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Abstract

Q-rung orthopair uncertain linguistic sets (q-ROULSs) are a powerful tool for describing ambigu-
ity and uncertainty of linguistic information. In this study, considering that in most multi-attribute
group decision making (MAGDM) problems, not only the quantitative evaluation information of
decision makers but also the qualitative evaluation opinions should be considered. Therefore, we
develop a novel MAGDM method with unknown attribute weights under the q-rung orthopair
uncertain linguistic environments. We firstly propose the cross-entropy of q-ROULSs, which is
utilized to solve the optimal attribute weights by a linear programming model. In order to effec-
tively summarize the unclear language information of q-ROULSs, we extend the power Muirhead
mean (PMM) operator to q-ROULSs, and propose a family of q-rung othpair uncertain linguistic
power Muirhead mean (q-ROULPMM) operators. The advantage of the PMM operator is that it
not only mitigates the adverse effects of too high or too low attribute values on the results, but
also takes into account the interrelationships between attribute values. At the same time, some
ideal properties and special cases of the q-ROULPMM operator are also studied. Further, a new
method based on the proposed cross-entropy and aggregation operators is developed for solving the
MAGDM problem under q-ROULSs. Finally, we carried out numerical experiments to prove the
effectiveness and superiority of the method.

Keywords: q-rung orthopair uncertain linguistic set, cross -entropy, attribute weights, q-rung
orthopair uncertain linguistic power Muirhead mean, multi-attribute group decision making.
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1 Introduction
The multi-attribute group decision problem (MAGDM) is one of the most important branches of

modern decision theory and has received increasing attention in the past few years. MAGDM can
accomplish the selection of the best one among many alternatives according to a series of attribute
indicators by multiple decision makers. In practical MAGDM problem, one of the most important
difficulties is the representation of attribute values in uncertain decision environments. In 1965, Zadeh
[1] initialized the concept of fuzzy sets (FSs), which open a new unchartered territory for dealing
with the vague and uncertain information by a membership degree function. Later, two significant
extensions of fuzzy sets, i.e. intuitionistic fuzzy sets (IFSs) and Pythagorean fuzzy sets (PFSs), have
also been proposed in [2] and [3], which are characterized by both membership and non-membership to
describe the uncertainty and hesitancy of information more accurately. Since the introduction of IFSs
and PFSs, they have attracted widespread attention among scholars and are widely used in medical
diagnosis [4],[5], pattern recognition [6, 7, 8], data mining [9, 10] and MAGDM [11, 12, 13, 14].

Although the IFSs and PFSs are powerful, they require membership and non-membership degrees
to satisfy some certain constraints. Specifically, IFSs ask that the sum of membership and non-
membership degrees is less than one, and PFSs specify the square sum of membership and non-
membership degrees is less than or equal to one. This feature limits the ability of IFSs and PFSs in
describing the fuzzy and uncertain information. For example, decision makers maybe define the degree
of membership and non-membership as (0.8, 0.7), while it is not valid to IFSs and PFSs. In order
to solve these problems effectively, Yager [15] proposed the concept of q-rung orthopair fuzzy sets (q-
ROFSs), in which a parameter q greater than or equal to one is defined to adjust the expressed range of
fuzzy information flexibly. It is obvious that q-ROFSs are more applicable than IFSs and PFSs when
copying with fuzzy and uncertainties. In recent, many studies on q-ROFSs have been undertaken from
both theoretical and practical aspects. For example, some operational laws of q-rung orthopair fuzzy
numbers, such as Algebraic, Einstein, Hamacher, have been defined in [16, 17, 18]. Du [19] proposed
some Minkowski-type distance measures for the decision-making application of q-ROFSs. Liang et al.
[20] proposed the q-rung orthopair fuzzy cross-entropy to identify the fuzzy measures between q-rung
orthopair fuzzy numbers(q-ROFNs). On the other hand, some traditional decision making methods,
e.g. TODIM[21], TOPSIS[22],and MABAC[23], have also been applied in the q-rung oethoapir fuzzy
environment. In addition, a large number of q-rung orthopair fuzzy aggregation operators have also
developed for solving the MAGDM problem[24, 25].

In addition to the quantitative assessments, we must consider the semantic evaluation opinions
given by decision makers. The linguistic variables (LVs) are considered as an ideal solution provider
to cope with the semantic assessments, such as ’good’, ’fair’, ’worse’, etc. [26]. However, some
sematic opinions cannot be described by a single LV, For instance, decision makers maybe provide
an assessment which is lower than “good” but higher than ‘fair’. Therefore, Xu [27] put forward to
the uncertain linguistic variables (ULVs) that leverage two linguistic terms to represent a semantic
interval. However, an pivotal shortcoming of LVs and ULVs is that they cannot describe the decision
maker’s reliability and uncertainty for a given linguistic evaluation. To remedy this bottleneck, Liu and
Qin [28] utilized the membership and non-membership degrees of the IFS to represent the hesitancy
and uncertainty of the ULV, and proposed the intuitionistic uncertain linguistic variables (IULVs).
Further, some extensions of IULVs, that combine ULVs with some more advanced fuzzy sets, have also
been proposed in [29],[30],[31]. Among them, q-rung orthopair uncertain linguistic sets (q-ROULSs)
[31], [32], that combine the q-ROFSs with ULVs, not only enable an intuitionistic evaluation for
hesitancy and uncertainty for ULVs, but also accomplish the flexible adjustment of the indication
range of decision information.

Another challenging problem in MAGDM is the aggregation of attributes information and the
ranking of alternatives. At present, a variety of aggregation operators have been studied and achieved
the significant success in MAGDM problems[33, 34, 35, 36]. In view of the increased complexity of
actual decision-making problems, we may consider the following three issues when choosing the best
alternative. (1) The evaluation values of attributes provided by decision makers is too high or too low,
which have a negative impact on the final result. The PA operator proposed by Yager can better avoid
this problem as it allows to discount outliers according to automatically assigning a power weight to
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each attribute. (2) The attributes of alternatives are usually related, so we need to consider the various
relationship between the attributes. Hence, a variety of aggregation operators are proposed to solve
this problem, such as Bonferroni mean (BM) [34], Heronian mean (HM) [35], Maclaurin Symmetric
Mean (MSM) [37] and Muirhead mean (MM) [36], and so on. It is worthy stressing that MM has
obvious advantages over other several operators, as it can consider the interrelationship between all
aggregated values, meanwhile, it can reduce into BM and MSM by adjusting its parameters vector.
(3) In the case of various relationships between attributes, there are outlier assessments at the same
time. To solve the above two situations simultaneously, the power Muirhead mean(PMM) operator
is proposed in [38]. They inherit the advantages of PA and MM operators at the same time, and is
widely used to solve the various MAGDM problem [39, 40].

Although a variety of aggregation operators have been proposed to solve the MAGDM problem,
the studies on MAGDM based on the q-rung orthopair uncertain linguistic aggregation operators are
still scarce. For example, Liu et al. [41] proposed the q-rung orthopair uncertain linguistic weighted
average(WA) operator and q-rung orthopair uncertain linguistic ordered weighted average (OWA)
operator for the decision-making application. Liu et al.[42] defined the q-rung orthopair uncertain
linguistic partitioned Bonferroni mean (PBM) operator to solve this situation where some attributes
are related, while other attributes are not related. However, the aforementioned methods fail to
reflect the interrelationship between all arguments, and cannot automatically eliminate the outlier
assessments on aggregation results at the same time. In addition, the attribute weights are directly
given by decision makers in existing q-rung orthopair uncertain linguistic MAGDM methods. It
is obvious that this strategy cannot guarantee the rationality of weight information. Therefore, this
paper develops a MAGDM method based on q-rung orthopair uncertain PMM operator with unknown
attributes weights. In order to do this, we firstly define the cross-entropy of q-ROULSs, which is
utilized to obtain the optimal weight vector of attributes based on a linear programming model.
Secondly, we first propose q-rung orthopair uncertain linguistic PMM (q-ROULPMM) operator and
its weighted form to summarize the decision maker’s preference information and determine the best
choice. Then, a new MAGDM method are also developed based on the proposed cross-entropy and
aggregation operators in q-ROULSs. Finally, a numerical example is provided to demonstrate the
effectiveness and superiority of the proposed method.

The rest of this article is organized as follows. Section 2 reviews the basic concepts and proposes the
cross entropy of q-ROULSs. Section 3 elaborates the q-ROULPMM operator and its weighted form.
Section 4 introduces a new MAGDM method. Section 5 describes the performance and superiority of
the proposed method by a numerical instance as well as comparative analysis. The conclusion is given
in Section 6.

2 Preliminaries

2.1 Q-rung orthopair uncertain linguistic sets

Definition 1 [15] Let X be a ordinary fixed set, a q-rung orthopair fuzzy set (q-ROFS) A on X is
defined:

A = {x, µA (x) , vA (x) |x ∈ X} (q ≥ 1) (1)
where µA(x) and vA(x) respectively represent the membership and non-membership degrees satisfying
µA(x) ∈ [0, 1], vA(x) ∈ [0, 1] and 0 ≤ µqA(x) + vqA(x) ≤ 1. For convenience, the pair (µA(x), vA(x)) is
called as a q-rung orthopair fuzzy number (q-ROFN), which can be denoted by A = (µA, vA).

Let S = {si|i = 0, 1, . . . , g} be a linguistic term set (LTS) with odd cardinality, where si represents
the i-th linguistic variable (LV) of S, g + 1 is the cardinality of S, which usually is set to a small odd
number, such as 5, 7, 9. For the linguistic set S, the following conditions should be satisfied:

1) Orderliness: si > sj , if i > j;

2) Negative operator: Neg (si) = sj , where j = g − i;

3) Maximize and minimize operator: max (si, sj) = si, if si ≥ sj ,min (si, sj) = si, if si ≤ sj .
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Furthermore, Xu [27] developed the concept of uncertain linguistic variable (ULV) to preserve all
the given information.

Definition 2 Let s̃ = [sθ, sτ ], sθ, sτ ∈ S̃ and 0 < θ < τ , S̃ = {sα |s0 ≤ sα ≤ st, α ∈ [0, t]} be a
continuous term set, sθ, sτ represent the lower limit and upper limit of s̃, respectively, then the s̃ is
an ULV.

Let s̃1 = [sθ1 , sτ1 ], s2 = [s̃θ2 , sτ2 ] be two any ULVs, λ is an positive real number, the operational
laws are showed as follows:

1. s̃1 ⊕ s̃2 = [sθ1 , sτ1 ]⊕ [sθ1 , sτ2 ] = [sθ1+θ2 , sτ1+τ2 ]

2. s̃1 ⊗ s̃2 = [sθ1 , sτ1 ]⊗ [sθ2 , sτ2 ] = [sθ1×θ2 , sτ1×τ2 ]

3. λs̃1 = λ[sθ1 , sτ1 ] = [sλθ1 , sλτ1 ]

4. s̃λ1 = ([sθ1 , sτ1 ])λ =
[
s(θ1)λ , s(τ1)λ

]
Although the ULVs express the semantic information conveniently, they are incapable of expressing

the hesitancy and uncertainty of semantic information intuitively. To remedy the above deficiency, q-
ROULSs [31], [32] that combine the ULVs and q-ROFSs, leverage the membership and non-membership
degree to describe the hesitant degree of the ULVs.

Definition 3 Let X be an ordinary fixed set, then a q-rung orthopair uncertain linguistic set A
defined on X is expressed as

A =
{〈
x
[[
sθ(x), sτ(x)

]
, (uA (x) , vA (x))

]〉
|x ∈ X

}
(q ≥ 1) (2)

where sθ(x), sτ(x) ∈ S̃ is the ULV of x, S̃ be a continuous linguistic term set, µA(x) and vA(x) represent
the membership and non-membership degrees of x to ULV

[
sθ(x), sτ(x)

]
, where µA(x), vA(x) ∈ [0, 1]

and 0 ≤ µqA(x) + vqA(x) ≤ 1. For convenience, we call
〈[
sθ(x), sτ(x)

]
, (µA(x), vA(x))

〉
as a q-rung

orthopair uncertain linguistic value (q-ROULV), which can be denoted by α = 〈[sθ, sτ ] , (µA, vA)〉.

Definition 4 Let α1 = 〈[sθ1 , sτ1 ] , (u1, v1)〉, α2 = 〈[sθ2 , sτ2 ] , (u2, v2)〉 be any two q-ROULVs, and λ be
a positive real number, then

1. α1 ⊕ α2 =
〈
[sθ1+θ2 , sτ1+τ2 ] ,

(
(µq1 + µq2 − µ

q
1µ

q
2)1/q

, v1v2
)〉

,

2. α1 ⊗ α2 =
〈
[sθ1∗θ2 , sτ1∗τ2 ] ,

(
µ1µ2, (vq1 + vq2 − v

q
1v
q
2)1/q

)〉
,

3. λα1=
〈

[sλ∗θ1 , sλ∗τ1 ] ,
((

1− (1− µq1)λ
)1/q

, vλ1

)〉
,

4. (α1)λ =
〈[
sθλ1

, sτλ1

]
,

(
µλ1 ,

(
1− (1− vq1)λ

)1/q
)〉

.

Definition 5 Let α = 〈[sθ, sτ ] , (µA, vA)〉 be a q-ROULV, then the expected value E(α) of α is defined
as E(α) = θ+τ

4 (µq + 1− vq), and the accuracy function H(α) of α is defined as H(α) = θ+τ
2 (µq + vq).

For any two q-ROULVs α1 and α2, we have

1. If E (α1) > E (α2), thenα1 > α2,

2. If E (α1) = E (α2), then

(a) if H (α1) > H (α2), then α1 > α2.
(b) if H (α1) = H (α2), then α1 = α2.
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2.2 Cross entropy of q-ROULVs

The cross-entropy measure is an important operation to measure the relation between two sets or
objects. It is used to calculate the divergence between two probability distributions or two random
variables. Recently, Liang et al. [20] defined the q-rung orthopair fuzzy cross-entropy to identify the
fuzzy measures between q-ROFNs.

Definition 6 [20] Let a1 = (µ1, v1) and a2 = (µ2, v2) be two q-ROFNs, then the cross-entropy
CE(a1, a2) of a1 and a2 can be defined as follows

CE(a1, a2) = 1
1− 21−p

(
(µ1)pq + (µ2)pq

2 −
((µ1)q + (µ2)q

2

)p
+ (v1)pq + (v2)pq

2

−
((v1)q + (v2)q

2

)p
+(π1)pq + (π2)pq

2 −
((π1)q + (π2)q

2

)p) (3)

where π1 and π2 are the indeterminacy degree of a1 and a2, respectively.

Although the cross-entropy has achieved breakthrough successes in various fuzzy environments,
the studies on cross-entropy are still a blank under q-rung orthopair uncertain linguistic environments.
Therefore, the cross-entropy of q-ROULVs is presented herein.

Definition 7 Let α1 = 〈[sθ1 , sτ1 ], (µ1, v1)〉 and α2 = 〈[sθ2 , sτ2 ], (µ2, v2)〉, g + 1 is the cardinality of
linguistic term set, then the cross-entropy of α1 and α2 is defined as:

CE(α1, α2) = θ1 + τ1
2g ln 2(θ1 + τ1)

θ1 + τ1 + θ2 + τ2
+ τ1 − θ1

g
ln 2(θ1 − τ1)

(θ1 − τ1) + (θ2 − τ2)

+ (1− θ1 + τ1
2g ) ln 4g − 2(θ1 + τ1)

4g − (θ1 + τ1 + θ2 + τ2)

+ (1 + θ1 − τ1
g

) ln 2(g + (θ1 − τ1))
2g + (θ1 − τ1) + (θ2 − τ2)

+ µq1 ln 2µq1
µq1 + µq2

+ vq1 ln 2vq1
vq1 + vq2

(4)

Theorem 1 Let α1 = 〈[sθ1 , sτ1 ], (µ1, v1)〉 and α2 = 〈[sθ2 , sτ2 ], (µ2, v2)〉, be any two q-ROULVs, then
cross-entropy CE(α1, α2) satisfies the following properties:

1) CE(α1, α2) ≥ 0,

2) CE(α1, α2) = 0, if α1 = α2,

3) CE(α1, α2) = CE(αc1, αc2), where αci = 〈[g − sτi , g − sθi ], (vi, µi)〉

2.3 Power average operator and Muirhead mean operator

The PA operator was proposed by Yager for crisp numbers. The prominent characteristic of PA
is that it allows the weighting vector to depend on the input arguments and evaluation.

Definition 8 Let ãi(i = 1, 2, · · · , n) is a collection of nonnegative real numbers, then the power
average (PA) operator is defined as:

PA (ã1, ã2, . . . , ãn) =
n∑
i=1

(1 + T (ãi)) ãi
n∑
j=1

(1 + T (ãj))
, (5)

where T (ãi) = ∑n
j=1,j 6=i Sup (ãi, ãj) and Sup (ãi, ãj) indicates the support for ai from aj , which satisfies

the following properties:
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1. Sup (ãi, ãj) ∈ [0, 1],

2. Sup (ãi, ãj) = Sup (ãj , ãi),

3. Sup (ãi, ãj) ≥ Sup (ãs, ãt), if d(ãi, ãj) < d(ãs, ãt), where d(ãi, ãj) is the distance between ãi and
ãj .

The MM was an aggregation technology proposed by Muirhead for crisp numbers, they can deals
with the interrelationship among all arguments.

Definition 9 Let ai (i = 1, 2, ..., n)be a collection of crisp numbers and K= (k1, k2, ..., kn) ∈ Rn, then
the Muirhead mean (MM) operator is defined as

MMK (a1, a2, ..., an) =

 1
n!

∑
ϑ∈Sn

n∏
j=1

a
Pj
ϑ(j)


1

n∑
j=1

Pj

, (6)

where ϑ (j) (j = 1, 2, ..., n) is any permutation of (1, 2, ..., n),and Sn is the collection of all permutation
of (1, 2, ..., n).

3 Some new q-rung orthopair uncertain linguistic aggregation op-
erators

3.1 The q-rung orthopair uncertain linguistic power Muirhead mean operator

Definition 10 Let αj =
〈[
sθj , sτj

]
, (µj , vj)

〉
(j = 1, 2, ..., n) be a collection q-ROULVs and K =

(k1, k2, ..., kn) ∈ Rn be a set of parameters. If

q −ROULPMMK (α1, α2, ..., αn) =

 1
n!

∑
ϑ∈Sn

n∏
j=1

n
(
1 + T

(
αϑ(j)

))
n∑
i=1

(1 + T (αi))
αϑ(j)


kj

1
n∑
i=1

kj

, (7)

where T (αj) = ∑n
i=1,j 6=i Sup (αi, αj), Sup (αi, αj) represents the support degree for αi and αj , which

satisfies the following properties:

1. Sup (αi, αj) ∈ [0, 1]

2. Sup (αi, αj) = Sup (αj , αi)

3. Sup (αi, αj) > Sup (αs, αt), if d (αi, αj) < d (αs, αt), where d (αi, αj) denotes the distance be-
tween αi and αj .

Further, let
ωj = (1 + T (αj))∑n

i=1 (1 + T (αi))
, (8)

then we can obtain the simplified form of Eq.(7):

q −ROULPMMK (α1, α2, . . . , αn) =

 1
n!

∑
ϑ∈Sn

n∏
j=1

(
nωϑ(j)αϑ(j)

)kj
1

n∑
j=1

kj

(9)

where ω = (ω1, ω2, ..., ωn)T is the power weighting vector (PWV) satisfying ωi ∈ [0, 1] and∑n
i=1 ωi = 1

According to the operations of Definition (4), we can get q-ROULPMM satisfies following theorems.
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Theorem 2 Let αj =
〈
[sθj , sτj ], (µj , vj)

〉
(j = 1, 2, ..., n) be a collection q-ROULVs andK = (k1, k2, ..., kn) ∈

Rn be a set of parameters, then the aggregated value by q-ROULPMM is still a q-ROULV, and

q −ROULPMMK (α1, α2, ..., αn) =

〈s(
1
n!
∑
ϑ∈Sn

n∏
j=1

(nωjθϑ(j))kj
) 1∑n

j=1 kj
, s(

1
n!
∑
ϑ∈Sn

n∏
j=1

(nωjτϑ(j))kj
) 1∑n

j=1 kj

 ,


1−

 ∏
ϑ∈Sn

1−
n∏
j=1

(
1−

(
1− µqϑ(j)

)nωj)kj 1
n!


1/q
1

n∑
j=1

kj

,

1−

1−
∏
ϑ∈Sn

1−
n∏
j=1

(
1− vqnωjϑ(j)

)rj 1
n!


1
n∑
j=1

rj


1/q

〉
.

(10)

Proof. According to Definition (4), we have

nωjαϑ(j) =
〈[
snωjθϑ(j) , snωjτϑ(j)

]
,

((
1−

(
1− µqϑ(j)

)nωj)1/q
, v
nωj
ϑ(j)

)〉
.

and (
nωjαϑ(j)

)kj =
〈[
s(nωjθϑ(j))kj , s(nωjτϑ(j))kj

]
,(((

1−
(
1− µqϑ(j)

)nωj)1/q)kj
,

(
1−

(
1− vqnωjϑ(j)

)kj)1/q
)〉

.

Thus, we can obtain

n∏
j=1

(
nωjαϑ(j)

)kj =
〈s n∏

j=1
(nωjθϑ(j))kj

, s n∏
j=1

(nωjτϑ(j))kj

 ,
 n∏
j=1

((
1−

(
1− µqϑ(j)

)nωj)1/q)kj
,

1−
n∏
j=1

(
1− vqnωjϑ(j)

)kj1/q
〉 .

and ∑
ϑ∈Sn

n∏
j=1

(
nωjαϑ(j)

)kj =
〈s ∑

ϑ∈Sn

n∏
j=1

(nωjθϑ(j))kj
, s ∑

ϑ∈Sn

n∏
j=1

(nωjτϑ(j))kj

 ,

1−

∏
ϑ∈Sn

1−
n∏
j=1

(
1−

(
1− µqϑ(j)

)nωj)kj1/q

,

∏
ϑ∈Sn


1−

n∏
j=1

(
1− vqnωjϑ(j)

)kj1/q

〉 .
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Thus,

1
n!
∑
ϑ∈Sn

n∏
j=1

(
nωjαϑ(j)

)kj =
〈s

1
n!
∑
ϑ∈Sn

n∏
j=1

(nωjθϑ(j))kj
, s

1
n!
∑
ϑ∈Sn

n∏
j=1

(nωjτϑ(j))kj

 ,

1−

 ∏
ϑ∈Sn

1−
n∏
j=1

(
1−

(
1− µqϑ(j)

)nωj)kj 1
n!


1/q

,

 ∏
ϑ∈Sn


1−

n∏
j=1

(
1− vqnωjϑ(j)

)kj1/q



1
n!

〉
.

Therefore, 1
n!
∑
ϑ∈Sn

n∏
j=1

(
nωjαϑ(j)

)kj) 1∑n

j=1 kj =

〈s(
1
n!
∑
ϑ∈Sn

n∏
j=1

(nωjθϑ(j))kj
) 1∑n

j=1 kj
, s(

1
n!
∑
ϑ∈Sn

n∏
j=1

(nωjτϑ(j))kj
) 1∑n

j=1 kj

 ,


1−

 ∏
ϑ∈Sn

1−
n∏
j=1

(
1−

(
1− µqϑ(j)

)nωj)kj 1
n!


1/q
1∑n

j=1 kj

,

1−

1−
∏
ϑ∈Sn

1−
n∏
j=1

(
1− vqnωjϑ(j)

)kj 1
n!


1∑n

j=1 kj


1/q

〉
.

Theorem 3 (Idempotency) Let αj =
〈[
sθj , sτj

]
, (µj , vj)

〉
(j = 1, 2, ..., n) be a collection q-ROULVs,

and αj = α = 〈[sθ, sτ ] , (µ, v)〉 for j = 1, 2, ..., n. Then,

q −ROULPMMK (α1, α2, ..., αn) = α (11)

Proof. As αj = α = 〈[sθ, sτ ] , (µ, v)〉 holds for all j, we have Sup (αj , αi) = 1 for i, j = 1, 2, . . . , n. we
can obtain ωj = 1/n for all j. Further, we can get

q −ROULPMMK (α, α, ..., α) =
〈s(

1
n!
∑
ϑ∈Sn

n∏
j=1

(n 1
n
θ)kj

) 1∑n

j=1 kj
, s(

1
n!
∑
ϑ∈Sn

n∏
j=1

(n 1
n
τ)kj

) 1∑n

j=1 kj

 ,


1−

 ∏
ϑ∈Sn

1−
n∏
j=1

(
1− (1− µq)n

1
n

)kj 1
n!


1/q
1∑n

j=1 kj

,

1−

1−
∏
ϑ∈Sn

1−
n∏
j=1

(
1− vqn

1
n

)kj 1
n!


1∑n

j=1 kj


1/q

〉

=
〈[
s 1
n!n!θ, s 1

n!n!τ

]
,
(
(µq)1/q , (vq)1/q

)〉
= α.

(12)
which completes the proof of Theorem (3).
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Theorem 4 (Boundedness) Let αj =
〈[
sθj , sτj

]
, (µj , vj)

〉
(j = 1, 2, ..., n), α−= min (α1, α2, ..., αn)

and α+= max (α1, α2, ..., αn), then

α− ≤ q −ROULPMMK (α1, α2, ..., αn) ≤ α+ (13)

where α− = 〈[sθ− , sτ− ] , (a, b)〉, and α+ = 〈[sθ+ , sτ+ ] , (c, d)〉. and

sθ− = s(
1
n!
∑
ϑ∈Sn

n∏
j=1

(n 1
n
θ−)kj

) 1∑n

j=1 kj
, sτ− = s(

1
n!
∑
ϑ∈Sn

n∏
j=1

(n 1
n
τ−)kj

) 1∑n

j=1 kj
,

a =


1−

 ∏
ϑ∈Sn

1−
n∏
j=1

(1− (1− aq)nωj )kj
 1

n!


1/q
1∑n

j=1 kj

,

and

b =

1−

1−
∏
ϑ∈Sn

1−
n∏
j=1

(1− bqnωj )kj
 1

n!


1∑n

j=1 kj


1/q

.

Meanwhile,

sθ+ = s(
1
n!
∑
ϑ∈Sn

n∏
j=1

(n 1
n
θ+)kj

) 1∑n

j=1 kj
, sτ+ = s(

1
n!
∑
ϑ∈Sn

n∏
j=1

(n 1
n
τ+)kj

) 1∑n

j=1 kj
,

c =


1−

 ∏
ϑ∈Sn

1−
n∏
j=1

(1− (1− cq)nωj )kj
 1

n!


1/q
1∑n

j=1 kj

,

and

d =

1−

1−
∏
ϑ∈Sn

1−
n∏
j=1

(1− dqnωj )kj
 1

n!


1∑n

j=1 kj


1/q

.

Proof. First, for α− we can have

nωjαϑ(j) =
〈[
snωjθϑ(j) , snωjτϑ(j)

]
,

((
1−

(
1− µqϑ(j)

)nωj)1/q
, v
nωj
ϑ(j)

)〉
≥
〈[
snωjθ− , snωjτ−

]
,
(
(1− (1− aq)nωj )1/q , bnωj

)〉
.

and (
nωjαϑ(j)

)kj =
〈[
s(nωjθϑ(j))kj , s(nωjτϑ(j))kj

]
,(((

1−
(
1− µqϑ(j)

)nωj)1/q)kj
,

(
1−

(
1− vqnωjϑ(j)

)kj)1/q
)〉

≥
〈[
s(nωjθ−)kj , s(nωjτ−)kj

]
,

((
(1− (1− aq)nωj )1/q

)kj
,
(
1− (1− bqnωj )kj

)1/q
)〉

.
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Further,

n∏
j=1

(
nωjαϑ(j)

)kj =
〈s n∏

j=1
(nωjθϑ(j))kj

, s n∏
j=1

(nωjτϑ(j))kj

 ,
 n∏
j=1

((
1−

(
1− µqϑ(j)

)nωj)1/q)kj
,

1−
n∏
j=1

(
1− vqnωjϑ(j)

)kj1/q
〉

≥
〈s n∏

j=1
(nωjθ−)kj

, s n∏
j=1

(nωjτ−)kj

 ,
 n∏
j=1

(
(1− (1− aq)nωj )1/q

)kj
,

1−
n∏
j=1

(1− bqnωj )kj
1/q

〉 .
Thus, 1

n!
∑
ϑ∈Sn

n∏
j=1

(
nωjαϑ(j)

)kj) 1∑n

j=1 kj

=
〈s(

1
n!
∑
ϑ∈Sn

n∏
j=1

(nωjθϑ(j))kj
) 1∑n

j=1 kj
, s(

1
n!
∑
ϑ∈Sn

n∏
j=1

(nωjτϑ(j))kj
) 1∑n

j=1 kj

 ,


1−

 ∏
ϑ∈Sn

1−
n∏
j=1

(
1−

(
1− µqϑ(j)

)nωj)kj 1
n!


1/q
1∑n

j=1 kj

,

1−

1−
∏
ϑ∈Sn

1−
n∏
j=1

(
1− vqnωjϑ(j)

)kj 1
n!


1∑n

j=1 kj


1/q

〉

≥
〈s(

1
n!
∑
ϑ∈Sn

n∏
j=1

(nωjθ−)kj
) 1∑n

j=1 kj
, s(

1
n!
∑
ϑ∈Sn

n∏
j=1

(nωjτ−)kj
) 1∑n

j=1 kj

 ,


1−

 ∏
ϑ∈Sn

1−
n∏
j=1

(1− (1− aq)nωj )kj
 1

n!


1/q
1∑n

j=1 kj

,

1−

1−
∏
ϑ∈Sn

1−
n∏
j=1

(1− bqnωj )kj
 1

n!


1∑n

j=1 kj


1/q

〉
=a−.

which means that α− ≤ q − ROULPMMK (α1, α2, ..., αn). Similarly, we can also prove that q −
ROULPMMK (α1, α2, ..., αn) ≤ α+, which completes the proof of Theorem (4).

One of the prominent advantages of q-ROULPMM is that it can capture the various interrelation-
ship between attributes. More Specifically, q-ROULPMM has a parameter vector leading to a flexible
aggregation process. By assigning different values to the parameter vector, some special cases can be
obtained.

Case1. If K = (1, 0, ..., 0), then q-ROULPMM reduces to
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q −ROULPMM (1,0,...,0) (α1, α2, ..., αn) =
n∑
j=1

(
(1 + T (αj))αj/

n∑
i=1

(1 + T (αi))
)
, (14)

which is the q-rung orhopair uncertain linguistic power averaging operator.
Case2. If K = (1/n, 1/n, ..., 1/n), then q-ROULPMM reduces to

q −ROULPMM (1/n,1/n,...,1/n) (α1, α2, ..., αn) =
n∏
j=1

αj

1+T(αj)∑n

i=1(1+T(αi)) (15)

which is q-rung orhopair uncertain linguistic power geometric operator.
Case3. If K = (1, 1, 0, ..., 0), then q-ROULPMM reduces to the q-rung orhopair uncertain lin-

guistic fuzzy power Bonferroni mean operator, i.e.

q −ROULPMM (1,1,0,...,0) (α1, α2, ..., αn) =〈s(
1

n(n−1)
∑n

j=1,j 6=i ωjθjωiθi

) 1
2
, s(

1
n(n−1)

∑n

j=1,j 6=i ωjτjωiτi

) 1
2

 ,



1−


n∏

j, i = 1
j 6= i

(
1−

(
1−

(
1− µ2

j

)ωj) (1−
(
1− µ2

i

)ωi))


1
n(n−1)



1
4

,


1−


1−


n∏

j, i = 1
j 6= i

(
v

2ωj
j + v2ωi

i − v2ωj
j v2ωi

i

)


1
n(n−1)



1
2


1/q
〉
.

(16)

Case4. If K =

 k︷ ︸︸ ︷
1, 1, ..., 1,

n−k︷ ︸︸ ︷
0, 0, ..., 0

, then PULPMM reduces to the q-rung othopair uncertain

linguistic power Maclaurin symmetric mean operator, i.e

q −ROULPMM

 k︷ ︸︸ ︷
1, 1, ..., 1,

n−k︷ ︸︸ ︷
0, 0, ..., 0

 (α1, α2, ..., αn) =

〈s(∑1≤j1<...<jk≤n

∏n

i=1 ωjiθji
Ckn

) 1
k
, s(∑

1≤j1<...<jk≤n

∏n

i=1 ωjiτji
Ckn

) 1
k

 ,

1−

∏
1≤j1<...<jk≤n

(
1−

k∏
i=1

(
1−

(
1− µqji

)ωji)) 1
Ckn


1
qk

,

1−

1−
∏

1≤j1<...<jk≤n

(
1−

k∏
i=1

(
1− vqωjiji

)) 1
Ckn


1
k


1/q

〉
.

(17)
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3.2 The weighted q-rung othopair uncertain linguistic power Muirhead mean op-
erator

The q-ROULPMM does not consider the importance of the aggregated q-ROULVs. In this subsec-
tion, its weighted form, namely, the q-orthopair uncertain linguistic weighted power Muirhead mean
(q-ROULWPMM) operator, has been proposed to copy with the weight information of attributes.

Definition 11 Let αj =
〈[
sθj , sτj

]
, (µj , vj)

〉
(j = 1, 2, ..., n) be a collection q-ROULVs and K =

(k1, k2, ..., kn) ∈ Rn be a set of parameters. Then the q-ROULWPMM is defined as follows,

q −ROULWPMMK (α1, α2, ..., αn) =

 1
n!
∑
ϑ∈Sn

n∏
j=1

(
nωϑ(j)wϑ(j)∑n

i=1 ωiwi
αϑ(j)

)kj 1∑n

j=1 kj (18)

where w = (w1, w2, ..., wn)T is the weight vector of αj (j = 1, 2, ..., n) satisfying wj ∈ [0, 1] and
n∑
j=1

wj =

1. ωj = (1 + T (αj))/
∑n
i=1 (1 + T (αi)) is the PWV, satisfying ωj ∈ [0, 1], ∑n

j=1 ωj = 1. T (αj) =∑n
i=1,i 6=j Sup (αi, αj) and Sup (αi, αj) represents the support degree between αi and αj .

Similarly, we can obtain that the q-ROULWPMM satisfies following property.

Theorem 5 Let αj =
〈[
sθj , sτj

]
, (µj , vj)

〉
(j = 1, 2, ..., n) be a collection q-ROULVs andK = (k1, k2, ..., kn) ∈

Rn be a set of parameters. Then, the aggregated value by q-ROULWPMM is also a q-ROULV, and

q −ROULWPMMK (α1, α2, ..., αn)

=
〈s( 1

n!
∑
ϑ∈Sn

n∏
j=1

(
nωϑ(j)wϑ(j)∑n

i=1 ωiwi
θϑ(j)

)kj) 1∑n

j=1 kj
, s(

1
n!
∑
ϑ∈Sn

n∏
j=1

(
nωϑ(j)wϑ(j)∑n

i=1 ωiwi
τϑ(j)

)kj) 1∑n

j=1 kj

 ,


1−

 ∏
ϑ∈Sn

1−
n∏
j=1

1−
(
1− µqϑ(j)

)nωϑ(j)wϑ(j)∑n

i=1 ωiwi

kj



1
n!


1/q
1∑n

j=1 kj

,

1−

1−
∏
ϑ∈Sn

1−
n∏
j=1

1−
(
vϑ(j)

) qωϑ(j)wϑ(j)∑n

i=1 ωiwi

kj


1
n!


1∑n

j=1 kj



〉
.

(19)
The process of proof is similar to that of Theorem (2), so it is omitted here.

4 A novel approach to MAGDM based on the proposed operators
In this section, we introduce a novel approach based on the PMM operators to the MAGDM

problems with q-rung othopair uncertain linguistic information. Assume that there are m alter-
natives {x1, x2, ..., xm}, {G1, G2, ..., Gn} be a collection of attributes with the weight vector w =
(w1, w2, ..., wn)T , where wj ∈ [0, 1] (j = 1, 2..., n) and ∑n

j=1wj = 1. D = {D1, D2, ..., Dt} be a col-
lection of decision makers, and their weight vector is λ = (λ1, λ2, ..., λt)T , satisfying λp ∈ [0, 1] and∑t
p=1 λp = 1. For the attribute Gj (j = 1, 2, ..., n) of alternative xi (i = 1, 2, ...,m), decision makers

are required to use a q-ROULV αij =
〈[
sθji , sτji

]
, (µji, vji)

〉
to express their preference information.

Therefore, a q-rung othopair uncertain linguistic decision matrix can be obtained, which can be de-
noted as Ap =

(
αpij

)
m×n

. In the following, we utilize the proposed q-rung othopair uncertain linguistic
aggregation operators to solve this problem.
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4.1 The model based on cross entropy to obtain the weight vector of attributes

In practical MAGDM problem, the attribute weights is unknown or partly unknown, we need to
calculate the attribute weights by using the maximum cross-entropy method. Based on [43], a model
based on cross entropy of q-ROULVs is established to obtain the weight vector of attributes.

For the alternatives xi to all the other alternatives for attribute Gj , it deviation can be firstly
calculated by:

Dij = 1
m− 1

m∑
r=1,r 6=i

CE∗ (αij , αrj) = 1
2(m− 1)

m∑
r=1,r 6=i

(CE(αij , αrj) + CE(αrj , αij)) (20)

The overall deviation of all alternatives to other alternatives for attribute Gj is represented as:

Dj =
m∑
i=1

Dij = 1
m− 1

m∑
i=1

m∑
r=1,r 6=i

CE∗(αij , αrj) (21)

It means that we can obtaining the optimal attributes weights by constructing the a linear pro-
gramming model

(M− 1)


maxD(w) = ∑n

j=1wjDj = ∑n
j=1

∑m
i=1Dijwj

Subject to
n∑
j=1

wj = 1, wj ≥ 0, j = 1, 2, . . . , n (22)

Solve the Eq.(22), we can get

wj =

m∑
i=1

(
1

2(m−1)
m∑

r=1,r 6=i
(CE(αij , αrj) + CE(αrj , αij))

)
n∑
j=1

m∑
i=1

(
1

2(m−1
m∑

r=1,r 6=i
(CE(αij , αrj) + CE(αrj , αij))

) (23)

4.2 The Decision making process

Step 1. Normalize the decision matrices, the attributes can be generally divided into two types:
benefit attributes and cost attributes. Therefore, the decision matrices should be normalized according
to the following formula:

αpij =


〈
[sθpij , sτpij ], (µ

p
ij , v

p
ij)
〉

Gi ∈ I1〈
[sθpij , sτpij ], (v

p
ij , µ

p
ij)
〉

Gi ∈ I2
(24)

where I1 and I2 represent benefit type and the cost type attributes respectively.
Step 2. Utilize the q-rung orthopair uncertain linguistic weighted average (q-ROULWA) operator

to aggregate the assessments of all xi, (i = 1, 2, ...,m) by t decision makers with respect to attribute
Gj

αij = q −ROULWPMMK
(
α1
ij , α

2
ij , ..., α

t
ij

)
(25)

Step 3. Calculate the weight vector of attributes

wj =

m∑
i=1

(
1

2(m−1)
m∑

r=1,r 6=i
(CE(αij , αrj) + CE(αrj , αij))

)
n∑
j=1

m∑
i=1

(
1

2(m−1
m∑

r=1,r 6=i
(CE(αij , αrj) + CE(αrj , αij))

) (26)

Step 4. Utilize the q-ROULWPMM operator to obtain the aggregation value of xi with respect
to attribute Gj , (j = 1, 2, ..., n)

αi = q −ROULWPMMK (αi1, αi2, ..., αin) (27)

Step 5. According to Definition (5), calculate the expected values of the overall preference values
αi (i = 1, 2, ...,m)

Step 6. Rank alternatives {x1, x2, ..., xm} and select the optimal alternative(s).
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Table 1: Intuitionistic uncertain linguistic decision matrix R1

G1 G2 G3 G4

A1 <[s5,s5],(0.2,0.7)> <[s2,s3],(0.4,0.6)> <[s5,s6],(0.5,0.5)> <[s3,s4],(0.2,0.6)>
A2 <[s4,s5],(0.4,0.6)> <[s5,s5],(0.4,0.5)> <[s3,s4],(0.1,0.8)> <[s4,s4],(0.5,0.5)>
A3 <[s3,s4],(0.2,0.7)> <[s4,s4],(0.2,0.7)> <[s4,s5],(0.3,0.7)> <[s4,s5],(0.2,0.7)>
A4 <[s6,s6],(0.5,0.4)> <[s2,s3],(0.2,0.8)> <[s3,s4],(0.2,0.6)> <[s3,s3],(0.3,0.6)>

Table 2: Intuitionistic uncertain linguistic decision matrix R2

G1 G2 G3 G4

A1 <[s4,s4],(0.1,0.7)> <[s3,s4],(0.2,0.7)> <[s3,s4],(0.2,0.8)> <[s6,s6],(0.4,0.5)>
A2 <[s5,s6],(0.4,0.5)> <[s3,s4],(0.3,0.6)> <[s4,s5],(0.2,0.6)> <[s3,s4],(0.2,0.7)>
A3 <[s4,s5],(0.2,0.6)> <[s4,s4],(0.2,0.7)> <[s2,s3],(0.4,0.6)> <[s3,s4],(0.3,0.7)>
A4 <[s5, s5],(0.3,0.6)> <[s4,s5],(0.4,0.5)> <[s2,s3],(0.3,0.6)> <[s4,s4],(0.2,0.6)>

5 Numerical Example
To illustrate the validity and superiorities of the proposed approach, we provide a numerical

example as well as some comparative analysis in this section. This example is adopted from Liu and
Jin [28]. An investment company wants to invest its money to a company and after primary evaluation,
there are four possible alternatives on the candidates list. They are: (1) A1 is a care company, (2) A2
is a computer company, (3) A3 is a TV company, and (4) A4 is a food company. In order to select the
best alternative, the four companies are evaluated from four attributes: (1) G1 is the risk analysis, (2)
G2 is the growth analysis, (3) G3 is the social political impact analysis, and (4) G4 is the environmental
impact analysis. The weight vector of the attributes is w = (0.32, 0.26, 0.18, 0.24)T . The investment
company invites three experts to be the decision-making committee. Decision makers whose weight
vector is λ = (0.4, 0.32, 0.28)T are required to use the linguistic term set S = {s0, s1, s2, s3, s4, s5, s6}
to assess the four alternatives respectively. Therefore, the decision matrices Rk =

[
αkij

]
4×4

can be
obtained, which are shown in Tables 1-3.

5.1 Decision-making process

In this section, we utilize the proposed method to solve the above problem.
Step 1: Evidently, all the attributes are of the benefit type. Thus, they do not have to be

standardized.
Step 2: Utilize the q-ROULWA operator to calculate the collective decision matrix, which is

shown as Table 4.
Step 3: Calculate the weight vector of attributes as

w∗ = (0.2591, 0.2476, 0.2709, 0.1864)

Step 4: For alternatives Ai (i = 1, 2, 3, 4), utilize the q-ROULWPMM operator to calculate its
comprehensive evaluation value.

Table 3: Intuitionistic uncertain linguistic decision matrix R3

G1 G2 G3 G4

A1 <[s5,s5],(0.2,0.6)> <[s3,s4],(0.3,0.7)> <[s4,s5],(0.4,0.5)> <[s4,s4],(0.2,0.7)>
A2 <[s4,s5],(0.3,0.7)> <[s5,s5],(0.3,0.6)> <[s2,s3],(0.1,0.8)> <[s3,s4],(0.4,0.6)>
A3 <[s4,s4],(0.2,0.7)> <[s5,s5],(0.3,0.6)> <[s1,s3],(0.1,0.8)> <[s4,s4],(0.2,0.7)>
A4 <[s3,s4],(0.2,0.7)> <[s3,s4],(0.1,0.7)> <[s4,s5],(0.1,0.7)> <[s5,s5],(0.4,0.5)>
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Table 4: The collective decision matrix
G1 G2

A1 <[s4.5886,s4.5886],(0.1578,0.6727)> <[s2.5975,s3.6021],(0.2868,0.6768)>
A2 <[s4.2503,s5.2411],(0.3606,0.6203)> <[s4.1717,s4.5916],(0.3280,0.5803)>
A3 <[s3.5936,s4.2607],(0.1989,0.6743)> <[s4.2525,s4.2525],(0.2276,0.6730)>
A4 <[s4.4429,s4.8900],(0.3084,0.6055)> <[s2.8547,s3.8745],(0.1990,0.6946)>

G3 G4

A1 <[s3.8689,s4.8745],(0.3390,0.6516)> <[s4.1073,s4.5207],(0.2506,0.6193)>
A2 <[s2.8519,s3.8706],(0.1253,0.7528)> <[s3.2711,s3.9627],(0.3397,0.6205)>
A3 <[s1.9812,s3.5235],(0.2277,0.7190)> <[s3.2688,s4.2656],(0.2875,0.6722)>
A4 <[s2.8479,s3.8652],(0.2607,0.6062)> <[s3.8720,s3.8720],(0.2871,0.5724)>

Table 5: Ranking results by using the different parameter vector k
K E (α1) E (α2) E (α3) E (α4) Ranking results

k = (1, 0, 0, 0) 1.3020 1.4550 1.1142 1.3451 A2 � A1 � A4 � A3
k = (1, 1, 0, 0) 1.2724 1.3713 1.0749 1.2969 A2 � A1 � A4 � A3
k = (1, 1, 1, 0) 1.2498 1.3014 1.0413 1.2631 A2 � A1 � A4 � A3
k = (1, 1, 1, 1) 1.2295 1.2156 1.0040 1.2338 A1 � A4 � A2 � A3

α1 = 〈[s3.6365, s4.2823] , (0.2469, 0.6633)〉, α2 = 〈[s3.5044, s4.2831] , (0.2627, 0.6668)〉
α3 = 〈[s3.0812, s3.9684] , (0.2307, 0.6954)〉, α4 = 〈[s3.3724, s4.0241] , (0.2577, 0.6318)〉
Step 4: Calculate the expected values E (αi) of alternative Ai (i = 1, 2, 3, 4), and we can get:
E (α1) = 1.2295, E (α2) = 1.2156, E (α3) = 1.0040, E (α4) = 1.2338
Step 5: According to the expected values of alternatives, we can obtain their ranking order, i.e.

A1 � A4 � A2 � A3 . Hence, A1 is the best alternative.

5.2 The influence of the parameters on the results

In this subsection, we investigate the influence of the parameter vector k on the decision results.
So, we set different parameter vectors k in the q-ROULWPMM operator and discuss the ranking
results. The details are in Table 5.

Table 5 shows that when K takes different values, the expected values and ranking orders are also
changed relevantly. At the same time, it can be seen that the more relevant ship between attributes
is considered, the smaller the expected values will become. Therefore, we can regard the parameter
vector K as the decision-maker’s attitude toward optimism or pessimism. In this way, decision makers
can express their optimistic or pessimistic attitudes and actual needs by changing the parameter vector
K.

Table 6: Ranking results obtained by using different methods
Methods Ranking results

IULWGA operator [37] A2 � A4 � A1 � A3
IULWGHM operator [38] A2 � A4 � A1 � A3
IULWBM operator [39] A2 � A4 � A3 � A1

WPFULMSM operator [40] A2 � A3 � A1 � A4
q-ROWPULPMM operator A1 � A4 � A2 � A3
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Table 7: Characteristics of different methods
Method Whether it has felxi-

ble power for describing
uncertainty

Whether it can discount
outliers

Whether it captures the
relationship between ar-
guments

IULWGA [37] No No No
IULWGHM [38] No No Yes
IULWBM [39] No No Yes

WPFULMSM [40] Yes No Yes
WPULPMM Yes Yes Yes

Method Whether it captures the
relationship among ar-
guments

Whether it captures the
relationship amng all ar-
guments

Whether it consider the
self-importance of argu-
ments

IULWGA [37] No No No
IULWGHM [38] No No Yes
IULWBM [39] No No Yes

WPFULMSM [40] Yes No No
WPULPMM Yes Yes Yes

5.3 Comparative analysis

In this section, we compare the q-ROULWPMM operator proposed in this paper with the example
which has been mentioned above. (1) The weighted geographic mean operator based on intuitionistic
uncertainty (IULWGA) proposed by Liu and Jin [28]; (2) The weighted arithmetic operator based
on intuitionistic uncertainty (IULWGHM) proposed by Liu et al.[44]; (3) That introduced by Liu et
al.[45] based on learning uncertain language weighted Bonferroni mean (IULWBM) operator; (4) That
proposed by Liu et al.[46] based on weighted Pythagorean fuzzy Determine the language Maclaurin
Symmetric Mean (WPFULMSM) operator. The decision results of the various operators for the above
examples are presented in Table 6. Next, we will conduct a detailed comparative analysis based on
this.

First, the methods proposed by Liu and jin [28], Liu et al.[44, 45] are based on IULSs. As we have
already mentioned above, q-rung orthopair uncertain linguistic sets (PFULSs) are more powerful than
IULSs. For example, if the sum of the membership and non-membership of the ULV provided by the
decision maker is greater than 1, like 〈[s5, s6] , (0.7, 0.8)〉then we cannot select IULSs to represent the
set of fuzzy numbers. Therefore, the method proposed in this paper is more flexible and powerful than
other methods.

Liu and Jin’s [28] method is based on the IULWGA , which does not consider the interrelationship
between attribute values. The method [44, 45] of Liu et al. is based on the IULWAHM and IULWBM,
Compared to the IULWGA operator, these two operators take the relationship between the attribute
values as a consideration. However, its drawback is that it can only capture the relationship between
any two attribute values. This still does not satisfy most of the actual situation. Later, Liu et al. [46]
proposed the Maclaurin symmetric mean (MSM) operator, which also demonstrates the correlation
between attribute values. Compared with the operators introduced in the previous section, the method
proposed by Liu et al. [46] is more practical and powerful. Because the Maclaurin Symmetric Mean
(MSM) operator can capture the correlation between two or more attribute values, the larger the k
value, the more correlation between the attribute values can be captured. However, the MSM operator
also has its drawbacks. The MSM operator can only consider capturing the correlation between n-1
attribute values at most. In addition, the MSM operator cannot reflect the importance of individuals
among the aggregated parameters.

The PMM operator proposed in this paper is produced by combining the PA operator with the
MM operator. First of all, the PMM operator can well capture the correlation between attribute
values. It is worth mentioning that the MSM operator is a special case of the MM operator, and
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the PMM operator is derived by the MM operator. Therefore, the PMM operator not only considers
the correlation between all attribute values, but also lists the individual’s level as a consideration.
In addition, the PMM operator has a parameter vector, which makes the information aggregation
process more flexible and feasible. Secondly, the PMM operator also has the characteristics of the PA
operator, which allows the evaluation values to support and strengthen each other, so it can well avoid
the situation where the value of the attribute provided by the decision maker is too high or too low.
So, in summary, the PMM operator proposed in this paper is more powerful, more flexible, and more
versatile.

6 Conclusions
In this paper, we develops a MAGDM method based on q-rung orthopair uncertain PMM operator

with unknown attributes weights. In order to do this, we firstly define the cross-entropy of q-ROULSs,
which is utilized to obtain the optimal weight vector of attributes by a linear programming model.
Secondly, we first propose q-rung orthopair uncertain linguistic PMM (q-ROULPMM) operator and its
weighted form to summarize the decision maker’s preference information and determine the best choice.
Then, based on this, we introduced a new MAGDMmethod. then, we apply this method to investment
project selection issues. Later, in order to better demonstrate the advantages and superiority of the
proposed method, we compare it with other methods in terms of qualitative and quantitative. In
future work, we are going to apply PMM operators to more fuzzy linguistic environments, such as
hesitant fuzzy linguistic sets [47], probabilistic linguistic term sets [48], and so on.
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