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Abstract

It is well known that video streaming is the major network traffic today. Furthermore, the traffic
generated by video streaming is expected to increase exponentially. On the other hand, Software-
Defined Networking (SDN) has been considered a viable solution to cope with the complexity
and increasing network traffic due to its centralised control and programmability features. These
features, however, do not guarantee that network performance will not suffer as traffic grows. As
result, understanding video traffic and optimising video traffic can aid in control various aspects
of network performance, such as bandwidth utilisation, dynamic routing, and Quality of Service
(QoS). This paper presents an approach to identify video streaming traffic in SDN and investigates
the feasibility of using Knowledge-Defined Networking (KDN) in traffic classification. KDN is
a networking paradigm in SDN, that utilises Artificial Intelligence (AI) using Machine Learning
methods, allowing for integrating behavioural models to recognise patterns in SDN traffic, such as
video streaming traffic detection. We extract important network traffic information in the form
of flows statistics in our initial proof-of-concept. Then, we used such information to train six ML
models that can classify network traffic into three types, Video on Demand (VoD), Livestream,
and no-video traffic. Our proof-of-concept demonstrates that our approach is applicable and that
we can identify and classify video streaming traffic with 97.5% accuracy using the Decision Tree
model.

Keywords: livestream, KDN, SDN, Traffic Classification, VoD.



https://doi.org/10.15837/ijccc.2021.5.4258 2

1 Introduction
It is well known that video streaming is the main network traffic today. According to the latest

Cisco Visual Networking Index (VNI) forecast, in 2021, Internet video users will be nearly 1.9 billion
[7], i.e., the world will see 3 trillion minutes of Internet video per month. Consequently, the video will
continue to dominate global Internet traffic, accounting for 80% of all Internet traffic in 2021 [30], [14].
On the other hand, Software-Defined Networks (SDN) has been considered a viable solution to cope
with complexity and increase network traffic. SDN enables network programmability and provides a
flexible architecture to manage more efficient computer networks [25].

The Control Plane (CP) and Data Plane (DP) are separated in SDN, allowing for logically cen-
tralised network device control. The network devices become simple forwarders that are programmable
using a standardised protocol such as OpenFlow by transferring the forwarding devices’ control logic
to a logically centralised device, namely the Controller [33]. The centralised view of the network and
its traffic flows is one of SDN’s key advantages. On the other hand, those advantages do not ensure
that network performance will not suffer as traffic volume grows. Video streaming services, in par-
ticular, have raised their quality of service (QoS) standards [5]. As a result, even with SDN benefits,
controlling the traffic that flows across the network remains a big challenge [16].

Classification of traffic flows, which provides inputs for different network-related management
tasks, is an important tool to ensure the reliable operation of networks [5], [16]. In particular, the
classification of flows that belong to video services has been the object of study both in academia
and in industry, as they dominate global Internet traffic and account for 80% of all Internet traffic
[30], [14]. Most approaches to video traffic classification are based on port number, Deep Packet
Inspection (DPI), and flow characteristics [2, 4, 10, 15, 17]. Port-based strategies are not as reliable as
several applications or services use random or non-standard port numbers [10], [4]. DPI approaches
are accurate in identifying traffic as they inspect the packet’s payload [15]. Unfortunately, these
approaches have a high processing cost and are generally not used because the packet is encrypted [4].

On the other hand, methods that use flow characteristics (e.g., flow size, number of packets, flow
duration, etc.) to perform flow classification have attracted attention in academia and industry. These
methods take different statistical characteristics of the flows during the establishment, maintenance
and release of a session [17], [2]. Then, by using data mining and analysis methods, it is possible to
extract patterns that can distinguish the nature of the network flow and identify the type of traffic to
which it belongs.

In this paper, we introduce a technique for identifying video streaming traffic in SDN and examine
the possibility of utilising Knowledge-Defined Networking (KDN) for traffic classification. KDN is a
networking concept that uses Machine Learning (ML) to improve a variety of network management
activities and services [8], [3]. In our initial proof-of-concept, we derive the relevant information of
network traffic in the form of flow statistics such as total flow size, the total number of packets, flow
duration, etc. Then, we used such information to train six ML models that can classify network traffic
into three types, Video on Demand (VoD), Livestream, and Non-video traffic.

Our approach follows some steps of the Cross-Industry Standard Process for Data Mining (CRISP-
DM) methodology [18], [6]: i) creating a dataset from an SDN-based network, ii) cleaning and selecting
features for the generated flows dataset, and iii) creating a data model. The application of various
ML techniques to identify video streaming flows is referred to as data model.

To sum up, the contributions of this paper are: i) two dataset to model VoD, Livestream, and
Non-video traffic in SDN environment, ii) a model that allows classifying VoD, Livestream traffic from
Non-video traffic; iii) the evaluation of different classification techniques disclosing that Decision Tree
(DT) model is the algorithm that most accurately classifies the targeted traffic. Our proof-of-concept
demonstrates that our approach is applicable and that we can identify and classify video streaming
traffic with 97.5% accuracy.

The remainder of this paper is organized as follows. We provided a detailed description of material
for the SDN network implementation and the data mining method used in Section 2. In Section 3, we
present the answers to our research questions and discuss the results obtained. Finally, we conclude
the paper in Section 4.
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2 Material and method
This Section introduces our approach materials and method to classify video streaming flows in

an SDN environment. We start with the definition of KDN (Section 2.1), CRISP-DM methodology
(Section 2.2), the data understanding (Section 2.3), the data preparation (Section 2.4), the construc-
tion of the models (Section 2.5), and the performance metrics used to evaluate our approach (Section
2.6)

2.1 Knowledge-Defined Networking (KDN)

Clark and Col [8] introduced the idea of an smart plane, known as Knowledge Plane (PN), to
the conventional computer network architecture shaped by the control plane (CP) and the data plane
(DP) [20]. The KP’ key is to introduce artificial intelligence to offer the network the ability to discover,
generalize or learn from past events [3]. To earn these skills, KP proposes the use of ML techniques.
The main purpose of KP is to provide automation processes, recommendation systems and data
prediction [22].

The addition of KP to the SDN architecture is called Knowledge-Defined Networking, KDN [22].
Data Plane (DP), Control Plane (CP), Management Plane (MP), and KP are the four planes that
make up KDN. Through network device forwarding, DP is responsible for creating metadata. The CP
interfaces receive the KP instructions, which are subsequently transmitted to the forwarding devices
by the Controller. In addition, CP provides metadata about the network’s state to the MP. Data and
Control Plane metadata are gathered and kept in the Management Plane. The MP provides the KP
with basic statistics data per-flow and per forwarding device. Finally, KP provides a set of instructions
to the Controller regarding what the network should perform [19].

2.2 Cross-Industry Standard-Process for Data Mining (CRISP-DM)

We followed the CRISP-DM methodology to build a classification model to classify video stream-
ing traffic into three categories VoD, Livestream, and no-video traffic. In particular, we perform
three CRISP-DM phases: Data Understanding, Data Preparation, and Modelling. The traffic-related
dataset is generated, collected, and defined in the data understanding phase. In particular, we gen-
erate, collect, and define a dataset of flows in the form of statistic information. Data preparation
seeks to clean the data (removing null values or damaged data) and choose the relevant attributes
to decrease computational cost and improve flow classification accuracy. Modelling is the process of
classifying flows using various ML approaches. We examine several supervised learning algorithms in
this stage to find the one that best identifies flows into VoD, Livestream, and no-video categories in
an SDN scenario.

2.3 Data Understanding

This phase creates an initial dataset that represents flow/packet features in an SDN scenario. The
following activities are carried out in order to create this dataset: i) created a controlled experimental
scenario to re-create an SDN scenario, ii) deployed the controlled scenario, and iii) generated network
traffic.

The scenario proposed is shown in Figure 1. We followed the traditional SDN architecture, i.e.,
SDN Controller, n switches, and n host. The DP network devices can receive and send video and
non-video traffic from CP. We run Opendaylight Controller [24] in a Virtual Machine (VM) with Linux
Ubuntu 18.04. To get the network status and information about network traffic, i.e., flows statistics,
we developed an ofctl-rest-API. This API is located in the AP and the DP contains a tree topology
network.

We used a Zodiac FX switch [37] and Ubuntu Server 18.04 VM. Zodiac FX is a 4-port 10/100M
Ethernet switch driven by the need for a low-cost option for SDN experimentation and academic
propose. Regarding traffic generation, we used two common severs, Wowza and VLC. Wowza server
[36] generates the VoD traffic and VLC server [34] the Livestream traffic. To capture traffic generated,
we used the Wireshark tool [35]. Wireshark is a well-known network analysis tool that captures packets



https://doi.org/10.15837/ijccc.2021.5.4258 4

in real-time. We decided to use it since Wireshark is the most often-used packet sniffer in the world
[35].

Figure 1: Test environment for dataset construction.

2.4 Data Preparation

The final flow dataset is built in this phase. The following activities were are carried out in order
to get the final dataset: i) extract the PCAP (Packet CAPture) traces’ packets and organise them into
flows, ii) cleaned and examined the data, i.e., add or remove instances; and iii) feature engineering, i.e.,
detects and discards superfluous and unnecessary features. We execute the aforementioned tasks with
Scikit-learn [31], a Python data mining package that includes a comprehensive set of ML algorithms
and data preparation processes.

2.5 Data Modelling

This section covers the selection, evaluation, and modeling of ML models for use in constructing
the classification model. We selected six machine learning models, which are detailed below:
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• Logistic Regression (LR): LR is a supervised learning classification algorithm used to predict a
target variable’s probability. It can be used for various classification problems. LR is widely
used in different fields because it is one of the simplest ML algorithms [38].

• Linear Discriminant Analysis (LDA): Belongs to the supervised learning algorithms. It’s used to
find a linear combination of features that separates two or more classes of data. The succeeding
combination can be used as a linear classifier [32].

• K-Nearest Neighbours (KNN): Is widely used in ML for Classification and regression problems.
KNN algorithms use data points and classify new data points based on similarity measures, e.g.,
distance function. KNN belongs to supervised learning techniques [21].

• Decision tree classifiers (CART): Is a non-parametric approach that can be used for classification
and regression. A model is represented over the entire input space and trained with full training
data from its parameters in parametric estimation. It is then easy to use the same template and
parameters for any test input [21].

• Support Vector Machine (SVM) or Support Vector Network (SVN): Is an ML algorithm for
classification and regression tasks. SVM is a supervised learning method that looks at data
and sorts it into one of two categories. An SVM outputs a map of the sorted data with the
margins between the two as far apart as possible. SVMs are used in text categorisation, image
classification, handwriting recognition and in the sciences [11].

• Naive Bayes (NB): NB is a classification technique based on Bayes’ theorem assuming inde-
pendence between the predictors. In simple terms, a Naive Bayes classifier assumes that the
presence of a particular feature in a class is unrelated to the presence of any other feature [29],
[9].

2.6 Performance Metrics

In our research, we employed performance metrics generated from the Confusion Matrix (See
Table 1). Let B and B′ denote a classification (e.g., a Livestream flow). Then each reference standard
measure is expressed as a function of the Confusion Matrix defined as follows:

True Positive (TP): If the current class of a case was B and the predicted class was B. This
represents a successful prediction.

True Negative (TN): If the current class of a case was B′ and the predicted class was B′. This
represents a successful prediction.

False Positive (FP): If the current class of a case was B′ and the predicted class was B. This
represents a wrong prediction.

False Negative (FN): If the current class of a case was B and the predicted class was B′. This
represents a wrong prediction.

Table 1: Confusion matrix

B′
B

Cn no − Cn

Cn TP FP
no − Cn FN TN

The ratio of correct predictions made to both groups is known as accuracy, and it is represented
as:

Accuracy = TN + TP

FN + TN + TP + FP
(1)

The ratio of correct predictions for class A is known as precision (or positive predictive value):
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Precision = TP

FP + TP
(2)

The percentage of successful predictions made to class A instances is known as the True Positive
Rate (or recall).

TPR = TP

TP + FN
(3)

The f-measure statistic (or F1 score) considers both the TPR and precision of a classifier to measure
its quality:

f1 − score = 2 ∗ TPR ∗ Precision

TPR + Precision
(4)

3 Result and discussion
This section presents the results and their analysis. We start with the data understanding (Section

3.1) and the data preparation (Section 3.2). Finally, the results of the performance metrics of the
models created and the final discussion (Section 3.3).

3.1 Data understanding

The traffic captured by Wireshark was processed and organized into flow records by using the
flowRecorder tool [27]. flowRecorder is a tool written in Python, that allows to turn IP packets into
flow records stored in a CSV (Comma-Separated Values) file. Using packets either in the form of PCAP
(Packet CAPture) files or sniffed live from a network interface. This tool supports the measurement
of flow features in both unidirectional and bidirectional modes. Table 2 describes the flow features
used.

The main idea of flowRecoder is to organize packets into flow by using the top 5-tuple packet
header. Depending on the observed (incoming) packets’ properties, either new flow records is created,
or the existing ones’ flow features are updated. For more information about flowRecoder we refer the
reader to [12, 13, 26, 28]. Two datasets named "Datavideo1" and "Datavideo2" were generated using
flowRecorder. These data sets were validated with another network tool called NFStream [23].

3.2 Data preparation

NFStream performs the same tasks as flowRecorder. Unlike flowRecorder, NFStream uses nDPI
(open source library for deep packet inspection) to extract information from layer 7. Deep packet
inspection allows verifying which application it belongs to, i.e., it will enable identifying if the packet
belongs to a Livestream, VoD or no video stream. We used NFStream to label the Datavideo1 and
Datavideo2 datasets. Datavideo1 consists of 1600 instances. Each instance represents a flow. Thus,
Datavideo1 has 1600 flows, 800 are VoD services, and 800 are non-video flows. Datavideo2 comprises
1200 flows; 400 are live stream video streams, 400 are VoD flows, and 400 are non-video flows.

We analyzed the data distribution of each feature to find bias in the data. Figure 2 illustrates
an example of data distribution performed. It turned out that some features of Datavideo1 are
not uniformly distributed. Several narrow peaks are in some features, e.g., “f-pktTotalCount", "f-
octetTotalCount", "f-avg-piat". This behaviour also happens in Datavideo2. We believe that the
non-video flows to introduce the not uniform distribution since they only contain 1 or 2 packets. In
Figure 2, we only show de forward flows since backward flows present the same behaviour.

As Figure 2 shows, the features "b-avg-ps", "src-port", and "f-std-dev-ps" have bimodal distribu-
tions, which means that those features tend to two values. We used a Yeo-Johnson transformation
to obtain better performance from the models created for the classification traffic. Yeo-Jonson is a
technique used to stabilize variance, make the data more normal distribution-like [1].

We performed an analysis to determine which set of the feature are imports and which not, i.e.,
which variables provide the most information for classifying flows. We use the correlation matrix
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Table 2: Dataset feature description
Feature name Description
f-pkt_Total_Count No of transmitted packets (Forward)
b-pkt_Total_Count No of transmitted packets (Backward)
f-octet_Total_Count No of transmitted packets (Backward)
b-octet_Total_Count No of transmitted bytes (Backward)
f_avg_piat Average packet inter arrival time (Forward)
b_avg_piat Average packet inter arrival time (Backward)
f_avg_ps Average packet size (Forward)
b_avg_ps Average packet size (Backward)
src_port Source port
dst_port Destination port
protoc Identifier of protocol. In particular, TCP/UDP
f-std-dev-piat Stand. dev. packet inter-arrival times (Forward)
b-std-dev-piat Stand. dev. of packet inter-arrival times (Backward)
f-std-dev-ps Stand. dev. of packet sizes (Forward)
b-std-dev-ps Stand. dev. of packet sizes (Backward)
Class Classification of the sample

Figure 2: Data features distributions.
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Figure 3: Heat map correlation matrix from Datavideo1.

approach. A correlation matrix is a table showing correlation coefficients between variables [9]. Each
cell in the table shows the correlation between two or more variables, i.e., provides information about
how correlated the features are concerning others. Figure 3 shows the Datavideo1 correlation matrix.
Overall, there is a high correlation of the data, highlighting a strong dependence between "PktTotal-
Count" and "octelTotalCount" for both forward and backward flows; this means that the number of
transmitted packets is closely related to the number of transmitted bytes.

As Figure 3 shows, there are also high correlations between "f-avg-piat" and "b-avg-piat”, “f-std-
dev-piat" and "b-std-dev-piat". Such a high correlation is expected since these features belong to the
information given by the arrival time between packages. Another high correlation is presented between
the "std-dev-ps" in forwarding and backward flows. Also, these features have a small dependence on
packet sizes and the number of bytes transmitted.

We also applied a recursive elimination method to de data. The recursive elimination method
builds a model on the features that remain to classify each characteristic according to its impor-
tance. In Datavideo1 this method showed that the attributes that provide the most information
are "f-pktTotalCount", "b-pktTotalCount", "f-avg-piat", "b-avg-piat" and "f-std-dev-piat". Taking the
correlation thrown by the matrix between "f-pktTotalCount", "b-pktTotalCount", with "f-avg-piat",
"b-avg-piat" and the data thrown by the elimination method.
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Table 3: Performance metrics of Datavideo1
Datavideo1 Without Feature Elimination Normalized Normalized and Feature Elimination
ML Model Accuracy Standard Deviation Accuracy Standard Deviation Accuracy Standard Deviation

LoR 96.25 4.50 94.75 4.1 93.5 6.99
LDA 93.75 7.09 94.75 5.6 91.5 11.19
K-NN 95.0 5.36 61.25 13.6 96.5 1.65
CART 96.75 5.25 97.24 5.29 97.50 2.5
NB 89.49 10.65 86.5 15.54 88.0 9.53
SVM 85.75 15.53 84.3 15.5 91.25 7.26

Table 4: Performance metrics of Datavideo2
Datavideo1 Without Feature Elimination Normalized Normalized and Feature Elimination
ML Model Accuracy Standard Deviation Accuracy Standard Deviation Accuracy Standard Deviation

LoR 78.88 28.63 83.91 16.40 70.16 21.71
LDA 72.66 24.30 90 14.13 68.75 21.06
K-NN 66.22 26.84 86 15.67 72.44 20.01
CART 88.66 16.83 91.11 16.80 71.25 20.3
NB 71.33 37.49 81.25 18.35 70.0 19.28
SVM 65.55 30.57 88.66 13.26 69.11 38.73

3.3 Data modelling and Performance Metrics

Tables 3 and 4 summarise the performance metrics for Datavideo1 and Datavideo2 dataset, re-
spectively. Tables 3 and 4 show the best performance among the two datasets is for Datavideo1 since
it only consisted of two types of classes, i.e., video and non-video service applications.

In particular, the CART model was the best performance regarding true positive. This can be seen
in the model’s accuracy, which reached 96.75%, 97.24%, and 97.5% with low deviations. It is essential
to notice that the CART algorithm is frequently used when for binary classification. Then, our
results are expected to be precise due to the good overall performance in the CART models’ binary
classification. Table 3 shows that the models’ accuracy improves when using feature elimination
methods and a normalization of the data. The LDA reached a high accuracy, 94.7%, due to the
normalization of the data. Also, K-NN accuracy improves without the redundant features, reaching
96.5% of accuracy.

As Table 3 shows, it is clear that the performance metrics of Datavideo1 are improved by applying
data normalization and feature removal methods. Thus, one expected that the same behaviour happens
in Datavideo2. However, as Table 4 shows, the overall accuracy in all model decrease; e.g., in CART
model, the accuracy reached is 91.1% only. We compared the importance of the features between
Datavideo1 and Datavideo2, and it turned out that it is slightly different. The features that no longer
are important in Datavideo2 are "octetTotalCount" or "scr-port". In Datavideo2, CART model can
easily classify video streams and non-video flows but not classify different types of video services, i.e.,
VoD and Livestream.

Table 5: Confusion Matrix Datavideo1
Prediction Class 1 Class 2

Datavideo1 Video Non video Precision 1 0.96

Video 134 6 Recall 0.96 1
Non video 0 160 F1-score 0.98 0.98

We wanted to dig deeper regarding CART model. Then, we provide a deeper analysis of the CART
model confusion matrix. Table 5 summarises the confusion matrix for the CART model of Datavideo1,
C1 represents video services, and C2 refers to non-video flows. As Table 5 shows, the CART model
does not have any problem when classifying between video streams and non-video flows. There are
a total of 134 true positives and 160 true negatives. In both classes, C1 and C2 reach an f1-score of
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Table 6: Confusion Matrix Datavideo2
(a) (b) (c)

Datavideo2 Prediction Datavideo2 Prediction Datavideo2 Prediction

C1 vs C2 Livestream VoD C2 vs C3 VoD Non-video C1 vs C3 Livestream Non-video

Livestream 99 19 VoD 113 0 Livestream 99 1
VoD 7 133 Non-video 1 117 Non-video 3 117

Table 7: Performance Metrics per-class Datavideo2
Class 1 Class 2 Class 3

Precision 0.91 0.83 0.99
Recall 0.83 0.94 0.97
F1-score 0.87 0.89 0.98

0.98.
It is important to note that video services have an intrinsic property concerning buffers’ use. Video

streams have a bandwidth dependency on the link. This fact simplifies the classification between
video and non-video flows. Table 6 summarizes the confusion matrix of Datavideo2; C1 represents
Livestream, C2 refers to VoD, and C3 represents Non-video flows. Similar to Datavideo1, Datavideo2
can easily distinguish between video services flows and non-video flows. Also, similar to Datavideo1,
the model performance decreases when trained to classify into specific categories, e.g., Livestream,
VoD, etc.

Table 6(a) shows that 7 VoD flows were labelled as Livestream, indicating that the classification
between video services is more complex. However, this result represents less than 10% of the total
VoD flows. Table 7 summarizes the performance metrics of Datavide2 per-class. As Table 7 shows,
the CART model can classify in a precise way C1 and C3, more than 90% of the samples. However,
the precision for C2 is around 83%. Overall, the model results are promising, reaching f1-score around
0.87, 0.89, 0.98 in C1, C2 and C3, respectively.

4 Conclusion
Flow identification has become a prominent issue in academia and industry as a way to maintain

network performance. The identification of video streaming streams is of particular relevance, as video
streaming traffic is projected to skyrocket as more 5G-compatible devices are connected. As a result,
we describe a method for detecting video streaming traffic in SDN in this article. Furthermore, we
investigated the feasibility of using the KDN concept in traffic classification. In our initial proof of
concept, we obtain the relevant information from the network traffic in the form of flow statistics,
such as the total size of the flow, the total number of packets, the duration of the flow, etc. We then
use that information to train six ML models to classify network streaming, and non-video traffic.

The main result of our proof of concept is that it is possible to implement an SDN scenario
and implement different strategies for flow classification by following a KDN approach. Overall, our
results show that ML models have no difficulty in differentiating between video and non-video flows.
However, some models degrade their performance when the classification is multi-class classification,
for example, when the models are trained to classify between different video services. We believe that
there are similarities in their stream statistics as they fall into the category of "video flows." Thus,
a more sophisticated strategy must be applied, when video service identification is needed. Another
important result is that the CART model seems to be a good option for classifying video flows. In
our analysis CART model reached an accuracy of 97.5% in Datavideo1 and an accuracy of 91% in
Datavideo2.

Motivated by the results provided in this paper, future work will investigate Livestream services’
impact on the flow classification mechanism. Also, we want to extend our investigation to the online



https://doi.org/10.15837/ijccc.2021.5.4258 11

classification mechanism for video streaming services in SDN.
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