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Abstract:
Using conventional statistics, we have developed a new method for cell culture anal-
ysis through outlier detection techniques. Statistical methods enable researchers in
microbiology to identify experimental parameters that are critical for colony growth
and inhibition. This paper reports a method for analysing 2D images of cell cultures
in Petri dishs, such as fungi, bacteria or yeast. The aim of this study was to ob-
tain a sensitive and robust method for detection of growth rate, surface coverage and
the approximate number of cells in the colony. For testing we have implemented a
software application called MoldATRIX. This software generates useful statistics and
displays critical information about the cell colony area. Our results were obtained
by analyzing a series of digital images of Aspergillus niger cultures at different time
intervals. Moreover, our results show the behavior of Aspergillus niger on leather.
Keywords: outliers, cell cultures, biodegradation, growth detection.

1 Introduction

New textile materials are conceived in order to increase their biodegradability properties [1].
For research, small quantities of bacteria or fungal cells are usually grown in a petri dish on a
solid support that contains embedded nutrients (agar gel with a particular mix of nutrients),
and new textile samples. Molds extract energy from organic matter in which they live and
some of them play an important role in biodegradation [3, 4], food production, antibiotics [2]
or enzyme synthesis. These microorganisms can be found in divisions such as Ascomycota,
Deuteromycota or Zygomycota. Usually, molds secrete hydrolytic enzymes [4–6] which degrade
complex biopolymers [8] such as cellulose [2, 3] or starch into simpler substances. Therefore,
molds play a major role in decomposition of organic material. There are many known species
of molds (eg. pathogens, aquatic species, thermophiles), but their impact is not known for new
products (ie. new textile materials). Accordingly, their behavior should be measured quickly
by different laboratories. The criteria for evaluation of the behavior of some leather samples [8]
toward the fungi [1, 6] is represented by the percentage of the surface coverage with mycelium.
Nevertheless, the EN 14 119 standard provides a table of correspondence for this percentage. Yet,
there is no indication in this standard of a technique for measuring the coverage of the mycelium
surface. The immediate option of the laboratory operator is a subjective visual approximation
of the mycelium percentage from the total surface of the sample. Yet, this remains an empirical
evaluation. Biodegradation process is currently studied for textile industry [7,14]. Many leather
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materials are tested with different mold cultures in order to characterize the type of fabric and
the impact it has on the environment or the behavior in special conditions [16] (eg. extreme
temperatures, long-term resistance). Parameters such as rate of growth, surface coverage or
the number of cells are very difficult to quantify. We have developed an algorithm based on
outlying observations [17,18] which can extract data from pictures (photos) of the mold culture
surface [19], made at different time intervals. An outlying observation is defined as an anomaly
that appears to deviate from other members of the sample. Outliers may indicate data points
that belong to a different population than the rest of the sample set. Identifying an observation as
an outlier depends on the underlying distribution of the data. For testing we have implemented
a software application called MoldATRIX (Supplementary material 1), which can work with
bitmap or JPEG (Joint Photographic Experts Group) files taken from a digital camera. The
aim of this paper is to provide a method of measurement for biodegradation, in order to certify
the integration of new materials. Continuing the work presented in [20] with additional results
and several refinements, we show a novel method for detection of colony area, growth rate and
the approximate number of cells in the colony.

2 Materials and Methods

The European standard EN 14 119:2003 "Testing of textiles - Evaluation of the action of
microfungi" was used in order to test the behavior of some leather samples towards the action
of the philamentous fungus Aspergillus niger IMI 045551 [21]. Agar plates are frequently used
in microbiology. Agar medium with mineral salts and a carbon source (glucose) was used as a
culture medium. The medium was sterilized in an autoclave at 115◦C for 30 minutes. In order
to obtain the inoculum (cell suspension), a fresh culture tube was used. The surface of the
culture was gently scraped, and then the spores were washed and centrifuged twice in a EBA
21 centrifuge. Next, the medium was held at 50◦C in a waterbath. The inoculum was mixed
with the medium and then was poured in Petri dishes (of 90 mm diameter, with a depth of
maximum 5 mm) for cooling at room temperature for 20 minutes. The leather samples were cut
in 25 mm square form and placed in the center of the Petri dish. Next, all Petri dishes were
incubated at a temperature of 28 ± 2◦C for 14 days. Throughout this period, the cell cultures
were photographed at 3, 7 and 14 days.

2.1 Implementation

In order to detect the surface coverage on leather materials we designed an algorithm consist-
ing of five main loops. First, we consider a digital image (of the mold sample - 255x255 pixels)
as a square matrix A (Figure 1A). Each pixel color can be represented by a 24-bit or 32-bit RGB
value. Therefore, each pixel can be considered an element with a value between 0 and 32 million.
We then consider a void square matrix B (255x255 pixels) that stores the outlier values (Figure
1B). Initially, the algorithm requires a traversal through every pixel of the image (matrix A) in
order to store the pixel values inside variable e. The mean is obtained by dividing variable e to
the total number of elements (pixels) from matrix A. Next, the algorithm calculates the variance,
standard deviation and the Z-score for all pixels of matrix A. Outlier values are listed in matrix
B depending on the Z-score value for each pixel of matrix A. If the Z-score for a pixel of matrix
A exceeds a threshold value (user specified parameter), the program copies the pixel position
and value into matrix B. Next, the algorithm calculates the density of pixels from matrix B
and displays the results. The growth rate of the cell culture is calculated based on photographs
taken at various time intervals. The program can store the results of tests carried out for other
pictures of the same cell culture. Accordingly, surface coverage can be calculated by:
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C =

(
100

E

)
×OL (1)

where C represents the surface coverage, E represents the total number of elements from
matrix A and OL represents the number of outliers found. For our experiment, we used three
intervals, namely C1=3 days, C2=7 days and C3=14 days.

Figure 1: Textile material analysis. (A) a textile material
image containing a mold culture (B) outlier pixels.

In our test, a total of four pic-
tures were analyzed. The first
picture represents a control sam-
ple used to verify the average
pixel color before the cell culture
growth. The other three images
are taken from C1, C2 and C3 in-
tervals. In order to detect the
culture growth rate, we used the
difference between two images of
the mold surface taken at differ-
ent time intervals (G = Cn−1 −
Cn). Nevertheless, the number of
photos and the intervals between
photo shots can be chosen by the user. The approximative number of cells is estimated by con-
verting the number of pixels into millimeters. Thus, the result is multiplied by the number of
outliers found and by cell density/millimeter (eg. yeast size can vary depending on the species,
typically measuring 3µm up to 40µm),

NC =

(
OL×

(
P

M

))
× CM (2)

where NC represents the total number of cells, OL represents the number of outliers found,
P stores the number of pixels on y − axis or x − axis (number of rows or colums on the
square matrix A), M represents the size of the sample (millimeters) and CM represents the
number of cells/millimeter. Depending on the chosen yeast or fungal species, the density of
cells/millimeter is a parameter left to the user appreciation. Yeasts are unicellular, although some
species may become multicellular through the formation of pseudohyphae or false hyphae (ie.
molds). These unicellular and pseudohyphae yeasts lead to different densities of cells/millimeter,
due to a different spatial positioning inside the colony (ie. formation of 3D structures that can
not be neglected in some cases). For these special cases, a calculation of the colony surface is
not an adequate solution.

2.2 Algorithm implementation

We aimed at assessing the effectiveness of the proposed algorithm by implementing a GUI
application (Figure 3). Below we show the source code implementation of the algorithm, syntac-
tically compatible with VBA, VBScript, Visual Basic 4,5,6, Visual Basic .NET and 2005.

1 Dim Mean, Variance, SD, Background_Mean, pixel As Double

2

3 Dim X, Y, X1, Y1, e, p1 As Double

4 Matrix_B.Cls

5

6 X1 = Matrix_A.ScaleWidth - 1

7 Y1 = Matrix_A.ScaleHeight - 1

8 e = 0
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9

10 For x = 0 To X1

11 For Y = 0 To Y1

12 e = e + 1

13 Mean = Mean + Matrix_A.Point(X, Y)

14 Next

15 Next

16

17 Mean = Mean / e

18

19 e = 0

20 For x = 0 To X1

21 For Y = 0 To Y1

22 e = e + 1

23 pixel = control_pic.Point(X, Y)

24 Background_Mean = Background_Mean + pixel

25 Next

26 Next

27

28 Background_Mean = Background_Mean / e

29

30 e = 0

31 For x = 0 To X1

32 For Y = 0 To Y1

33 e = e + 1

34 pixel = Matrix_A.Point(X, Y)

35 Variance = Variance + (pixel - Mean) ^ 2

36 Next

37 Next

38

39 Variance = Variance / e

40 SD = Sqr(Variance)

41

42 For x = 0 To X1

43 For Y = 0 To Y1

44 p1 = Matrix_A.Point(X, Y)

45 zP = zP + p1

46 z = (p1 - Background_Mean) / SD

47

48 If (Abs(z) >= (1/100) * Int(Lim.LowerValue) And Abs(z) <= (1/100) * _

49 Int(Lim.UpperValue)) Then

50 Matrix_B.PSet (X, Y), p1

51 End If

52 Next

53 DoEvents

54 Next

55

56 zMare = (zP - Mean) / SD

57

58 For x = 0 To X1

59 For Y = 0 To Y1

60 q1 = q1 + 1

61 If Matrix_B.Point(X, Y) <> 0 Then q2 = q2 + 1

62 Next

63 Next

64

65 total_elements = (100 / q1)

66 procentage = total_elements * q2

67 CM = val(CM_txt.Text)

68 M = val(M_txt.Text)

69 P = Matrix_A.ScaleHeight

70 pm = P / M

71 NC = (q2 * pm) * CM
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Figure 2: Results from the analysis of leather materials
against Aspergillus niger cultures. The alignment of cell cul-
ture images following (A) C1 phase, (B) C2 phase and (C)
C3 phase. Their corresponding histograms are presented at
the top of the figure. The petri dish is shown at the bottom
of the figure.

Variable Background_Mean rep-
resents the average pixel color of
the control sample and Mean vari-
able represents the average pixel
color of the matrix A. The in-
put objects, such as CM_txt.Text

or M_txt.Text, are responsible
for taking user input parame-
ters. CM_txt.Text object stores
the side length of a square (fab-
ric size from the petri dish)
and M_txt.Text object stores the
amount of cells/millimeter. For
the Background_Mean value, the
user can also click with the mouse
on the matrix A object to choose
the cell culture approximative
color value.

2.3 Equipment

We used a digital camera con-
nected to a tripod. The dis-
tance between the petri dish and
the digital camera was set to 25
centimeters (9.84 inch). Initially,
for calibration reasons, the petri
dish contained a ruler (the mea-
suring unit was the centimeter)
next to the sample. The ruler is
important for further image pro-
cessing on MoldATRIX software.
The leather sample was cut from
the picture at 25 mm by using
the ruler from the image. Next,
the sample area (of 25x25 mm) is
stretched to 255x255 pixels and is processed by MoldATRIX program. However, the ruler is not
a mandatory criteria. Another method consists of cutting a square-shaped sample (25x25 mm),
thus avoiding the use of the ruler from the petri dish. An alternative method is to find the size
of the sample directly from the photo by performing a pixel to millimeter transformation using
dots or pixels per inch (dpi, 1 inch = 25.4 mm),

mm =
(pixel × 25.4)

dpi
(3)

MoldATRIX runs on all Windows operating systems, no installation required and the com-
plete package has 9.44Mb (Supplementary material 1). MoldATRIX memory requirements are
between 1.9Mb and 5Mb, depending on Windows OS version. MoldATRIX was tested on a
computer equipped with an Intel P4 - 2800 MHz and 512 MB DDR dual channel.
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3 Results and Discussion

An outlier is an observation that is numerically distant from the rest of the data. A common
method for outlier detection is to look for observations that deviate more than three times (3

∑
edit rule) the standard deviation from the mean. However, this is not the only criterion that
could be used. Is also common practice to use Z-scores to identify possible outliers [22]. The
proposed algorithm uses Z-scores and is tested on various images with different characteristics.

Figure 3: MoldATRIX program. On the right we show four
matrices, (A) matrix A that contains the picture of the cell
culture at a certain stage of growth (C1, C2 or C3), (B)
represents the control sample, (C) represents the histogram
of matrix A, (D) represents matrix B. On the left panel
are the control parameters, results window and the status
window.

We also made additional tests
to verify the correctness of the al-
gorithm. Perhaps the most use-
ful tool available in digital pho-
tography is the histogram [23,24].
We generate histograms from a
gray image sample of the cell cul-
ture by plotting the number of
pixels for each color value. As
shown in Figure 2, once the cell
culture increases, the second peak
appears in the histogram (Figure
2(A,B,C)). On the x − axis, the
histogram shows color variations
of the sample, while on the y −
axis shows the number of pixels
of that particular color. The left
side of the histogram represents
the black areas of the square sam-
ple, whereas the middle represents
medium grey and the right side
represents the pure white areas.
For tests we used leather against
Aspergillus niger. In C1 phase the
mold coverage accounted for approximately 2%. In C2 phase the mold coverage increased to
7% and in the last phase, C3, the mold coverage has reached 22% (Figure 4). Growth rate is
calculated according to each pre-final phase (G = Cn−1 − Cn). Table 1 shows the results of
C1 . . . C3 phases, where MC represents the mold coverage and MG represents the mold growth
rate. MaxPV stands for the maximum pixel value, whereas MinPV represents the minimum
pixel value (Supplementary material 2).

Table 1: Aspergillus niger on leather
Cn MC MG MinPV MaxPV

C1 2% 2% 32 251
C2 8% 6% 11 179
C3 22% 14% 3 144

In MoldATRIX, users can define specific parameters, such as color differentiation (outlier
pixels), sample size or number of cells/millimeter. For a better implementation of an experiment,
users can create particular camera settings allowing different environments, such as illumination
or color intensity. Nevertheless, in order to obtain clear and reliable results, the same initial
settings must be preserved for each experiment.
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Figure 4: Aspergillus niger growth rate on leather. Two visualization methods are used: (A)
blue line represents the mold coverage (MC) and the red line represents the mold growth rate
(MG), (B) light yellow bars start from the MC value and show the mold growth for each phase.

Different methods, algorithms and automated systems have been proposed for cell culture
studies. The outlier data detection may also be a potential solution for numerous studies
performed on diabetes-related issues [25–28], such as electron microscopy images of b-cells or
adipocyte cells. Some other possible applications are in the area of genomic signal process-
ing [29–31], where outlier data usually exhibits biological significance.

Notice: Part of this paper was presented in a preliminary version as [20].

4 Conclusion and Future Works

Mold species within the genus Aspergillus have a large chemical range. Among scientists
working on molds, there is an endless fascination with their biodeterioration potential. In this
work, a new method was proposed in order to improve the quality of results for cell culture (ie.
fungi, bacteria or yeast) studies on textile materials. Our immediate step is to use this method
in cooperation with a neural network in order to detect different cellular structures on electron
microscopy images. Future applications may include other areas, such as antibiotic research,
hygiene research, contamination control or bioinformatics.
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