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Abstract

In the field of skeleton-based human behavior recognition, graph convolutional neural networks
have made remarkable achievements. However, high precision networks are often accompanied by
numerous parameters and computational cost, and their application in mobile devices has consid-
erable limitations. Aiming at the problem of excessive spatiotemporal complexity of high-accuracy
methods, this paper further analyzes the lightweight human action recognition model and pro-
poses a lightweight architecture attentional shift graph convolutional network. There are three
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main improvements in this model. Firstly, shift convolution is a lightweight convolution method
that can be combined with graph convolution to effectively reduce its complexity. At the same
time, a shallow architecture for multi-stream early fusion is designed to reduce the network scale
by merging multi-stream networks and reducing the number of network layers. In addition, the
efficient channel attention module is introduced into the model to capture the underlying character-
istic information in the channel domain. Experiments are conducted on the three existing skeleton
datasets, NTU RGB+D, NTU-120 RGB+D, and Northwestern-UCLA. Results demonstrate that
the proposed model is not only competitive in accuracy, but also outperforms current mainstream
methods in parameter count and computational cost, and supports running in some devices with
limited computing and storage resources.

Keywords: action recognition, lightweight network, shift graph convolution, attention module.

1 Introduction
As a multidisciplinary research direction, human behavior recognition plays an increasingly im-

portant role in intelligent home [1], virtual reality [2], and video surveillance [3]. 3D skeleton data is
widely used because it can better reflect human posture and motion trajectory. Human action recog-
nition based on 3D skeleton data is mainly divided into two directions, the early methods are based on
manual features, and the later methods are based on deep learning. In the method based on manual
features, the features of each task need to be selected manually by researchers. When the amount of
data is large, the manual extraction task will be extremely complicated and redundant. The method
based on deep learning can independently learn effective features from massive data, adapt to a variety
of complex scenarios, and greatly improve recognition accuracy compared with the learning method
based on manual features. Therefore, researchers are more inclined to use deep learning methods for
research recently.

The method based on Recurrent Neural Networks (RNNs) [4–9] usually converts the 3D skeleton
coordinate vector into sequence information according to specific traversal rules and dynamically mines
the temporal connections of the human skeleton. Nevertheless, such methods focus more on temporal
information and have certain limitations in processing spatial information. The method based on
Convolutional Neural Networks (CNNs) [10–15] usually models 3D skeleton information as pseudo-
images, with spatial and temporal information encoded as rows and columns, respectively, to identify
different actions by fully extracting the spatiotemporal feature information of the skeleton. However,
such methods ignore the constraint relationships of the human skeleton, which are very important
for skeleton recognition. The method based on the Graph Convolutional Neural Networks (GCNs)
[16–35] constructs the topological map according to the physical connection of human joints along the
spatial and temporal directions to fully extract the spatiotemporal characteristics of the human body,
which currently has very broad application prospects. Yan et al. [16] pioneer the application of graph
convolution to human behavior recognition, and propose the spatial-temporal graph convolutional
network (ST-GCN). The model uses a graph convolutional network to learn spatial and temporal
information of skeleton data respectively and has a strong generalization performance. The improved
model based on ST-GCN is usually combined with other networks, such as Long Short-Term Memory
(LSTM) and attention mechanism, to further improve the accuracy of the model. However, the
existing high-precision models based on GCNs are often very complex. In other words, the excessively
high number of parameters and computational cost make the network difficult to train, hindering the
development of this field in mobile devices. Therefore, how to realize the lightweight of the network
is a problem worthy of study.

There have been some studies on lightweight models. Cheng et al. [29] introduce shift convolution
into graph convolution effectively reducing its complexity. However, their 4s Shift-GCN model divides
the feature information into four streams and inputs them into the network successively, which expands
the model complexity by four times. Based on Shift-GCN, Zang et al. [34] replace the shift graph
convolution module with sparse shift graph convolution, which effectively reduces data redundancy.
But this model, using the multi-stream network, has the same issue as 4s Shift-GCN. Therefore,
reducing the network size by changing the network structure is a challenging problem in skeleton
action recognition. Zhang et al. [28] embed multi-stream joint feature information into the same
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high-dimensional space before the convolutional network, effectively reducing the model size. Song et
al. [30] improve the multi-stream model by proposing an early fused multi-branch architecture and
introducing the residual bottleneck structure, which significantly reduces the model complexity. Sun
et al. [31] propose a SlowFast graph convolutional network in which the design of the Fast pathway is
very lightweight. Jang et al.[32] design a simple and clear hierarchical feature extraction model with
fewer parameters and less computations. However, the accuracy of these methods is insufficient.

The proposed method is based on 4s Shift-GCN [29], namely lightweight architecture attentional
shift graph convolutional network (LA-SGCN). Inspired by the early fused multi-branch architecture
[30], the goal of lessening the number parameters and reducing computational cost is achieved by
improving the network architecture. A lightweight and efficient channel attention [36] module is
added after the spatiotemporal graph convolution to effectively capture the key features of the model.
The proposed model is evaluated on three datasets: NTU RGB+D [37], NTU-120 RGB+D [38],
and Northwestern-UCLA [39]. Compared to previous methods, our model has fewer parameters and
smaller computational cost while improving accuracy. Our main contributions are as follows:

(1) By integrating Shift convolution into graph convolution, parameter operations can be concen-
trated in point-wise convolution, which greatly reduces space and time complexity. In addition, the
spatial shift graph convolution sets the skeleton as a complete graph, and each node can obtain the
information of other nodes through the shift operation. The temporal shift graph convolution adap-
tively adjusts the receptive field of nodes through flexible shift operations, which effectively improves
the model performance.

(2) A shallow architecture for multi-stream early fusion is designed, which not only meets the needs
of multi-stream features in the early stage of the network, but also fuses all features into one stream
in the later stages, thus reducing the model complexity. Moreover, considering that the shift graph
convolution can adjust the receptive field autonomously, and does not require a very deep network to
expand it, the depth of the network is compressed to further reduce the size of the model.

(3) Considering that the point-wise convolution in shift graph convolution is sensitive to channel
information, a lightweight efficient channel attention module is added after each layer of shift tempo-
ral graph convolution, and key features are successfully extracted by adaptively learning the weight
parameters of spatiotemporal information in each channel. This attention module not only effectively
improves the accuracy of the model, but also barely places an additional burden on the network.

2 Related Work
With the development of artificial intelligence technology, the fields of smart home, public safety

[40, 41], and smart transportation have put forward higher requirements for human-computer interac-
tion [42]. How to identify and monitor people’s behavior intelligently and provide a timely response to
emergencies has become a research hotspot in these fields. Therefore, human behavior recognition has
important research value and practical significance. Deep learning-based 3D skeleton human behavior
recognition methods are mainly based on RNNs, CNNs, and GCNs.

RNNs-based approaches normally convert the 3D skeleton coordinate vector into sequence informa-
tion according to specific traversal rules, and dynamically mine the temporal connection of the human
skeleton. Du et al. [4] divide the human skeleton into five parts, input each part into a bidirectional
RNN, and fuse them into higher-level features hierarchically. Liu et al. [5] extend skeleton behavior
recognition based on RNN to spatial and temporal dimensions and optimize the network through trust
gates. Liu et al. [6] introduce the global context memory cell into the LSTM network to improve the
selective attention performance of the network. Zhu et al. [7] apply bidirectional LSTM to encode each
skeleton sequence and introduce a regularization method to better constrain the relationship between
skeleton nodes. Si et al. [8] propose a spatial inference algorithm and a temporal stacking learning
algorithm to extract the spatial features and temporal dynamics of the human skeleton, which not
only effectively extract the high-level features of the skeleton, but also the serial structure of multiple
LSTMs can capture more long-term characteristic information.

CNNs-based approaches generally model 3D skeleton information as pseudo-images to extract
spatiotemporal features of skeletons. Du et al. [10] propose an end-to-end convolutional neural
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network-based action recognition method, applying CNNs to 3D human skeleton data for the first
time. Compared with the RNNs-based method, not only the temporal information is utilized, but
also the basic spatial information is retained. Wang et al. [11] use multiple joint trajectory maps
and convolutional neural networks to form a trajectory convolutional mapping network, significantly
improving the accuracy of network recognition. Considering the interpretability of the model, Kim
et al. [12] propose a spatiotemporal representation method to enhance model features. Liu et al.
[13] represent skeleton information as visual and motion-enhanced color images and use multi-stream
CNN to explore the deep features of different types of color images. Li et al. [14] apply the motion
information of adjacent frames to construct temporal information and utilize CNN to efficiently extract
the spatial information in the original coordinates.

GCNs-based approaches construct topology maps according to the physical connection of human
joints, and adequately extract the spatiotemporal features of the human body. Yan et al. [16] apply
graph convolution to the skeleton-based human action recognition method for the first time and
propose the model named ST-GCN. ST-GCN can learn spatiotemporal information autonomously and
has a strong expressive ability. Li et al. [17] employ the encoder-decoder structure to autonomously
learn some potentially connected nodes while expanding the skeleton graph to explore higher-order
dependencies. Shi et al. [18] introduce bone orientation and length information into the network to
adaptively adjust the graph structure, which is more flexible. Si et al. [19] fuse GCNs with LSTM
to handle discriminative spatiotemporal features. Shi et al. [20] represent skeleton information as
a directed graph and apply an adaptive network structure to train the model. Zhang et al. [21]
integrate long-range dependencies among joints through context aware graph convolutions. Peng et
al. [22] construct adjacency matrices dynamically through Neural Architecture Search (NAS). Plizzari
et al. [23] utilize a self-attention algorithm to capture the potential relationship between joints and
form a two-stream network with GCNs to extract the effective information in the joints. Huang et al.
[24] design part relation and part attention blocks to learn part-level and joint-level information. Song
et al. [25] apply class activation maps to optimize multi-stream graph convolutional networks. Wen
et al. [26] use graph convolution to extract spatial features, and stack multiple different convolution
kernels to extract temporal information. Shi et al. [27] adopt a gating mechanism to adaptively adjust
the graph topology of different layers in graph convolution, and design three-dimensional attention
modules of spatial, temporal, and channel to strengthen the corresponding features. Nevertheless,
these models bring more parameters and incur higher computational cost. Therefore, reducing the
complexity of the model remains a challenging issue. Zhang et al. [28] embed joint position and
velocity information into the same high-dimensional space and incorporate high-level semantics like
joint type and frame index to develop a lightweight strong baseline. Cheng et al. [29] combine shift
convolutional neural networks (shift CNNs) with GCNs, which effectively reduces the computational
complexity of the model. Song et al. [30] propose an early fused multi-branch architecture to reduce
the complexity of the model at the network level and introduce the residual bottleneck module to
decrease the computational cost of spatiotemporal graph convolution. Sun et al. [31] employ the
SlowFast pathway to implement a spatiotemporal attention lightweight GCNs. Jiang et al. [32] use
two 1×1 convolutions to embed the multi-stream network features separately, and then add the features
for follow-up training, thereby reducing the number of parameters. Chen et al. [33] decrease model
complexity by applying a strategy with low parameter burden such as fusion input and max pooling.
Zang et al. [34] use a sparse shift module to improve the performance of shift graph convolution.

3 Method
This section introduces the details of the proposed LA-SGCN model. The overall process is il-

lustrated in Figure 1. Four streams are input to the network, each through 3 layers of Shift-Block.
The four streams are then spliced in the channel dimension to form one stream, passing through 5
layers of Shift-Block followed by a fully connected layer that outputs the classification result. The
Shift-Block module includes three important modules: spatial shift graph convolution (Shift-GCN),
temporal shift graph convolution (Shift-TCN), and efficient channel attention (ECA).
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Figure 1: Overall framework of the network

3.1 Shift graph convolution

Spatial shift graph convolution. In a previous work [16], the connection between non-adjacent
nodes is ignored because graph convolution of spatial dimensions is completed with the help of adja-
cency matrices. Consequently, the convolution of the spatial shift graph transforms the skeleton graph
into a complete graph, and there is a direct correlation between each node and every other node. As
shown in Figure 2, the convolution is carried out in three steps: shift transformation, point-wise con-
volution, and shift transformation. Assuming that there are N = 10 nodes, and each node has C = 6
channels, the shift transformation connects the channels of node 1 and node 10 end to end to perform
a shift operation. The translation step size of the ith channel is imodN . Point-wise convolution can
deeply correlate the offset feature graph and output the specified channel dimension. The first shift
transformation shifts the channel of each node upward to realize the information exchange between
nodes. The second shift transformation shifts the channel of each node downward, making the chan-
nel information return to the original node, avoiding the confusion of node feature information. The
spatial skeleton feature map is denoted X ∈ RN×C , the matrix H is added to capture the effective
links between nodes:

X̃H = X̃ · (tanh(H) + 1) (1)

where X̃ is the feature after shift graph convolution. Since the shift transformation operation can be
implemented in memory while the number of parameters and the computational cost are concentrated
in point-wise convolution, the complexity of graph convolution can be significantly reduced.

Temporal shift graph convolution. In the time dimension, shift graph convolution can also be
divided into three steps: shift transformation, point-wise convolution, and shift transformation. The
shift transformation is used to shift the channel information between frames. Since different layers
require different time receptive fields, setting the same shift value for each channel will not achieve the
optimal effect. Therefore, a learnable shift parameter αi, i = 1, 2, ..., C is set up to adaptively calculate
the optimal shift value for each channel in each layer. If the shift parameter is an integer, it is not
differentiable, and the gradient cannot be passed. Therefore, the shift parameter is expanded from
integer range to real number range. The skeleton sequence feature map is denoted X ∈ RN×T ×C , the
shift parameter can be calculated by linear interpolation:

X̃(v,t,i) = (1 − µ) ·X(v,⌊t+αi⌋,i) + µ ·X(v,⌊t+αi⌋+1,i) (2)

where µ = αi − ⌊αi⌋, while v and t determine the node and frame where channel i is located,
respectively.

3.2 Shallow architecture for multi-stream early fusion

In previous experiments, most high-precision models adopt a multi-flow mode [17–20, 22–25, 29].
The advantage of multi-stream architecture is that each input feature can be fully convolved to maxi-



https://doi.org/10.15837/ijccc.2023.3.5061 6

. . .

�

�
 

!

�

!

�
 

1

2

4

5

3

6

7 9

8 10

1

2

4

5

3

6

7 9

8 10

first shift transformation second shift transformation

point-wise convolution

�

Shift for node 1 Shift for node 10 Global Shift Shift for node 1 Shift for node 10 Global Shift

1

2

3

4

5

6

7

8

9

10

1     2     3     4     5     6

�

 

1

2

3

4

5

6

7

8

9

10

1     2     3     4     5     6

�

 

1

2

3

4

5

6

7

8

9

10

1     2     3     4     5     6

�

 

1

2

3

4

5

6

7

8

9

10

1     2     3     4     5     6

�

 ′

1

2

3

4

5

6

7

8

9

10

1     2     3     4     5     6

�

 ′

1

2

3

4

5

6

7

8

9

10

1     2     3     4      5     6

�

 ′

Figure 2: Spatial shift graph convolution

mize the utilization of information. The disadvantage is that the same network is run multiple times,
resulting in multiplied computing costs. In the proposed multi-stream early fusion model, feature
information is divided into four input streams: Joints, Bones, Joints-Velocities, and Bones-Velocities.
The Joints stream is the 3D coordinate of the human body junction. The Bones stream is the length
and direction of the human skeleton. The Joints-Velocities and Bones-Velocities streams are the differ-
ences between two adjacent frames of the Joints and Bones streams, respectively. In the early stage of
the network, the four streams are trained separately, which can make the network get enough features.
In the later stage of the network, the feature information of the four streams is spliced in the channel
dimension and fused into one stream to complete the subsequent training, which can effectively reduce
the model size. This strategy can substantially lower the computational cost while ensuring that the
number of network input features is not decreased.

Graph convolution is the aggregation of information. Taking the nodes of the spatial dimension
as an example, the first graph convolution aggregates the information of the first-order neighbors, the
second graph convolution aggregates the information of the second-order neighbors, and so on. Multi-
layer convolution is required to complete the aggregation of the entire skeleton and form an effective
connection with all the remaining nodes. In other words, as the number of convolutional layers
deepens, the farther the nodes can aggregate the features, the broader the receptive field becomes.
In shift graph convolution, the skeleton graph is a complete graph where the node receptive field
is extended to the maximum. Consequently, there is no need for too many layers to complete the
aggregation of information. Based on the above theory, the original 10 layers of the 4s Shift-GCN
are reduced to 8 layers. Specifically, the four-stream network first trains 3 layers respectively for each
stream, and then trains 5 layers after fusion, which effectively decreases the number of parameters
and computational cost.

3.3 Efficient channel attention mechanism

The ECA module judges the importance of each channel through the local cross-channel interaction
strategy without dimensionality reduction and assigns corresponding weights to them. Embedding this
module behind the spatiotemporal shift graph convolution can effectively enhance the weights of key
nodes. The specific process is shown in Figure 3.

Given the skeleton feature X ∈ RN×T ×C , ECA maps the global spatiotemporal information to
each channel through global average pooling (GAP), captures the information of channel direction,
and outputs an attention vector through the nonlinear layer. Finally, each channel of the input feature
is weighted by multiplying the attention vector with the corresponding element in the input feature.
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The channel direction information is captured by obtaining the information of k neighbors of each
channel, and all channels share learning parameters. This strategy can be implemented using a 1D
convolution with kernel size k:

X̃A = X · σ(Conv1Dk(GAP (X))) (3)

Considering that the value of channel C will change after shift graph convolution, there is a
reasonable proportional mapping between the size of channel interaction range k and channel C
theoretically, and assuming there is a simple linear relationship between C and k:

C = ϕ(k) = a× k − b (4)

But the linear relationship expression is too limited, and channel dimension C is usually set to a
power of 2. Thus, it is assumed that there is a nonlinear mapping between C and k:

C = ϕ(k) = 2(a×k−b) (5)

Then, k can be calculated adaptively according to C:

k = ψ(C) = | log2(C)
a

+ b

a
|odd (6)

where a and b are both hyperparameters and are set to 2 and 1, respectively. |x|odd denotes the
nearest odd number to x. Through mapping φ, each channel can adaptively select the size of the 1D
convolution kernel, carry out information exchange in a suitable range, and have better interactive
performance.
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Figure 3: Efficient channel attention (ECA) module(Wang [36])

4 Experiments

4.1 Datasets and implementation details

NTU RGB+D. NTU RGB+D dataset [37] contains 56880 data samples, a total of 60 types of
actions, taken by 3 Microsoft Kinect V2 cameras from different angles. This dataset is divided into
training and testing sets using two benchmarks: (1) cross-subject (X-sub) is divided according to
character ID, and (2) cross-view (X-View) is divided according to the camera ID.

NTU-120 RGB+D. NTU-120 RGB+D dataset [38] is an expanded version of NTU RGB+D,
with 57600 additional video samples, and 60 classes of actions. This dataset uses two benchmarks
when dividing the training and testing sets: (1) cross-subject (X-sub) is divided according to character
ID, and (2) cross-setup (X-setup) is divided according to the distance and height of the camera.

Northwestern-UCLA. The Northwestern-UCLA dataset [39] contains 1494 video samples, and
10 types of actions, captured by three Kinect cameras. The evaluation benchmark is the same as [24].
The training and testing sets are divided according to camera ID.

Training. The batch size of the three datasets in the experiments is 16, and the maximum number
of training times is 140. The stochastic gradient decent (SGD) initial learning rate is set to 0.1 and
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divided by 10 at the 60-th, 80-th and 100-th epochs. All experiments are performed on two GTX 1080
GPUs.

Evaluation indicators. The model complexity is measured by parameters and FLOPs. The
parameters are the memory resources consumed by the model and usually represent its space com-
plexity. The FLOPs are the number of floating-point operations, i.e., the number of multiplication
and addition operations in the model, usually representing its time complexity.

4.2 Ablation Study

Shallow architecture for multi-stream early fusion. In order to determine the specific
structure of the network, the control variable method is adopted to optimize the network gradually.
As shown in Figure 4, the convolutional network layers are divided into two parts, the upper half is
four-stream, and the lower half is one-stream. The convolutional layers with the same number of input
and output channels are denoted as S1, S2, and S3, respectively. The number of layers of the network
is gradually determined by changing the number of layers of Sj , j = 1, 2, 3. The experiment details
are shown in Table 1. The results demonstrate that the network performance is optimal when S1 = 1,
S2 = 1 and S3 = 2. As shown in Table 2, compared with 4s Shift-GCN, our method effectively lowers
the number of parameters and reduces computational cost.

Table 1: The best values of S1, S2, and S3 are determined step by step using the control variable
method on NTU RGB+D X-sub task

Const. Var. X-sub (%)

S2 = 2, S3 = 2
S1 = 0 88.5
S1 = 1 88.9
S1 = 2 88.5

S1 = 1, S3 = 2
S2 = 0 88.8
S2 = 1 90.1
S2 = 2 88.9

S1 = 1, S2 = 1
S3 = 1 89.9
S3 = 2 90.1
S3 = 3 89.7

Table 2: Comparisons with 4s Shift-GCN on NTU RGB+D X-sub task
Methods Layers (layer) X-sub(%) Param.(M) FLOPs(G)
4s Shift-GCN [29] 10 90.7 2.76 10.0
L-SGCN (ours) 8 90.1 0.46 2.8

Efficient channel attention mechanism. As shown in Table 3, the control variable method is
used to obtain the optimal position and number of attention mechanisms in the network. There are
three cases where ECA is added: after the spatial shift graph convolution, after the temporal shift
graph convolution, and after both the spatial and the temporal shift graph convolution. The results
show that adding ECA after temporal shift graph convolution exhibits the best performance.

Table 3: The best position of ECA on NTU RGB+D X-sub task
ECA position X-sub(%)
After spatial shift graph convolution 90.1
After temporal shift graph convolution 90.4
After spatial & temporal shift graph convolution 90.2
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Results in Table 4 demonstrate that ECA improves our model to varying degrees without increasing
the parameter number or computational cost.

Table 4: Comparisons of LA-SGCN with and without ECA module on NTU RGB+D and NTU-120
RGB+D

Methods X-sub
(%)

X-view
(%)

X-sub120
(%)

X-set120
(%)

Param.
(M)

FLOPs
(G)

LA-SGCN w/o ECA 90.1 95.6 85.6 85.8 0.46 2.8
LA-SGCN 90.4 96.0 86.8 87.3 0.46 2.8

4.3 Comparison with previous models

To verify the generalizability and superiority of the proposed LA-SGCN model, we conduct ex-
periments on NTU RGB+D, NTU-120 RGB+D, and Northwestern-UCLA datasets, all of which are
compared with RNNs, CNNs and GCNs-based methods, as shown in Table 5, Table 6, and Table 7,
respectively. The evaluation indicators are accuracy, parameters, and FLOPs. On the NTU RGB+D
dataset, 90.5% accuracy is achieved on the X-sub benchmark and 96% accuracy is achieved on the
X-view benchmark. On the NTU-120 RGB+D dataset, 86.8% accuracy is achieved on the X-sub
benchmark and 87.3% accuracy is achieved on the X-set benchmark. On the NTU RGB+D and
NTU-120 RGB+D datasets, 0.46M parameters and 2.8G FLOPs are realized. On the Northwestern-
UCLA dataset, 95.7% accuracy, 0.43M parameters, and 0.2G FLOPs are achieved.

In terms of accuracy, LA-SGCN exhibits a considerable improvement compared with previous
mainstream models. Compared to 4s Shift-GCN [29], the accuracy is very close on the NTU RGB+D
and NTU-120 RGB+D datasets, and it is improved by 1.1% on the Northwestern-UCLA dataset.
Compared with other lightweight models such as SGN [28], ResGCN-N51 [30], MSSF-GCN [31],
FLAGCN [32], NLB-ACSE [33], and 2s SparseShift-GCN [34], higher accuracy is achieved on the
three datasets.

In terms of model complexity, LA-SGCN achieves lower complexity compared with previous mod-
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Table 5: Comparisons with different models on NTU RGB+D dataset
Methods X-sub (%) X-view(%) Param.(M) FLOPs(G)
HBRNN [4] 59.1 64.0 - -
TCN [12] 74.3 83.1 - -
Synthesized CNN [13] 80.0 87.2 - -
3scale ResNet 152 [14] 84.6 90.9 - -
ST-GCN [16] 81.5 88.3 3.10 -
CA-GCN [21] 83.5 91.4 - -
2s AS-GCN [17] 86.8 94.2 6.99 27.0
3s RA-GCN [25] 87.3 93.6 6.21 -
2s AGCN [18] 88.5 95.1 6.94 35.8
SGN [28] 89.0 94.5 0.69 -
ResGCN-N51 [30] 89.1 93.5 0.77 -
2s AGC-LSTM [19] 89.2 95.0 22.89 54.4
PL-GCN [24] 89.2 95.0 - -
FLAGCN [32] 89.4 94.8 0.83 4.1
NAS-GCN [22] 89.4 95.7 6.57 -
MSSF-GCN [31] 89.5 96.2 - -
ST-TR [23] 89.9 96.1 - -
4s DGNN [20] 89.9 96.1 24.83 126.8
4s Shift-GCN [29] 90.7 96.5 2.76 10.0
LA-SGCN (ours) 90.5 96.0 0.46 2.8

Table 6: Comparisons with different models on NTU-120 RGB+D dataset
Methods X-sub (%) X-set(%) Param.(M) FLOPs(G)
ST-LSTM [5] 55.7 57.9 - -
GCA-LSTM [6] 58.3 59.2 - -
RotClips+MTCNN [15] 62.2 61.8 - -
SGN [28] 79.2 81.5 0.69 -
3s RA-GCN [25] 81.1 82.7 6.25 -
FLAGCN [32] 81.6 82.9 0.83 4.1
ST-TR-agcn [23] 82.7 84.7 - -
ResGCN-N51 [30] 84.0 84.2 0.77 -
2s AGCN [18] 84.2 85.5 6.94 35.8
MSSF-GCN [31] 84.4 86.1 - -
4s Shift-GCN [29] 85.9 87.6 2.76 10.0
2s SparseShift-GCN [34] 86.1 87.5 - 7.7
LA-SGCN (ours) 86.8 87.3 0.46 2.8

Table 7: Comparisons with different models on Northwestern-UCLA dataset
Methods Top-1 (%) Param.(M) FLOPs(G)
HBRNN-L [4] 78.5 - -
Ensemble TS-LSTM [9] 89.2 - -
2s AGC-LSTM [19] 93.3 - 10.9
4s Shift-GCN [29] 94.6 2.56 0.7
NLB-ACSE [33] 95.3 1.21 -
LA-SGCN (ours) 95.7 0.43 0.2
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els. Compared with 4s Shift-GCN, the number of parameters is 6× less on all three datasets, whereas
the computational cost is 3.6× less on the NTU RGB+D and NTU-120 RGB+D datasets, and 3.5×
less on the Northwestern-UCLA dataset. Especially compared with GCN-based lightweight models
[28, 30, 32–34], fewer parameters and lower computational cost are achieved on the three datasets.

In summary, the proposed LA-SGCN model exhibits obvious improvements in the three evalua-
tion indicators of accuracy, space complexity, and time complexity, which proves that our method is
lightweight. The low parameter count and the low computational cost improve the training efficiency
of the model, so that the model can be trained in some small devices. Lower model complexity fos-
ters the development of behavior recognition in mobile devices, enabling them to perform tasks like
real-time monitoring.

5 Conclusions
This paper designs a lightweight attention shift graph convolutional network, which achieves fast

and efficient human action recognition and addresses the issue of the high precision network’s large size.
First, shift convolution is introduced into graph convolution to enlarge the receptive field of the nodes,
realizing the lightness of graph convolution. Meanwhile, the shallow architecture for multi-stream early
fusion not only makes full use of feature information but also distinctly decreases the complexity of
the model. Moreover, the efficient channel attention mechanism is suitable for shift graph convolution
and can effectively capture crucial spatiotemporal features in the channel dimension. Experimental
results indicate that our model achieves the desired effect and has great advantages over other models
of the same type. However, this study still has some limitations. The process of using the control
variable method to find the optimal result is too cumbersome. In a subsequent work, we will improve
the shallow architecture for multi-stream early fusion so that it can adaptively determine the depth
and width of the network. At the same time, the datasets used are complete skeleton data, but in
real life, human body parts may be obscured. In the future, we will further explore the realization
of lightweight human action recognition on incomplete skeleton data to improve the generalization
ability of the model, so that it can be better applied in real scenes.
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