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Abstract
In Mobile IoT Networks, the network nodes are constantly moving in a field, causing inter-

ruptions in the communication paths and, thus, generating long delays at the time of building a
communication path from a source IoT node to the gateway (destination node). Communication in-
terruptions affect the delay performance in delay-sensitive applications such as health and military
scenarios. In addition, these IoT nodes are equipped with batteries, whereby it is also necessary
to accomplish energy consumption requirements. In summary, a gateway node should not receive
messages or packets coming from the IoT nodes with undesired delays, whereby it is pertinent to
propose new algorithms or techniques for minimizing the delay and energy consumption experi-
mented in the IoT network. Due to IoT nodes are attached to humans, animals or objects, they
present a specific movement pattern that can be analyzed to improve the path-building with the
aim of reducing the end-to-end delay. Therefore, we propose the usage of a mobility prediction
technique based on a Stochastic Model to predict nodes’ positions in order to obtain minimum cost
paths in terms of energy consumption and delay in mobile IoT networks.

Our stochastic model is tuned and evaluated under the Markov-Gauss mobility model, consid-
ering different levels of movement randomness in order to test how the capability prediction of our
proposal can impact the delay and energy consumption in mobile IoT networks in comparison with
others routing algorithms.

Keywords: Markov Chains, Mobile IoT, Mobility Prediction.
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1 Introduction
In Mobile Internet of Things Networks, the network nodes are constantly moving in a field, causing

interruptions in the communication paths and, thus, generating long delays at the time of building
a path from a source node to the destination node (the gateway node). These interruptions affect
the delay performance in delay-sensitive applications such as health and military scenarios [3]. In
addition, these IoT nodes are equipped with batteries, whereby it is also necessary to accomplish
energy consumption requirements [1] [2]. In summary, a gateway node should not receive messages
or packets coming from the IoT nodes with undesired delays, whereby it is pertinent to propose new
algorithms or techniques for minimizing the delay and energy consumption in the IoT network [3][4].

According to the requirements described previously, new routing algorithms has been proposed [11]
[12] [13]. In [13], the authors show a summary of algorithms in mobile wireless sensor networks, but
no mobility prediction model is presented for a network that is entirely mobile. In [11], the authors
present a proposal to assure that each source IoT node accesses a backbone node through a single
hop with the aim of reaching a mobile sink. Nevertheless, a mobility prediction model is not proposed
and just the sinks, not the rest of the network nodes, are moving in a field. Authors, in [12], present
a multi-objective particle swarm optimization proposal for building the best path for data collection
considering a mobile sink in a IoT network.

In summary, we use a mobility prediction model in a mobile IoT network. In detail, we propose to
use a mobility prediction technique for building a path from a source IoT node and a gateway node
(destination node) taking into account all network nodes are moving in a field and considering energy
consumption and delay requirements. This mobility prediction technique is tunned to be evaluated
under different levels of movement randomness in order to test how the capability prediction of our
proposal can impact the energy consumption and delay in mobile IoT networks in comparison with
others routing algorithms.

This paper corresponds to an extension of the work presented by us in [20]. This extension consisted
of the following aspects:

• We evaluate more scenarios by testing different levels of movement randomness. That is, we vary
the α parameter in equations 11 and 10 to analyze the positive or negative impact of movement
randomness in our proposal.

• More specifications are presented for the movement considerations. In other words, theoretical
details are described for the movement considerations.

• Our proposal is evaluated against a distance and a random algorithms enhanced to be applied
in mobile IoT networks scenarios, which will be described later in the Results Section. In
summary, the Distance and Random algorithms are evaluated under different levels of movement
randomness in order to be compared against our proposal.

The remainder of the paper is organized as follows: Section II presents the problem requirements
in order to propose in Section III an stochastic model based on Markov Chains to find optimal paths
considering RSSI and energy consumption levels. In addition, this section shows details about the
implementation in terms of simulations details, movement and energy consumption model of IoT
nodes, and the proposals selected to be compared against our proposal. In Section V is presented
the performance of our proposal in terms of delay and energy consumption. Finally, Section VI
presents the conclusions of our proposal according to the performance obtained taking into account
the evaluated scenarios.

2 Problem Formulation
In this section, we estimate future movements of nodes in a mobile IoT network by using a mobility

prediction technique based on Markov Chains to determine if future movements will cause future com-
munication interruptions for building paths. By determining future movements, the communication
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(a) Problem (b) Solution

Figure 1: Problem Definition

interruptions can be reduced, and then, the end-to-end can be decreased at the time of building a
path between a source node and the gateway. The details of this estimation is described below:

In Figure 1.a, there is a mobile IoT network. Assume that at time t1 there is a path between
node n1 (the source IoT node) and a gateway (squared node). Suppose that at time t2, there is
a communication interruption for carrying a data packet from the source IoT node to the gateway
because node n2 moved away from node n3. When n3 has noticed this interruption at time t3, n3
proceed to restore the path from n1 to the destination node. However, these interruptions introduce
undesired delays, at which in some applications they can be omitted because do not affect the general
performance, but in delay-sensitive applications, they cannot be ignored due to they cause low values
of the delay metric.

Described the problem previously, we propose to use a mobility prediction model referenced in
figure 1.b [7][8]. This figure reflects a similar concern seen in figure 1.a; however, at time t1, node n3
is notified about that the node n2 will be out of communication range at time t2. According to this
situation, at time t1, n3 is also determining which candidate node could substitute n2 in the case of it
will be incommunicated later. That is, at time t2, if n2 is incommunicated from n3, this node at time
t2 could reestablish the path between n1 and the gateway, decreasing the delay presented in figure 1.a.

In addition, we employ RSSI (Received Signal Strength Indicator) measurements to infer the
distance measure between two nodes, with the aim of being aware of network movements. In detail,
each IoT node predicts future distance (RSSI measurement) of neighbour nodes to estimate if they
will be incommunicated later. The description of this method is shown in the following section.

3 Stochastic Model Proposal
Assume there is a network of two nodes: nk and nl, and that nl is a neighbour node of nk. Suppose

that the node nl, at time t1, is at a specific distance from nk, but at time t2 we need to estimate if nl

will be incommunicated or not (or at the same distance in t1) from nk.
In addition, nl can be positioned at a minimum and maximum distance to create a communication

link with nk. Node nl will be at a maximum RSSI, RSSImax, at a minimum distance. Likewise,
nl will be at a minimum RSSI, RSSImax, at a maximum distance. In this sense, node nl could be
positioned between RSSImin and RSSImax. Therefore, we have the aim of predicting the location of
nl in the future, that is, a position between RSSImin and RSSImax. In order to propose a pragmatic
model, we propose discrete locations equally spaced between RSSImin and RSSImax. The positions,
at which nl could be located, are denoted as states. Thus, nl could be located at S1, S2, Sr or SG

in the future, where G is the total number of states. The default probability of nl to be at any state
is Si = 1/G, which is denoted as Initial Probability Distribution of set S (π), and it is described as
follows:

π = {Ps1 , Ps2 , ..., PsG} (1)

The probability that state S2has to go to state S4 is calculated as follows:
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P24 = N(S2, S4)∑G

j=1 N(S2, Sj)
(2)

Where the number of times that state Si follows state Si is N(Si, Sj).
The previous equation could be used for the rest of probabilities as follows:

Pij = N(Si, Sj)∑G

j=1 N(Si, Sj)
(3)

Given the probability that Si has to go to any state Sj , all probabilities could be denoted in a
matrix, named Transition Matrix:

T =


P11 P12 ... P1G

P21 P22 ... P2G

. . ... .

. . ... .
PG1 PG2 ... PGG

 (4)

In this sense, suppose that nl is at S3 at the current time t1. At a future time tp, the future state
of nl is estimated as follows:

πp = π ∗ T p (5)

Sp = max{πp} (6)

Sp = max{Ps1 , Ps2 , ..., PsG} (7)

Respect to 7, at time tp, the most probable future state at which nl will be is calculated by
nk. This calculation can be used by a routing algorithm or protocol to decrease the delay caused
by communication interruptions. In other words, this information can be considered by the mobility
prediction method to decrease the delay.

3.1 Mobility Prediction Algorithm

According to the previous described stochastic model, the pseudocode of the algorithm represents
our method is shown below.

Algorithm 1 Prediction Algorithm Pseudocode.
1: Initialize P ath = []
2: Initialize Sensor Nodes = [N1N2...Nn]
3: Initialize Sink = [S1]
4: for t = 1 to totalT imeP eriods do
5: if A packet arrived to a Ni then
6: Obtain list of neighbours V
7: Obtain score of each Vj based on P robability T ransition
8: Matrix and energy level
9: if |V | 6= 0 then

10: if Vj is the sink S1 then
11: Send message to S1
12: Add S1 to P ath
13: end if
14: if Vj is a connected node then
15: Send message to the connected node Vj

16: end if
17: if Vj is not a connected node nor the sink then
18: Send message to the best Vj based on its score
19: end if
20: else
21: Store the message in the buffer until the next time
22: period t
23: end if
24: end if
25: end for

The aim of this algorithm consists of determining the optimal forwarding node considering its
probability to be incommunicated or not for building a communication from a source IoT node to the
destination IoT node. At each period of time t, each node calculates its Transition Matrix to choose
the best forwarding node with the aim of reducing the energy consumption and delay of the network.
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The IoT nodes and the gateway are initialized in lines 1 to 3. For each time period (line 4 and line 5),
it is necessary to identify in which IoT node is the message to be sent across different forwarding nodes
(neighbour nodes V ) to achieve the gateway. In lines 7 and 8, from that list of neighbour forwarding
nodes, the best of them is selected by using the Transition Matrix. In lines 9, and 20 to 23, if there
are not neighbour nodes, the data packet is stored for the next time period. In lines 10 to 13, if the
gateway is among the neighbour nodes, the gateway receives the data packet and thus, from a source
IoT node to the gateway has been established a path. This steps are repeated until the gateway is
reached and, then, the algorithm finishes.

3.2 Energy Model

When a node needs to transmit a data packet of K bits to another node at a distance D, the next
expressions are required to be considered for calculating the energy consumption in the transmitter and
the receiver. For the transmitter, the energy consumption corresponds to Eelec +Eamp, at which Eelec

is the energy consumption for codification, modulation and filtering. Eamp is the energy consumption
for the Transmitter Power Amplifier. Likewise, the energy consumption for the receiver is Eamp. In
summary, the energy consumption at the transmitter and the receiver are:

Etx = (Eelec + Eamp) ∗K ∗D2 (8)

Erx = Eamp ∗K ∗D2 (9)

Expression 8 represents more energy consumption than expression 9 due to for transmission is
necessary more energy for modulation, filtering and codification (Eelec) than the energy consumption
required for signal amplification in the receiver (Eamp).

3.3 Mobility Model

In relation to the movement of the network nodes, our proposal is evaluated taking into account
the Gauss-Markov mobility model [9]. This mobility model was tuned to be not-entirely random
for generating predictable movement patterns. In detail, the movement of the network nodes should
be predictable because the IoT nodes are tied to humans, animals or objects, showing not entirely
randomized movements. In other words, particular movement patterns are presented by these nodes.

In these expressions, at each instant, each node calculates its mobility speed and movement direc-
tion based on the the previous instant.

θn = αθn−1 + (1 − α)θ +
√

(1 − α2)θxn−1 (10)

vn = αvn−1 + (1 − α)v +
√

(1 − α2)vxn−1 (11)

At time interval n, the new direction and speed of a particular node is θn and vn, respectively. α
is the random movement degree and it is between 0 and 1. θ is the expected value of the direction
and, v is the expected value of the speed, while θxn−1 and vxn−1 are Gaussian distributed random
variables with zero mean and unit variance. These random variables are independent of θn and vn,
respectively. By varying α, we can define different levels of movement randomness. For example, if
α is 0, each movement is totally random following a Gaussian-Markov random process, that is, it is
highly difficult to predict the movement trajectory of nodes. In contrast, if α is 0, each movement is
the same as the previous one, generating a linear trajectory for all nodes, and in this sense, it would
be very easy to predict the movement trajectory of nodes. Finally, the higher α is, the more difficult
it would be to predict the movement trajectory of nodes. In other words, the lower α is, the easier it
would be to predict the movement trajectory of nodes. In this sense, our prediction algorithm should
obtain better results as α decreases, which will be shown in the Results Section.

Locations given by the mobility model were employed to determine distances, useful to calculate
RSSI values, as the following expression describes[18]:
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RSSId = RSSId0 − 10n ∗ log10

(
d

d0

)
(12)

In Equation 12, n, d0 and RSSId0 are known values, and configured for outdoor environments
[18], where n is the path loss coefficient, d0 is a distance of reference, and RSSId0 set the RSSI level
at the distance reference d0. In summary, for a particular distance d, the RSSI level is calculated by
using the previous information.

4 Results and Discussion
The energy consumption and delay metrics were considered to evaluate our mobility prediction

algorithm in comparison to other routing algorithms, as described as follows:

• Distance Algorithm: The forwarding selected node for building a communication path from a
source IoT node to the gateway corresponds to the forwarding node with the shortest distance
to the current node. The current node corresponds to the one that has the message.

• Random Algorithm: The forwarding selected node for building a communication path from a
source IoT node to the gateway corresponds to a random forwarding node connected to the
current node. The current node corresponds to the one that has the message.

These algorithms (the Distance and Random algorithm) were designed and implemented by us to
be compared against our prediction mobility algorithm.

The following table summarizes the most important parameters assumed in the simulations:

Table 1: Simulation parameters
Parameters Value Parameters Value
Work Area 100x100[m2] rc 20[m]
Eamp 100[pJ/bit/m2] Eelec 50[nJ/bit]
Number of Gateways 1 Number of simulations 1000

(for each figure data point)
Number of IoT nodes 10-50 Number of sources nodes 1

Our mobility prediction algorithm was implemented in MATLAB as well as the Distance and
Random algorithms.

Figure 2 shows the delay performance for each network size (10, 20, 30, 40 and 50 nodes) of each
solution.

In figure 2, our Mobility Prediction algorithm always achieved the best delay result independently
of the network size in comparison with the Distance and Random algorithms. In this sense, using
a mobility prediction method is very suitable for building fastly a path minimizing the energy con-
sumption. The performance difference between the prediction algorithm and the other algorithms was
lesser as the network size decreases. Therefore, our mobility prediction algorithm is suitable for scarce
networks because the prediction method does not require many neighbours nodes to build reliable
communication paths (low amount of communication path disruptions) to achieve the gateway. How-
ever, for finding a communication path to the gateway, the Distance and Random algorithms require
many opportunities (many neighbors nodes). In summary, our prediction algorithm is suitable for
establishing reliable forwarding neighbour nodes, building fastly a path to the gateway .

Additionally, the performance of the Distance and Random algorithms is closer to our Mobility
Prediction algorithm as network size increases because many nodes represents more probability to
find a forwarding neighbour node and, therefore, decreases the probability to generate interruptions
causing extra delays.

According to the level of movement randomness (α), when α is a low value (α = 1/3), this indicates
there is a low level of movement randomness, whereby the movement of nodes is more predictable and,
thus, is easier for our prediction algorithm to build quickly reliable paths to the destination node. More
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reliable paths mean less interruptions, thus, causing less delays for building a path to the destination
node. Given the previous reasons, it is understandable that our prediction algorithm obtains better
values of delays for each network size when α decreases. According to the Distance and Random
algorithms, despite not having a prediction method for forecasting future interruptions, they also
obtains better values of delays when α decreases because the network is less chaotic (less level of
movement randomness), that is, the network is more stable, and then, causing less communication
interruptions that could affect the delay for building a path to the destination node. In other words,
if α is a high value (α = 2/3), this means there is a high level of movement randomness, causing that
the movement of nodes will be less predictable, that is, more difficult to handle by our prediction
algorithm because there will be more interruptions that will cause more delays for building a path
to the destination node. Likewise, for the Distance and Random algorithm will be the same, that is,
due to the network is more chaotic, there will be more interruptions causing more delays affecting the
building of a path to the destination node.

In figure 3, for each network size (10, 20, 30, 40 and 50 nodes) is presented the performance of the
algorithms in terms of energy consumption. The energy consumption by our mobility prediction algo-
rithm is clearly less than the Distance and Random algorithms. In relation to the Random algorithm,
its randomness allows it to explore many forwarding nodes before to determine a communication path
to achieve the gateway. Because of this exploration, this algorithm processes more transmission and
reception of packets, causing an extra energy consumption. According to the Distance algorithm,
its performance tends to be equal to the Mobility Prediction algorithm performance as network size
increases because there are more chances (more forwarding nodes) to achieve the gateway. In contrast,
if the network has few nodes, the performance of the mobility prediction algorithm in terms of energy
consumption is much less than the other algorithms.
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5 Conclusions
A mobility prediction distributed routing algorithm based on a stochastic model has been proposed

for establishing a path from a source IoT node to a gateway (destination node) considering all nodes
are moving in a field and that they have different levels of movement randomness. This proposal is
evaluated against two proposals: the Distance and Random algorithms, also proposed by us to test
the performance of our mobility prediction algorithm.

We observed that, when the movement of nodes was more predictable, it was easier for our pre-
diction algorithm to build quickly reliable paths to the gateway. That is, more reliable paths were
possible for avoiding more communication interruptions and, then, less delays were suffered in the
network. In this sense, our mobility prediction algorithm obtained the best solutions in terms of delay
and energy consumption compared against not using prediction techniques (the Distance and Random
algorithms) independently of the number of network nodes and the level of movement randomness.
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