utilizing the model and its parameters, we want to create an estimated vector:

ŷ = [ŷ1ŷ2 · · · ŷN ]T (3)

Therefore, it is essential to develop a model that enables the calculation of the variable, the discrete
version of this model is desired:

ŷ(k + 1) = −
∑
n=0

any(k − n − 1) +
∑
m=0

bmu(k − m + 1) (4)

n and m, respectively, stand for the denominator and numerator’s degrees (m < n). θ is the vector
of parameters that must be determined (5) in order to minimize the J criterion in (6).

θ = [a0, a1, b0, b1] (5)

J (θ) =
N∑

i=n+1
(y (i) − ŷ (i))2 (6)

The following function in (7) expresses the second order model in discrete mode as a function of
the parameters that need to be estimated, a0, a1, b0 and b1.

G(z) = b1z + b0
z2 + a1z + a0

(7)

The transfer function in (1) of Gmi(p), when the sample period is set to Te, has the following
Z-transform:

Gm(z) = kk1
(z − z0)

(z − ρjφ)(z − ρ−jφ) (8)

with {
ρ = e−ξωnTe ,

φ = Teωn

√
1 − ξ2 = Teωp

And 
k1 = 1 − ρ

(
ξ√

1−ξ2
+ sin(φ) + cos(φ)

)
z0 = −1

k1
ρ2 + ρ

(
ξ√

1−ξ2
+ sin(φ) − cos(φ)

)
By identifying equations (7) and (8), we can find the parameters of the vector provided by equation
(9) 

a0 = e−2ξωnTe

a1 = −2√
a0cos(ωpTe)

b0 = ka0 + k
√

a0
(
ξ ωn

ωp
sin(ωpTe) − cos(ωpTe)

)
b1 = k − k

√
ao

(
ξ ωn

ωp
sin (ωpTe) + cos (ωpTe)

) (9)

According to equation (9), we have: ξωnTe = −log(a0)
2

ωnTe

√
1 − ξ2 = cos−1

(
−a1

2√
a0

) (10)
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mentioning that: A = −log(a0)
2 B = cos−1

(
−a1

2√
a0

)
The calculated model parameters of (1) are stated in (11) as follows:

ξ = ± 1√
1+ B2

A2

ωn = A
ξTe

k = b0+b1
1+a0+a1

(11)

2.2 The Reference Model Approach (RM)

The reference model control strategy entails modifying the behavior of a ”n” order system by
approximately converting its performance values to those of a first or second order. We want a
behavior without overshoot Ov with a settling time Ts0 for the control of the four processes examined
in this section. The PID controller we employ, together with his transfer function C(p) in (12), and
its parameters Kp, Ki, and Kd.

C(p) = Kp + Ki

p
+ Kdp (12)

The four systems closed loop transfer functions F (p), denominators DF (p), and correctors C(p)
are identified, along with the desired characteristic (Ts0, τ), which is used to evaluate the denominator
Dref (p) of the desired system:

Dref (p) =
(

p + 1
τ

) (
p + α

τ

)n−1
; Ts0 = 3τ (13)

The dominant pole is positioned at (−1
τ ) in the complex plane, while the other (n − 1) poles are

positioned to its left. To ensure the poles’ dominance at (−1
τ ), the parameter ”α” is set much bigger

than 1. The PID controller parameters are then obtained by equating the coefficients of DF (p) and
Dref (p) [26].

2.3 Meta-heuristic Algorithms used

2.3.1 Ant Colony Optimization (ACO)

The Ant Colony Optimization Algorithm (ACO), is a graph-based meta-heuristic technique that
has been used to resolve many challenging combinatorial optimization issues. In 1992, Marco Dorigo
first proposed the core idea of ACO in his PhD thesis [27], the core concept of ACO is to represent the
problem as the pursuit of the least expensive path across a graph. Artificial ants search this network
in search of useful pathways. Because of their incredibly simple actions, ants typically only find roads
independently that are of rather low quality. The global collaboration of the colony ants leads to the
discovery of better pathways.

ACO has been utilized by several studies to examine PID tuning techniques and to enhance the
performance of ACO [23]. After finishing a tour, each ant in the suggested method changes the
pheromones left on the paths it walked, in accordance with local pheromone updating rules (14).

τ (k)ij = τ (k − 1)ij + 0.01θ

F
(14)

Where F is the cost of fitness function for the ant’s tour, θ is the global update coefficient for
pheromones, and at iteration k, τ(k)ij is the difference in pheromone value between nest(i) and (j).

According to the global pheromone updating rule, the best and worst ant colony tours’ pheromone
pathways are changed according to equations (15) and (16):

τ(k)best
ij = τ(k)best

ij + θ

Fbest
(15)

τ(k)worst
ij = τ(k)worst

ij − 0.3θ

Fworst
(16)
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With τ best and τwost denote, respectively, the pheromones of the pathways the ant took on the route
with the best Fbest and worst Fworst costs.

The poorest tour of the iteration’s trails has less pheromones, while the greatest tour of the colony’s
trails has much more pheromones. Since pheromone evaporation (16) enables the ant algorithm to
forget its prior experience, ACO can then focus its search and avoid being trapped in local minima.
Equation (17) expresses concentrations in terms of the evaporation constant λ [28].

τ (k)ij = τ (k)λ
ij +

[
τ (k)best

ij + τ (k)worst
ij

]
(17)

2.3.2 Invasive Weed Optimization (IWO)

Weed algorithms take their inspiration from the way weeds grow naturally. This strategy was
suggested in 2006 by Mehrrabian and Lucas [29]. Naturally occurring weed development poses a
serious threat to beneficial plants because it spreads quickly. The IWO algorithm’s optimization is
based on the fact that weeds are recognized for having a high degree of flexibility and stability in
nature.

The invasive weed meta-heuristic algorithm is a population-based optimization method that estab-
lishes the overall best value of a mathematical function by imitating the compatibility and irrationality
of weed colony behavior. Colonies of invasive plants, which occur in agriculture, served as inspiration
for this tactic. Unintentionally growing plants are known as weeds. Despite the fact that certain weeds
may be beneficial and useful, weeds are defined as those that grow in a way that obstructs human
needs and activities. A straightforward numerical optimization approach based on colonized weed was
first published by Mehrabian and Lucas in 2006. They called it "The Invasive Weed Optimization Ap-
proach". Utilizing fundamental characteristics like spawning, growth, and competition, this approach
is straightforward but effective in coming to optimal solutions in a weed colony [18].

Step 1 Initialization of population space : In equation (18) the IWO begins by creating a random M ×N
matrix, with M and N stand for the population number and the quantity of decision variables,
respectively. The number of weeds and the decision variables are therefore represented by the
rows and columns, in the randomly generated solution matrix:

Population =



X1
X2
...

Xj
...

XM


=



x1,1 x1,2 · · · x1,i · · · x1,N

x2,1 x2,2 · · · x2,i · · · x2,N
...

... · · ·
... · · ·

...
xj,1 xj,2 · · · xj,i · · · xj,N

...
... · · ·

... · · ·
...

xM,1 xM,2 · · · xM,i · · · xM,N


(18)

With the Xj = jth solution and ith decision variable of the jth solution is xj,i.

Step 2 Reproduction: Based on their fitness value, each seed matures into a blooming plant that sub-
sequently produces seeds. From Smax to Smin, the amount of grass grains decreases linearly, as
detaild in (19):

Si = (Smin + Smax − Smin

fmin − fmax
× (f (Xj) − fmax), j = 1, 2, . . . , M (19)

Step 3 The Spread of Seeds: The following equation (20) provides the seeds produced by the typical
distribution group, together with the average planting position and standard deviation (SD):

σt = (T − t)β

(T )β
(σinitial − σfinal) + σfinal (20)

Where σt the current iteration’s standard deviation, t current iteration, T max iterations, the
initial and final standard deviation are σinitial, σfinal, respectively, β is a nonlinear modulus, often
known as a nonlinear modulation index, and it’s selected by user as an algorithm parameters.
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After assessing the standard division, the following new solutions are generated (21):

X(new)
r = Mrand(0, σt) + Xj , j = 1, 2, . . . M, r = 1, 2, 3, · · · Si (21)

Where Mrand(0, σt) is a random value matrix with mean 0 and standard division σt with
dimension 1 × N , and Xj is the population’s solution jth. Based on this, X

(new)
r is the new

solution rth.

Step 4 Competitive deprivation: The worst-fitting grass is removed from the colony, leaving a set num-
ber of plants, if the total number of grasses in the colony exceeds the maximum permissible
number Mmax.

Step 5 The technique is then repeated until the maximum number of iterations is achieved, saving the
grass’s minimal colony cost function each time.

2.3.3 Cultural Algorithm (CA)

Robert Reynolds (1994) established the concept of cultural algorithms [30], which are distinguished
by being a subset of evolutionary computation that make use of the belief space knowledge mechanism.
You may think of cultural algorithms as an expansion of genetic algorithms.

Cultural algorithms are dual inheritance systems that have two fundamental parts: "Population
Space" and "Belief Space" [31]. The algorithm begins with a population space that is produced
randomly and is denoted by PS(t). Additionally, suitable values are used to initialize the overall
structure of the belief space given by BS(t). The Obj() function is then used to assess the fitness
functions of the people in PS(t). To keep the belief space BS(t) up to date using Update() function,
the Accept() function selects from the PS(t) a predetermined number of people with superior fitness
functions. In order to create a new generation of people, PS(t + 1), the method Influence() is
employed. The following subsections provide an explanation of CA used for both applications.

The population space is experiencing the process of evolution, and it contains a variety of cultural
data that is evolving with time. The belief space of CA serves as a cultural information repository
and contains the knowledge and common behavior that individuals have learned. In contrast to the
original version of CA, which only included one knowledge source (situational information) [30], the
updated version now includes normative, historical, topographical, and domain knowledge sources.
These cultural facts and knowledge will be employed as support materials to modify people’s behavior
in the future and push them in the direction of the search space’s global optima, the most used
knowledge component in CA are situational and normative knowledge sources [32] and we are going
to focus on that two knowledge.

The belief space can be formally defined as in (22):

Bt = [St, N t] (22)

Where Bt stands for belief space, St for situational knowledge, N t for normative knowledge and t
denotes the number of iterations. Detailed explanations are given for the first two knowledge sources
(Situational and Normative) which are used for our problem.

• Situational Knowledge
The situational knowledge source stores the best information from each era of the population
space, it represented by St = [s1, s2, · · · , sn]. The Update() function updates the situational
knowledge component (23):

St+1 =
{

Xt
l if f(Xt

l ) < f(St)
St otherwise

, l = 1, 2, . . . , naccepte (23)

where naccepte is the amount of approved elite individuals required to update the belief space,
and Xt

l is the lth accepted person at iteration t.
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• Normative Knowledge
Each problem dimension is represented by a set of data in normative knowledge, which may be
expressed in equation (24):

N t =

It
1 It

2 · · · It
n

Lt
1 Lt

2 · · · Lt
n

U t
1 U t

2 · · · U t
n

 (24)

At iteration t, N t indicate the normative knowledge source, the belief boundary of the problem’s
jth dimension is shown by It

j =
[
xt

min,j , xt
max,j

]
, the lower and upper normative boundaries of

the problem’s jth dimension are represented, respectively, by xt
min,j and xt

max,j , The values of
the fitness function for the lower and upper normative bounds are Lt

j and U t
j , respectively.

In order to avoid overly narrow belief intervals, CA takes a cautious approach while updating the
normative knowledge source. Update() function updates the following elements of the normative
knowledge source:

xt+1
min,j =

{
xt

i,j if xt
l,j ≤ xt

min,j or f(Xt
l ) < Lt

j

xt
min,j otherwise

(25)

xt+1
max,j =

{
xt

i,j if xt
l,j ≥ xt

max,j or f(Xt
l ) < U t

j

xt
max,j otherwise

(26)

Lt+1
j =

{
f(Xt

l ) if xt
l,j ≤ xt

min,j or f(Xt
l ) < Lt

j

Lt
j otherwise

(27)

U t+1
j =

{
f(Xt

l ) if xt
l,j ≥ xt

max,j or f(Xt
l ) < U t

j

U t
j otherwise

(28)

In the equations provided (25)(26)(27)(28), l = 1, 2, . . . , naccepte, Xt
l denotes the lth accepted

person at iteration t, and xt
l,j signifies its jth variable.

Step 1 : Population space initialization
Population space PS(t) is initialized inside the search space in the following way:

X0
i,j = ϕ(lj , uj), i = 1, 2, . . . , N ; j = 1, 2, . . . , n (29)

With X0
i,j denotes the jth component of the ith person in the population space N , lj and uj

denote the variable’s lower and upper bounds, ϕ() stands for the uniform random function, n is
the number of variables.

Step 2 : Belief space initialization
The second step involves initializing the belief space BS(t) with the proper values and setting the
iteration number t = 0, B0 = [S0, N0]. Assuming, for instance, that x0

min,j = −∞, x0
max,j = ∞,

L0
j = ∞, and U0

j = ∞.

Step 3 : Fitness assessment
The objective functions of the people in the population space are assessed in this stage.

Step 4 : The updating of the belief space
This phase involves setting the iteration to t = t + 1 and updating the knowledge sources with
data from the population space’s people. Examples include updating the situational knowledge
source using equation (23) and updating the normative knowledge source with equations (25)-
(28).
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Step 5 : The population space’s influence
Then, to generate a new population of people PS(t + 1), the knowledge contained in the be-
lief space’s knowledge sources is utilised. For instance, the effect of two types of information
(situational and normative) may be utilized to decide the characteristics of a new generation
of people. Situational knowledge is used to establish the direction of the search, while the nor-
mative knowledge component determines the step size. The following is a statement of this
influence function:

xt+1
i,j =


xt

i,j + |size(It
j)Ni,j(0, 1)| if xt

i,j < st
j

xt
i,j − |size(It

j)Ni,j(0, 1)| if xt
i,j > st

j

xt
i,j + size(It

j)Ni,j(0, 1) otherwise
(30)

Step 6 : Criteria for stopping
Until the stopping requirement is met and the best solution is produced, repeat Step 3-Step 5.

2.3.4 Black Hole Algorithm (BHA)

Black hole optimization [33] is one of the most current strategies that has been created and effec-
tively used to address optimization issues. It is a population-based strategy that employs a mechanism
inspired by the phenomenon of black holes to guide the produced population toward the best solution.

Step 1 : Initialization
The suggested BHA employs a set of candidate solutions, referred to as the stars, in the issue of
n dimensional search space, where each dimension is bounded by upper and lower limits. The
best star, or the one with the best objective function value, is identified as the black hole xBH

after each star fitness value has been evaluated.

Step 2 : Movement of the stars
The black hole has the capacity to swallow the nearby stars. The black hole begins consuming
the nearby stars after the stars are placed into motion, and it has been located. Therefore, all
the stars are drawn to the black hole, and its equation for absorbing stars is as described in (31):

xi(t + 1) = xi(t) + rand × (xBH − xi(t)), i = 1, 2, . . . , N (31)

With xi(t + 1) and xi(t) are the position of the ith star at iterations (t + 1) and t, respectively,
rand is an arbitrary number between 0 and 1. The black hole is located in our search area at
xBH. N is the total number of potential solutions, given that it has the best fitness value and
draws all other stars to it, it’s fascinating to observe that the black hole is immobile.

Step 3 : The updating of black hole
While traveling near a black hole, a star can dive deeper (due to its lowest cost of fitness function).
By picking this star, the black hole is thus updated.

Step 4 : Placement of the stars
As previously stated, if a star passes through the black hole’s event horizon, it is aspirated. In
other words, a star dies if its distance from the black hole is smaller than the Schwarzschild
radius. In order to keep the number of solutions or candidate stars constant, a new star must
appear and be randomly dispersed around the search region. Using the following equation (32),
the BHA calculates the event’s horizon’s radius:

R = fBH∑i=1
N fi

(32)

With fBH indicates the cost function value of the best star, fi denotes the cost function value
of the ith star, and N indicates the total number of stars in the population.
When the distance (measured as a Euclidean distance) between a feasible solution and the black
hole (the best candidate) is less than R, the candidate is removed, and a new candidate is
produced and disseminated randomly around the problem space.
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3 Identification and Control of different systems by the proposed
approach

In this section, we will try to identify and control the four processes that were studied Gmi(p)
using traditional technique (LS, RM) and four intelligent approaches (ACO, CA, IWO, BHA), and we
will compare the outcomes with the conventional method least squares for identification and reference
model for correction or control. In order to make a fair comparison, the number of iterations was
assumed to be the same for all algorithms as shown in Table 1 and Table 2.

3.1 Identification of different systems behaviors

In order to choose the best model, it is necessary to use prior knowledge about the target system
to pick a class of models from which to conduct the best model search. In this instance, given the
several systems under examination, the model Gmi(p) in equation (1) is chosen. The estimate of the
parameters k, ωn, and ξ is also necessary for the identification of four systems, just like it is for the
Least Square technique (LS).

The task of identifying will be approached as an optimization issue after our identification model
has been constructed. Comparing a system’s temporal response to the model’s using just input
and output data is the principle underlying parameter estimation. The parameters are computed to
minimize the difference between the system output that is expected and what actually occurs. As
a result, as described in (33), the adaptation or fitness function used for this application takes into
consideration the quadratic error between the real process and the recognized model, the parameters
of each algorithms for identifcation application are shown in table 1.

f =
N∑

i=1
(y(i) − ŷ(i))2 (33)

Table 1: Adjustement of ACO, CA, IWO, and BHA parameters for identification application

Algorithms Parameters Symbol Values

ACO

Dimensions of the problem X = (xξ, xωn , xk) 3
Number of ants m 800
Maximum number of iteration k 100
Weight of pheromone θ 0.06
Positive pheromone - 0.2
Negative pheromone - 0.3
Evaporation λ 0.95
Nodes - 101

CA

Dimensions of the problem n = (nξ, nωn , nk) 3
Number of population N 400
Maximum number of iteration t 100
Alpha α 0.2
Acceptance ratio paccept 0.35

IWO

Dimensions of the problem X = (xξ, xωn , xk) 3
Maximum number of iteration T 100
Initial population M 200
Max population Mmax 400
Minimum quantity of seeds Smin 0
Maximum quantity of seeds Smax 5
Exponent of variation reduction β 4
Initial standard deviation value σinitial 0.75
Final standard deviation value σfinal 1e-06

BHA
Dimensions of the problem X = (xξ, xωn , xk) 3
Number of stars N 400
Maximum number of iteration T 100
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3.2 Control of different systems behaviors

The systems that will be controlled here are the ones that were identified. In PID controller
parameter tuning, The target function is the step response characteristic that contains settling time
(Ts), maximum overshoot (Ov), and steady state error Ess. the fitness function that has been adopted
is in equation (34) and table 2 represents the parameters for each algorithm used for control systems.

Z = Ov + |Ts − Tso| + Ess (34)

With (Tso = 0.01s) settling time desired, overshoot (Ov = 0%) and a steady state error null.

Table 2: Adjustement of ACO, CA, IWO, and BHA parameters for control application

Algorithms Parameters Symbol Values

ACO

Dimensions of the problem X = (xP , xI , xD) 3
Number of ants m 100
Maximum number of iteration k 30
Weight of pheromone θ 0.001
Positive pheromone - 0.2
Negative pheromone - 0.3
Evaporation λ 0.95
Nodes - 1001

CA

Dimensions of the problem n = (nP , nI , nD) 3
Number of population N 400
Maximum number of iteration t 30
Alpha α 0.2
Acceptance ratio paccept 0.35

IWO

Dimensions of the problem X = (xP , xI , xD) 3
Maximum number of iteration T 30
Initial population M 20
Max population Mmax 40
Minimum quantity of seeds Smin 0
Maximum quantity of seeds Smax 5
Exponent of variation reduction β 4
Initial standard deviation value σinitial 7.5
Final standard deviation value σfinal 1e-06

BHA
Dimensions of the problem X = (xP , xI , xD) 3
Number of stars N 400
Maximum number of iteration T 30

4 Simulations and Results
In this part, the outcomes of several simulations are shown. Using a computer with an i5 CPU

running at 2.5 GHz, 8 GB of RAM, and a 256 GB SSD drive, all the algorithms were programmed in
MATLAB 2020b. Plots showing the identification results utilizing the two various proposed method-
ologies, LS and four intelligent methods (ACO, CA, IWO and BHA) are first provided in Figure 1,
along with a contrast of the two approaches. In Figure 3, simulation results displaying the four behav-
iors regulated or controlled by intelligent approaches for PID correctors and model reference controller
are also shown and discussed.

4.1 Identifications results

Following the four-step response in figure 1, it is clear that the four systems and model plots
produced by ACO, CA, IWO, BHA and LS are relatively comparable, despite the fact that four
intelligent methods yield more effective outcomes than LS, and table 3 shows the estimated model
parameters for different systems.
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Figure 1: Step responses of the system G1(p), . . . , G4(p) and the model
Gm1(p), . . . , Gm4(p) identified by LS, ACO, CA, IWO and BHA

Table 3: Estimated model parameters using LS, ACO, CA, IWO, and BHA

Methods
Model Gmi(p) based on LS, ACO, CA, IWO and BHA

Gm1(p) Gm2(p)
k ωn ξ k ωn ξ

LS 501.4961 0.1025 1.1394 100.0022 2.8003 0.0304
ACO 499 0.1 1.088 100 2.79 0.03
CA 500 0.1 1.1 100 2.8 0.03

IWO 500.0008 0.1 1.1 100 2.8 0.03
BHA 499.9995 0.0999 1.1 100.0441 2.7998 0.030271

Gm3(p) Gm4(p)
k ωn ξ k ωn ξ

LS 150.2160 0.0378 -0.6042 99.9804 1 -0.1
ACO 165.8 0.0369 -0.587 69 1 -0.104
CA 150 0.0378 -0.6048 99.9995 1 -0.1

IWO 149.9849 0.037801 -0.60482 99.8207 1 -0.10002
BHA 151.2243 0.037718 -0.60351 101.5912 0.99999 -0.099835

The values of the objective function for 10 runs of the employed methods are shown in Table
4. As can be observed, the best values of the cost function is owned by CA with the best cost
(=2.7838e-13) and SD (=7.1108e-13). It also has the fastest CPU (=3.1395 s), demonstrating its best
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efficiency by balancing the capacities of exploration and exploitation, the powerful operators which is
using both situational knowledge and normative knowledge sources in the CA algorithm have been
able to outperform the other algorithms in the large-scale and complicated challenge of identification,
especially for unstable systems as shown in Table 5.

Table 4: The objective function (33) values of the system G1(p) for 10 runs of the meta-heuristic
algorithms used. Values that are significant are bold.

Number of runs ACO CA IWO BHA
1 1575 3.8385e-13 55.3414 0.0019
2 5784 1.2884e-12 0.7089 1.24
3 8014 2.3550e-12 2.9561e-05 2.1459e-05
4 6135 1.7742e-12 0.8336 9.8432e-04
5 404.18 1.1661e-12 40.0042 0.0022
6 11468 3.5245e-13 1907 1.0431
7 164.18 1.9259e-12 311.0612 0.0227
8 1055 9.2095e-13 66.7968 0.1161
9 11557 9.1687e-13 0.0223 0.1288
10 13852 2.7838e-13 9.0129 0.0763
Best 164.18 2.7838e-13 2.9561e-05 2.1459e-05
Worst 13852 2.3550e-12 1907 1.24
Average 6001 1.1362e-12 239.1582 0.2632
Standard Deviation (SD) 5120 7.1108e-13 593.8296 0.4678
Best CPU Time (s) 4.572 3.1395 5.2506 19.2908

Table 5: Comparison results of the best runs utilizing ACO, CA, IWO, and BHA for different systems
Gi(p) to minimize the objective function in (33)

Methods Systems Performance
Best Worst Average (SD) CPU Time(s)

ACO

G1(p) 164.1858 13852.1689 6001.1083 5120.4399 4.572
G2(p) 2114.7106 18199.4445 10262.4695 4461.2297 4.6367
G3(p) 1.9747e+03 4.9590e+04 2.8210e+04 1.6616e+04 3.3323
G4(p) 2.2184e+11 1.3794e+13 8.2932e+12 4.3109e+12 6.9851

CA

G1(p) 2.7838e-13 2.355e-12 1.1362e-12 7.1108e-13 3.1395
G2(p) 2.1546e-13 2.4001e-12 1.1323e-12 7.6299e-13 4.5657
G3(p) 4.7613e-09 63.0391 14.7164 22.2056 1.9514
G4(p) 8.4201 6.8346e+09 1.4185e+09 2.4914e+09 4.7415

IWO

G1(p) 2.9561e-05 1907.8004 239.1582 593.8296 5.2506
G2(p) 6.5514e-07 18.5218 2.4471 5.9315 5.3731
G3(p) 9.8903e-04 1.5599e+03 289.9662 543.8815 2.266
G4(p) 9.8920e+05 2.0962e+12 2.2305e+11 6.5840e+11 3.3926

BHA

G1(p) 2.1459e-05 1.24 0.26321 0.46777 19.2908
G2(p) 13.7295 1776.3125 327.4037 531.1237 16.8769
G3(p) 6.3414 1.9439e+04 5.3125e+03 6.7216e+03 13.4429
G4(p) 7.6708e+07 2.1975e+11 7.6796e+10 8.3543e+10 17.4635

Figure 2 displays the convergence graphs for each of the four optimization algorithms, with CA and
IWO gives better performances in terms of accuracy and CPU time compared to others algorithms.
Moreover, CA surpasses other algorithms in finding the unstable system G4(p), which is challenging
due to the abundance of data, with the best cost of (=8.4201). ACO and BHA gives better performance
for stable systems G1(p), but it tends to not minimize quite well the objective function in (33) for
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the other systems. However, Ant colony optimization (ACO) is effective at solving discrete issues,
but when working with a lot of data, it unavoidably suffers from limitations in convergence speed and
solution accuracy [34].
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Figure 2: Convergence of the ACO, CA, IWO, and BHA to the optimum
value for different systems using fitness function in (33)

4.2 Control results

In order to develop PID controller parameters for the four identified systems, we combine the
conventional Reference Model (RM) technique with four intelligent controls (ACO, CA, IWO and
BHA). we desire a system with an overshoot of (Ov = 0%) and a settling time (Ts0 = 0.01s), Table 6
provides a summary of PID settings, and Figure 3 displays the results of a simulation of the closed-loop
step response for the four controlled systems. and Table 7 shows the PID controller’s performance as
determined by conventional and intelligent approaches in relation to overshoot (Ov) and settling time
(Ts) values.
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Figure 3: Step responses of the systems Gm1(p), . . . , Gm4(p) controlled by
RM, ACO, CA, IWO and BHA

Table 6: PID Parameter tuning based on RM, ACO, CA, IWO and BHA

Methods
Model Gmi(p) based on LS, ACO, CA, IWO and BHA

Gm1(p) Gm2(p)
Kp Ki Kd Kp Ki Kd

RM 216 540 12.5 3.43 34.43 0.11
ACO 9 8 79 0.45 14.47 2.15
CA 7.27 9.95 78.53 0.16 0.55 0.49

IWO 2.44 14.57 78.68 0.15 0.61 0.49
BHA 14.52 12.67 78.62 0.16 1.83 0.64

Gm3(p) Gm4(p)
Kp Ki Kd Kp Ki Kd

RM 1847.87 5039.66 196.2 18.13 182.16 0.6
ACO 590 937 1810 0.94 84.27 3.9
CA 650.95 19.98 1804.05 0.46 7.94 2.57

IWO 464.83 454.2 1809.39 0.38 14.18 2.57
BHA 647.51 297.23 1804.11 0.93 10.74 3.27

Table 7 displays the values of the objective function for the 10 runs of the algorithms used for
the system Gm1. As can be seen, IWO-PID has the best cost (=3.2905e-10) while also converge the
fastest with CPU time (=48.8732 s). without forgetting that CA-PID has the best SD (=7.5467e-08)
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but in term of CPU time it takes a long time to converge to optimal solution. Table 8 lists the values
of cost function for control of different systems (Gm1(p), . . . , Gm4(p)).

Table 7: The objective function (34) values of the system Gm1(p) for 10 runs of the meta-heuristic
algorithms used. Values that are significant are bold.

Number of runs ACO CA IWO BHA
1 2.2396e-04 1.6238e-07 3.6876e-08 1.5938e-04
2 7.8667e-05 3.0624e-07 1.0429e-08 1.2794e-05
3 3.0269e-04 2.3524e-07 2.1642e-08 5.0703e-06
4 5.3046e-04 9.5822e-08 1.1676e-09 4.5972e-05
5 1.1824e-04 1.5771e-07 3.2905e-10 7.1006e-06
6 3.6468e-04 2.6905e-07 2.1557e-08 1.0316e-06
7 0.0019 1.1275e-07 2.6086e-04 8.2930e-05
8 2.3518e-04 1.8182e-07 2.6097e-04 1.0894e-05
9 1.3502e-04 9.9823e-08 3.0009e-04 3.1620e-06
10 8.2892e-04 1.0198e-07 1.8825e-08 1.5428e-05
Best 7.8667e-05 9.5822e-08 3.2905e-10 1.0316e-06
Worst 0.0019 3.0624e-07 3.0009e-04 1.5938e-04
Average 4.7462e-04 1.7228e-07 8.2203e-05 3.4376e-05
Standard Deviation (SD) 5.5807e-04 7.5467e-08 1.3276e-04 5.0753e-05
Best CPU Time (s) 92.6657 311.6901 48.8732 342.8826

Table 8: Comparison results of several runs utilizing ACO, CA, IWO, and BHA to minimize the
objective function in (34)

Methods Systems Performance
Best Worst Average (SD) CPU Time(s)

ACO

Gm1(p) 7.8667e-05 0.0019 4.7462e-04 5.5807e-04 92.6657
Gm2(p) 0.0071 0.0092 0.0079 7.8315e-04 97.4224
Gm3(p) 0.004219 0.004553 0.004342 1.1339e-04 89.4102
Gm4(p) 0.0076982 0.0097668 0.0094758 6.2696e-04 104.6407

CA

Gm1(p) 9.5822e-08 3.0624e-07 1.7228e-07 7.5467e-08 311.6901
Gm2(p) 2.1866e-05 1.7496e-04 7.3372e-05 5.9248e-05 369.7557
Gm3(p) 0.004204 0.004207 0.004205 1.3536e-06 377.6429
Gm4(p) 0.0042298 0.0095878 0.0079801 0.0025821 294.9629

IWO

Gm1(p) 3.2905e-10 3.0009e-04 8.2203e-05 1.3276e-04 48.8732
Gm2(p) 1.7853e-05 0.0025 3.2683e-04 7.6233e-04 38.4879
Gm3(p) 0.0042053 0.0062771 0.0047261 5.9079e-04 51.6781
Gm4(p) 0.004253 0.0095874 0.0090514 0.001686 54.9531

BHA

Gm1(p) 1.0316e-06 1.5938e-04 3.4376e-05 5.0753e-05 342.8826
Gm2(p) 0.0023 0.0069 0.0043 0.0015 299.2424
Gm3(p) 0.0042051 0.0042093 0.0042068 1.2547e-06 310.0056
Gm4(p) 0.006971 0.0096194 0.0089169 0.00094863 301.2313

It’s critical to understand the convergence rates of MAs while evaluating them in order to determine
how quickly they reach to the best solution. The convergence rate of the methods being used is seen
in Figure 4. IWO-PID and CA-PID had the quickest convergence rate, as demonstrated, and they
could reach values close to the ideal value with the fewest iterations (less than 30 iterations). In terms
of reaching the ideal value, BHA-PID also displayed acceptable outcomes. As for ACO-PID even after
more than 30 cycles, he was unable to successfully attain the ideal solution.
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Figure 4: Convergence of the ACO, CA, IWO, and BHA to the optimum
value for different systems of fitness function in (34)

Table 9: PID Controller performance obtained with RM and intelligent methods

Methods
Performances

Gm1(p) Gm2(p) Gm3(p) Gm4(p)
Ov(%) Ts(s) Ov(%) Ts(s) Ov(%) Ts(s) Ov(%) Ts(s)

RM 15.6 0.17 20.21 0.1892 14.9118 0.3 20.65 0.1886
ACO 0 0.0099 0 0.0023 0 0.01 0 0.0066
CA 0 0.01 0 0.01 0 0.01 0 0.01

IWO 0 0.01 0 0.01 0 0.01 0 0.01
BHA 0 0.01 0 0.0078 0 0.01 0 0.0074

The selection of the fitness function in (34) is demonstrated, all of these systems are intelligently
handled with high accuracy to avoid any solutions with an overshoot, a huge quadratic error and
undesired settling times as shown in Table 9. However, ACO-PID and BHA-PID struggled in a minor
way to find the desired settling time for the unstable systems Gm2(p) and Gm4(p), it is evident from the
comparisons that the intelligent control performs better than RM-PID. The four systems settling times
are short when using the conventional technique for the control task, but there is still an overshoot
that has to be eliminated.

For the example of Gm1(p) with variable input signal amplitude, the effectiveness of ACO-PID, CA-
PID, IWO-PID, and BHA-PID was validated. The system efficiently tracked the multiple simultaneous
changes in the input signal, as shown in figure 5.(a), with desired settling time and overshoot which
is 0.01s and 0%, respectively.
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To evaluate the robustness of ACO-PID, CA-PID, IWO-PID, and BHA-PID, the external distur-
bance has been added as shown in figure 5.(b), an external disturbance signal with varying amplitude
that is added in a closed loop is used to represent this perturbation, it is clear from figure 5.(c) that
the ACO-PID, CA-PID, IWO-PID, and BHA-PID ensured a signal that was reasonably close to the
reference signal and rejected the unwanted effects of the disturbance, the test has also been done for
variable reference input as shown in figure 5.(d). As a result, it is confirmed that the intelligent control
is remarkably reliable and effective.
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Figure 5: (a) Response of Gm1(p) for variable reference input, (b) External disturbance
signal, (c) Response of Gm1(p) in presence of disturbance signal, (d) Response of Gm1(p)

in presence of disturbance signal for variable reference input

4.3 Discussion and Comparison of the New Meta-Heuristic Algorithm used with
Recently Published Papers

In the technical literature, a variety of meta-heuristic approaches have been used to different
optimization issues. In [22] a 14 recently introduced reliable EAs have been used to optimize energy
production from the Karun-4 hydropower reservoir, the moth swarm algorithm (MSA), with values
of best cost, SD and CPU Time for MSA were 0.147, 0.0029 and 19.70 s respectively, was discovered
to have produced the best result compared to others algorithms. The author in [16], ant colony
optimization (ACO), particle swarm optimization (PSO), cuckoo search (CS), and genetic algorithm
(GA) were used in a comparative study of optimized based-control system of a single-rotor, medium-
scale rotorcraft for a certain flight regime, these algorithms outperform manual tuning. In hover trim
settings, compared to others algorithms the optimal CPU time and best gains for the chosen objective
function are determined by the ACOR which is an ACO for continuous domains, with best cost
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1.340e-7, SD 0.119 and CPU Time 77.59 min. The author in [18] proposed invasive weed optimization
based on chaos theory for optimal PID control of DC motor, results shows that chaotic invasive weed
(CIWO) has better performance compared to simple IWO, in reducing the overshoot from 5.7644 %
to 1.23 % and settling time from 0.690 s to 0.344 s with value of cost function (8.0369). An adaptive
particle swarm optimization (APSO) was used for identification and control of an unstable nonlinear
system in [6] and compared to linearly decreasing weight particle swarm optimization (LDW-PSO)
and GA with the same identified system and model, number of population and same searching range,
result shows that APSO captured the real system parameters over LDW-PSO and GA with best cost
and SD were 2.1954e-24 and 4.2636e-22, respectively, the test of proposed APSO was also done for
control process of finding the best gain of PID controller, the objective function which is the sun of
squared errors was minimized, results show that APSO is superior to others algorithm in terms of
best cost and standard deviation (SD) with 1.0976 and 0.0045, respectively. However, There isn’t a
single MAs that can be applied to solve every optimization problem. For a certain issue only, some
algorithms could provide a better solution than others.

Table 10: Comparison between the new Meta-heuristic algorithm used and various algorithm that
have just been published for different optimization issue.

Reference Optimization problem Algorithms
used

Performances
Best Worst Average SD CPU Time

[22] Hydropower Energy Generation
MSA 0.1470 0.1559 0.1489 0.0029 19.70 (s)
SOS 0.1473 0.2618 0.1615 0.0352 42.08 (s)

WCA 0.1509 0.2350 0.1670 0.0284 43.17 (s)

[16]
Tuning of a PID-Based Controller

of Hover trim conditions
in Medium-Scale Rotorcraft

ACO 1.340e-7 - 1.434e-7 0.119 77.59 (min)
PSO 1.499e-7 - 1.521e-7 0.020 94.70 (min)
GA 2.563e-7 - 2.608e-7 0.065 91.21 (min)
CS 1.566e-7 - 1.763e-7 0.240 119.68 (min)

[18] Tuning of a PID-based
controller of DC Motor

IWO 23.0944 - - - -
CIWO 8.0369 - - - -

[6]

System Identification
GA 0.1734 1.6408 0.7456 0.6241 -

LDW-PSO 8.3425e-14 7.8441e-8 3.7530e-12 4.4612e-9 -
APSO 2.1954e-24 8.5327e-21 4.9653e-22 4.2636e-22 -

Control system
GA 1.2904 1.3846 1.328 0.9045 -

LDW-PSO 1.1251 1.2064 1.134 0.0382 -
APSO 1.0976 1.1075 1.1031 0.0045 -

Proposed
Algorithms

Identification of system G1(p)

ACO 164.1858 13852.1689 6001.1083 5120.4399 4.572 (s)
CA 2.7838e-13 2.355e-12 1.1362e-12 7.1108e-13 3.1395 (s)

IWO 2.9561e-05 1907.8004 239.1582 593.8296 5.2506 (s)
BHA 2.1459e-05 1.24 0.26321 0.46777 19.2908 (s)

Tuning of PID-based
controller of system Gm1(p)

ACO 7.8667e-05 0.0019 4.7462e-04 5.5807e-04 92.6657 (s)
CA 9.5822e-08 3.0624e-07 1.7228e-07 7.5467e-08 311.6901 (s)

IWO 3.2905e-10 3.0009e-04 8.2203e-05 1.3276e-04 48.8732 (s)
BHA 1.0316e-06 1.5938e-04 3.4376e-05 5.0753e-05 342.8826 (s)

5 Conclusion
The research in this paper are primarily concerned with the capacities of four resilient MAs that

were only recently introduced to optimize model and PID settings for varied system characteristics.
These algorithms include ACO, CA, IWO and BHA are the most newest algorithms and they have
been used for the first time in one paper for both optimization problem. As a result, they seem like a
good alternative to traditional methods (LS, RM).

These MAs performance was compared using the following five factors: Best cost, Worst cost,
Average cost, Standard deviation (SD), and CPU time (s). In order to compare the results of 10
separate runs of each algorithm and each algorithm’s parameters were evaluated. For identification
tasks, it was discovered that CA came in first position and has the best model for parameters model
for various systems, for the first system, it had the best objective function 2.7838e-13, lowest standard
deviation (SD) 7.1108e-13 and the quickest CPU time 3.1395 (s), even for unstable system it has a
better performances compared to others algorithm. As for PID parameters for the first system, it
shows that IWO-PID was able to converge to optimal solution in fewest CPU Time 48.8732 (s) and
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has lowest cost function 3.2905e-10. Additionally, the robustness of proposed algorithm is assessed,
from the first system’s simulation, the findings demonstrate that ACO-PID, CA-PID, IWO-PID, and
BHA-PID are resistant to random disturbances.

The performance of the MAs may be improved and a potent strategy for identification and control
can be proposed using a variety of novel hybrid algorithms that can be further developed for this
relevant sector.
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