
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
Online ISSN 1841-9844, ISSN-L 1841-9836, Volume: 16, Issue: 2, Month: April, Year: 2021
Article Number: 4115, https://doi.org/10.15837/ijccc.2021.2.4115

CCC Publications

Extract Executable Action Sequences from Natural Language
Instructions Based on DQN for Medical Service Robots

F. D. Zhao, Z. K. Yang, X. S. Li, D. D. Guo, H. T. Li

Fengda Zhao
1. School of Information Science and Engineering
Yanshan University
Qinhuangdao 066004, China
2. Xinjiang University of Science and Technology
Korla 841000, China
3. The Key Laboratory for Software Engineering of Hebei Province
Yanshan University
Qinhuangdao 066004, China
zfd@ysu.edu.cn

Zhikai Yang, Dingding Guo, Haitao Li
1. School of Information Science and Engineering
Yanshan University
Qinhuangdao 066004, China
2. The Key Laboratory for Software Engineering of Hebei Province
Yanshan University
Qinhuangdao 066004, China
ysuyangzhikai@stumail.ysu.edu.cn
guodingding@ysu.edu.cn
xjlht@ysu.edu.cn

Xianshan Li*
1. School of Information Science and Engineering
Yanshan University
Qinhuangdao 066004, China
2. The Key Laboratory for Software Engineering of Hebei Province
Yanshan University
Qinhuangdao 066004, China
*Corresponding author: xjlxs@ysu.edu.cn

Abstract

The emergence and popularization of medical robots bring great convenience to doctors in
treating patients. The core of medical robots is the interaction and cooperation between doctors
and robots, so it is crucial to design a simple and stable human-robots interaction system for medical
robots. Language is the most convenient way for people to communicate with each other, so in
this paper, a DQN agent based on long-short term memory (LSTM) and attention mechanism is

https://doi.org/10.15837/ijccc.2021.2.4115 2

proposed to enable the robots to extract executable action sequences from doctors’ natural language
instructions. For this, our agent should be able to complete two related tasks: 1) extracting action
names from instructions. 2) extracting action arguments according to the extracted action names.
We evaluate our agent on three datasets composed of texts with an average length of 49.95, 209.34,
417.17 words respectively. The results show that our agent can perform better than similar agents.
And our agent has a better ability to handle long texts than previous works.

Keywords: medical robots, human-robots interaction, DQN agent, attention mechanism, long-
short term memory.

1 Introduction
In recent years, medical robots have become a hot spot for the development of the robotics industry

and the medical industry, they are able to help doctors treat patients more efficiently. For example,
surgical robots can be used for surgical image guidance and minimally invasive surgery, rehabilitation
robots can be used to recover from limb injuries, assist the disabled to complete actions and to improve
their athletic ability, auxiliary robots can be used to assist doctors to diagnose the patient’s condition
and make a real-time observation on the health condition of the elderly [1], service robots can be used
to move medical supplies and clean up medical waste in isolation wards to reduce the risk of infection
among medical staff. One of the core technologies is the interaction between humans and robots, but
traditional robots with keyboard-and-mouse or touch-screen interfaces are not easy to do this. Thus,
it is critical to provide a simple way for doctors to interact with and control robots.

People use language every day to direct behavior, ask for help, and communicate with others. Thus,
more and more researchers are devoted to enable robots to interact with users by natural language.
One of the bases of it is to let robots understand the natural language instructions given by users.
Over the past five years, a large number of methods based on semantic framework and sequence to
sequence models were applied to this task [2, 3].

Reinforcement learning (RL) [4] has been received much attention because of its excellent per-
formance in areas such as mobile robots navigation [5, 6], decision-making system [7, 8]. Recently,
reinforcement learning has been a viable and powerful approach in the area of natural language pro-
cessing (NLP). In 2018, Feng et al. [9] presented an intelligent agent named EASDRL to extract
executable action sequences from free and long natural language instructions. However, EASDRL
is a Deep Q-Network (DQN) agent based on convolutional neural networks (CNN), resulting in the
difficulty for the agent to understand the complex context of the actions in instructions and it becomes
unstable when the instruction is too long because it is not able to solve the long-range dependencies
problem of texts.

In this paper, we propose a novel DQN agent (as shown in Figure 1) based on bidirectional LSTM
(BiLSTM) [10] and attention mechanisms to solve the above problems. LSTM is proposed to solve the
problem of long-range dependencies in text. It has a better ability to remember long-term information
than traditional neural networks, so LSTMs are more suitable for processing long texts than traditional
neural networks.

Although LSTMs have the ability to process long text information, it seems not enough because of
their forgetfulness. In this paper, the models are trained on natural language instructions composed of
hundreds of words and phrases. Thus, we apply attention mechanisms to our DQN agent to reduce the
impact of the loss of features on our experimental results. As a core technology, attention mechanisms
have been widely used in the field of natural language processing (NLP). They are first used in machine
translation tasks to solve the problem of long-range dependencies of traditional seq2seq models by using
global text information to compute the output of the encoder.

We evaluate the performance of our agent on three datasets, i.e., "Microsoft Windows Help and
Support" (WHS) documents [11], and two datasets "WikiHow Home and Garden"(WHG) and "Cook-
ingTutorial"(CT) labeled by [9]. The results of the experiments show that our DQN agent based on
BiLSTM and attention mechanism performs better than existing similar approaches.

Our major contributions are as follows:

• Compared with the deep learning-based methods, our method based on deep reinforcement
learning has a better ability to extract action sequences from the text that contains multi actions.

https://doi.org/10.15837/ijccc.2021.2.4115 3

• We build our agent based on BiLSTM and attention mechanisms in order to solve the problem
of long-range dependencies of long texts and fully utilize the term context relations in text.
Thus, our agent has a better ability to extract action sequences from long texts than the agents
presented by previous works.

 Cover your mouth and nose with an N-95

respirator to avoid breathing in spores. Wear

elbow-length rubber or latex gloves to protect

your hands from mold . Cover your eyes with

goggles to protect them from airborne spores.

Clean hard surfaces. Mix equal parts water

and detergent

Agent

Extract Action

Sequences

Extractable

Sequences

Cover (mouse/nose, N-95)

sequence 1

Wear (elbow-length rubber)

Cover (eyes, goggles)

Clean (hard surfaces)

Mix (detergent,watch)

sequence 2

Cover (mouse/nose, N-95)

Wear (latex gloves)

Cover (eyes, goggles)

Clean (hard surfaces)

Mix (detergent,watch)

Doctor

Figure 1: Our agent extracts action sequences from natural language instructions, including action
names and their arguments (between parentheses). There are two candidate sequences extracted by
the instruction given by the user in the figure because the action "Wear(elbow-length rubber)" and
"Wear(latex gloves)" is exclusive, meaning that the agent could extract only one of them.

2 Related Work
In this section, we review the literature on deep learning-based and reinforcement learning-based

methods.

2.1 Deep Learning-Based Methods

Deep learning is widely used in the areas such as behavioral recognition [13], medical assistance
[14] and computer version [15] by the way of building deep neural networks. Using recurrent neural
networks for semantic slot filling is one of the most popular deep learning-based methods to extract
action sequences. In 2015, Bastianelli et al. [2] proposed a corpus named Human-Robot Interaction
Corpus (HuRIC) based on frame semantics [12]. In 2018, they presented a method to semantically
parse natural language robotic commands from the HuRIC corpus using a multi-layer LSTM network
with attention layers.

Recently, language models with an encoder-decoder structure such as Transformer [16] and BERT
[17] are used in this task. In 2020, Li et al. [18] proposed a Transformer-based phrase tuple extraction
model to extract action phrase tuples from natural language instructions and a Transformer-based
grounding model to connect the action phrase tuples extracted by previous works to executable actions.
However, the core of these semantic framework-based methods is designing an action framework for
each action that robots can execute, resulting in restrictions on the functions of robots.

2.2 Reinforcement Learning-Based Methods

Reinforcement learning (RL) is the study of how an agent can interact with its environment to
learn a policy that maximizes expected cumulative rewards for a task. Recently, RL for NLP has
experienced great attention because of the excellent results in areas such as dialogue systems [19],
neural machine translation [21] and text generation [22].

https://doi.org/10.15837/ijccc.2021.2.4115 4

In 2009, Branavan et al. [11] presented a reinforcement learning approach for mapping natural
language instructions contained in Microsoft Windows Help and Support documents to sequences
of executable actions and executed them in the Windows 2000 environment. In 2020, Zhuo et al.
[20] presented a novel deep reinforcement learning framework named Federated Deep Reinforcement
Learning (FedRL) that is able to also work well when the feature space of the agent is small and the
training data is limited. The FedRL framework is applied to the task presented by [9] and had a better
performance.

3 Our Agent
Our task is to train a DQN agent based on BiLSTM and attention mechanisms for the purpose

of extracting executable action sequences from natural language instructions. In this paper, word tag
is used for taking apart of the meaning of "action" in reinforcement learning. Given a sequence of
words X = (x1, x2..., xn) , our goal is to predict a sequence of tags Tag = (tag1, tag2, ..., tagn) on
X , where tag∈[select, eliminate]. When predicting action names or arguments, tagi = select means
that xi is predicted as an action name or action argument, and tagi = eliminate means that xi isn’t
predicted as an action name or action argument.

Our aim is to learn two models to extract action names and their arguments. The two models are

F1(Tag|X;ω1),X ∈ D (1)

F2(Tag|X; a;ω2),X ∈ D (2)

where X is the instruction contained in our training set D, ω1 and ω2 are parameters to be learned
for predicting action names and action arguments, a is an action name predicted by F1.

Our task can be described as aMarkov Decision Process (MDP) and defined as the tuple (S,Tag,T,
γ,R), S is the state space, Tag is the action space of our intelligent agent, T is a transition matrix,
γ is a discount factor used for measuring the importance of the feature and immediate rewards. The
goal of our work is to find a policy π : S → Tag to select a tag according to the current state. We
can extract the action sequences from given texts by choosing tags for the words in the given text
according to the current state represented by the text. After applying the tag to the current state,
a new state will be generated. This process will be executed repeatedly until each word of the given
text is tagged. The core of our works is two Q-functions: Q(s, tag) for action names extraction task
and Q(ŝ, tag) for action arguments extraction task, we can achieve the above-mentioned process by
updating these Q-functions according to the Bellman equation:

Qi+1(st, tagt) = E[r + γmaxtag′Qi(st+1, tagt+1)], st ∈ S, tagt ∈ Tag (3)

Qi+1(ŝt, tagt) = E[r + γmaxtag′Qi(ŝt+1, tagt+1)], ŝt ∈ S, tagt ∈ Tag (4)

In this section, firstly, we introduce how to process the words that compose the text. Then, the
approach of building state and predicting Tag for each word given text X is proposed. Finally, our
deep Q-networks and how to predict Tag for the X are introduced.

3.1 Word Embedding

Word embeddings are widely-adopted technologies for NLP tasks by the way of representing a word
by a fix-length vector. In this paper, we represent a text X by a sequence of vectors (w1, w2, ..., wn),
where wi∈R50 is a 50-dimension real-valued vector, trained by Word2Vec model, representing the ith
word in X.

In addition, a { word : index} dictionary with the length n+2 is used for storing each different
word in our datasets, where n is the number of different words in our datasets. The first word in the
dictionary is PAD and the last word in the dictionary is UNK which represents the word not contained
in the vocabulary of the Word2Vec model.

https://doi.org/10.15837/ijccc.2021.2.4115 5

3.2 State

In this subsection, the approach of representing the state s from texts is introduced. For action
names extraction, we define the state s as a tuple (Word_ind, Word _pos, tag) , where Word_ind
is the index of the word according to the {word : index} dictionary defined by previous work and
Word _pos is the part-of-speech tagged by StanfordPOSTagger. For example, considering the text
"Cover your nose with a respirator...", after selecting tag1 = Select on state st and a state st+1 will
be generated. The transition of state s from time step t to time step t+1 is as shown in Figure 2.
We initialize the tag of each word to Null, which means the word has not been assigned a tag by the
agent.

For action arguments extraction, we use xa to denote the word which represents the action name,
and we define the state as a tuple (Word_ind, Dis, Word_pos, tag), where Dis = (d1, d2, ..., dn),
where di = |i− a| is used for representing the distance between x_a and other words in text.

Cover

your

nose

with

a

...

word_ind word_pos word_tag word_ind word_pos word_tag

tag1=select

respirator

Figure 2: The transition of state from time step t to time step t+1 for action name extraction

3.3 Our Deep Q-network

In our work, two deep neural networks based on BiLSTM and attention mechanisms Q(st, tagt, ω1)
and Q(ŝt, tagt, ω2) are used for representing the Q-functions Q(s, tag) and Q(ŝ, tag) approximately.

The goal of our work is to extract action sequences from free and long texts, it requires our
agent to be able to solve the long-range dependencies problem and understand the complex context
of actions, but the traditional deep q-networks based on CNN or RNNs are unable to do anything
about these. Thus, we use LSTM-based network to build our action names extraction model F1 and
action arguments extraction model F2. Our model for action names extraction F1 is shown as Figure
3. Assuming that we have already known the tag of x_1, x_2, ..., x_i-1, we introduce how to predict
tag_i, the tag of x_i. First, we use two 50-dimension real-valued vectors to represent the tag
(tag_embedding in Figure 3) and the part-of-speech (pos_embedding in Figure 3) of xi, and they are
concatenated with the word embedding of xi as the input of forward LSTM layer and backward LSTM
layer.

Input = Concat(word_embedding, pos_embedding, tag_embedding) (5)

Second, the outputs of the forward LSTM layer and backward LSTM layer are fed into the attention
layer separately and the outputs of attention layers are concatenated as a vector.

−→
L = −−−−→LSTM(Input)
←−
L =←−−−−LSTM(Input)

(6)

L = Concat(Attention(−→L),Attention(←−L)) (7)

https://doi.org/10.15837/ijccc.2021.2.4115 6

Where −→L is the output of forward LSTM layer, ←−L is the output of backward LSTM layer.
Third, we apply two Conv1D layers to extract features from the vector. And we get the output

of the network, which contains the expectation of reward value after performing every possible tag
according to the current state.

Output = Dense(Conv(L)) (8)

Finally, we use an Argmax function to choose tagi+1 according to the output of the network.

tagt+1 = Argmaxtag(Output) (9)

For action arguments extraction, a 50-dimension real-valued vector is used for representing the
distance between action name xa and other words, and the input of our action arguments extraction
model F2 is

Input = Concat(word_embedding, dis_embedding, pos_embedding, tag_embedding) (10)

Figure 3: Our LSTM-based DQN agent for action names extraction

3.4 Reward

We use the same approach as [9]. The Reward of our agent is composed of two parts: a basic
reward and an additional reward. The basic reward is given when the agent predicts a correct tag for
a word in the given text, and the additional reward is given when the agent predicts a correct tag for
the word that represents a special action type. The reward of our agent is calculated as the following
equation:

R =
{
αrb + ra if current word represents a special action type
αrb otherwise

(11)

where rb in the equation represents the basic reward and the ra in the equation represents the additional
reward. The α in the equation is a factor that is different for different types of action.

3.5 Training

To learn the parameters ω1 and ω2 of the two models, we first store transitions 〈s, tag, r, s′〉 and
〈ŝ, tag, r, ŝ′〉 in replay memory Ω and Ω̂ respectively and exploit a mini-batch strategy. where s is the

https://doi.org/10.15837/ijccc.2021.2.4115 7

state representation for action names extraction model F1 and ŝ is the state representation for action
arguments extraction model F2.

Algorithm 1 shows the process that how to train the action names extraction model F1. If we
want to train the action arguments extraction model F2, we only need to replace s, Ω and ω1 with ŝ,
Ω̂ and ω2.

We are able to build the Q-function Q(s, tag;ω1), an expectation of reward value to be obtained
after the tag is selected at state s with Algorithm 1. We update our Q-function by the Temporal-
Difference (TD) algorithm during training :

Q(st, tagt, ω1)←Q(st, tagt, ω1) + α(rt+1 + γmax
tag
Q(st+1, tag, ω1)−Q(st, tagt, ω1)) (12)

where the right-side Q(st, tagt, ω1) is the current tag-value, α is learning ratio, γ is a discount factor,
and maxtagQ(st+1, tag, ω1) is a maximum estimated tag-value for state s_t+1. First, our agent
predicts a sequence of tag = (tag1, tag2, ..., tagn) for a text by maximizing the Q-function. Then we
can use this tag sequence to generate action names and use the action names to build Q(ŝ, tag;ω2)
with the replay memory Ω̂ and the same approach as Algorithm 1. Finally, we can use the words
extracted by these models to compose the action sequences that robots can execute.

Algorithm 1 Algorithm for extracting action names from text
Input: training set D
Output: the weights ω1
Initialize replay memory Ω
Initialize evaluate network with random weights ω1
Initialize the target network with weights ω−1 = ω1
Initialize the number of epoch to be H
Initialize the number of time step of every epoch to be N
Initialize the number of time step that reset the target network’s weights to be C
for epoch = 1 to H do

for each text X ∈ Φ do
Generate the initial state s1 based on X
for τ = 1 to N do
With probability ε select a random tag tagτ
Otherwise select tagτ= argmaxtagQ(sτ , tag;ω1)
Perform tagτ on sτ to generate sτ+1 and calculate reward rτ
Store transition (sτ ,tagτ ,rτ ,sτ+1) in Ω
Sample a minibatch of transitions (sj ,tagj ,rj ,sj+1) from Ω
Set
yj = {

rj if s_j+1 is terminal state
rj + γmaxtag′Q(sj+1, tag

′;ω1) otherwise

Update ω1 based on loss function L(ω1) = E(s_t,tag_t,r_t+1,s_t+1)∈Ω[(yj −Q(st, tagt;ω1))2]
Every C steps reset ω−1 = ω1

end for
end for

end for
return The weights ω1

4 Experiments
We evaluated our agent on three datasets, i.e., "Microsoft Windows Help and Support" (WHS)

documents, and two datasets labeled by [9]. The details of these datasets are presented in Table 1.

https://doi.org/10.15837/ijccc.2021.2.4115 8

For evaluation, we first feed texts to models to predict a sequence of Tag = (tag1, tag2, ..., tagn). We
then compare the predicted tag of each word to its corresponding annotation. We use #Num_Truth
for representing the number of words which are action names or action arguments according to the an-
notations in datasets, #Num_Tagged for representing the number of words tagged as an action name
or action argument by our models, and #Num_Right for representing the number of words tagged cor-
rectly by our models. Finally, we compute metrics: precision = #Num_Right

#Num_Tagged , recall = #Num_Right
#Num_Truth ,

F1 = 2×precision×recall
precision+recall .

Table 1: Details of our datasets
WHS CT WHG

Num. texts 154 116 150

Average length of texts 49.98 209.34 417.17

Vocab size 791 2885 7367

Action name rate(%) 19.47 10.37 7.61

Action argument rate (%) 15.45 7.44 6.30

In order to evaluate the effect of the attention mechanism on our experimental results, we use
LSTM networks with self-attention mechanism, feed-forward mechanism, and no attention mechanism
to build our action names extraction model and action arguments extraction model. We use the
following symbols to represent these approaches.

• Agent-N: An agent builds its action names extraction model and action arguments extraction
model based on BiLSTM only.

• Agent-F: An agent builds its action names extraction model and action arguments extraction
model based on BiLSTM and feed-forward attention mechanism [23].

• Agent-S: An agent builds its action names extraction model and action arguments extraction
model based on BiLSTM and self-attention mechanism.

Then we compare these models with EASDRL, a DQN agent presented by [9] that builds its action
names extraction model and action arguments extraction model based on CNN.

The input dimension for action names extraction model is set to be (100 × 4) and for action
arguments extraction model is set to be (400 × 3), the batch size to be 32. The output shape of the
forward-LSTM layer and backward-LSTM layer are set to be 256. And two CNN layers with kernels
of size 1×3 and two fully-connected layers with the size of 512×256 and 256×2 are used. We adopt
the NAdam optimizer [24] with learning rate 0.001 and the ReLU activation for all layers. The size
of replay memory was set to be 50000, discount factor γ to be 0.9.

As experimental results shown in Table 2, we can see that our agent can perform better than the
EASDRL, a DQN agent based on CNN, on both action names extraction task and action arguments
extraction task. We can also see that the agent with attention mechanism performs better than all
tasks especially for the action arguments extraction task of the Cooking dataset and the Wikihow
dataset. As the average length of texts shown in Table 1, we can know that our agent with attention
mechanism can process long texts better than the agent without attention mechanism. Besides, we
use the Word_ind to represent a word in the instructions instead of the word vector used in the state
representation of [9], which reduces the cost of time in processing training data.

In order to observe the influence of model complexity on our experimental results, we vary the
output shape of the LSTM layer from 128 to 512 with other parameters fixed. Results are shown in
Figure 4. As shown in Figure 4 (a), we can see that the performance of the action names extraction
model can be improved obviously when the output shape of the LSTM layer is increased from 128 to
256, especially for the Wikihow dataset. And it has a little improvement when the output shape of

https://doi.org/10.15837/ijccc.2021.2.4115 9

Table 2: F1 scores of different models in extracting action names and action arguments
Action Names Action Arguments

Method WHS CT WHG WHS CT WHG

EASDRL 93.46 84.18 75.40 95.07 74.80 75.02

Agent-N 97.25 86.31 76.76 95.47 79.88 74.67

Agent-F 97.75 86.44 79.09 95.55 80.49 75.95

Agent-S 98.37 88.98 81.15 95.59 81.65 75.77

the LSTM layer is increased from 256 to 512. For the action arguments extraction task, increasing
the output shape of the LSTM layer has little effect on the results as shown in Figure 4 (b).

Gated recurrent units (GRU) [25] is a novel approach that is proposed to solve the problem of
long-range dependencies. Compared with LSTM, GRU is able to get similar results with LSTM but
it is computationally cheaper. In order to observe the performance of the GRU-based agent in our
experiment, we build an agent based on BiGRU and self-attention mechanism and compared the
performance with the agent based on BiLSTM and self-attention mechanism. F1 scores of the two
agents are shown in Table 3.

128 256 512
Output shape of LSTM

70

75

80

85

90

95

100

F1

F1 of Action Names Extraction

win2k
cooking
wikihow

(a)

128 256 512
Output shape of LSTM

70

75

80

85

90

95

100

F1

F1 of Action Arguments Extraction

win2k
cooking
wikihow

(b)

Figure 4: F1 Scores of Action Names Extraction Task and Action Arguments Extraction Task of Three
Datasets

Table 3: F1 scores of LSTM-based and GRU-based models in extracting action names and action
arguments

Action Names Action Arguments

Method WHS CT WHG WHS CT WHG

BiLSTM+Self-Attention 98.37 88.98 81.15 95.59 81.65 75.70

BiGRU+Self-Attention 97.78 86.04 76.67 95.64 79.72 76.47

We also compare the F1 scores and loss values of extracting action names task for the Cooking
dataset. The results are shown in Figure 5. The Train_text_ind in Figure 5 (a) and Figure 5 (b) is
the number of the instructions that have been fed in the action names extraction model. According
to Figure 5 and Table 3, we can see that the GRU-based models can be trained more quickly than the
LSTM-based models in our experiments, but as the F1 scores of action names extraction task shown
in Table 3, we can see that the LSTM-based agent is able to perform better than the GRU-based agent
when the instruction is long. For the action arguments extraction task, it doesn’t have an obvious
difference between the LSTM-based agent and GRU-based agent.

https://doi.org/10.15837/ijccc.2021.2.4115 10

0 10 20 30 40 50 60 70 80
Train_text_ind

0.0

0.2

0.4

0.6

0.8
F1

F1 Scores of GRU-based Agent and LSTM-based Agent of Cooking Dataset

GRU
LSTM

(a) F1

0 20 40 60 80
Train_text_ind

0

200

400

600

800

1000

1200

1400

Lo
ss

GRU
LSTM

(b) Loss

Figure 5: F1 Scores and Loss Values of Action Names Extraction Task of Cooking Dataset

5 Conclusion
Barrier-free communication with doctors is an important development trend of medical robots in

the future. Thus, it is crucial for medical robots to understand the natural language instructions given
by doctors and execute them correctly. In this paper, a DQN agent based on LSTM and attention
mechanism is presented to extract executable action sequences for the medical service robots. An
action names extraction model and an action arguments extraction model with the same structure
are built, and the whole action sequences are composed of the action names and action arguments
extracted by them. The experimental results show that the agent presented by this paper can perform
better than the similar agents proposed by previous work. Especially because of the application of
LSTM and attention mechanism, our agent has a better ability to learn the long-range dependencies.
Thus, compared with the previous works, the performance of the agent presented in this paper has a
significant improvement when the given instructions are long.

Pre-training language models such as ConvBERT and ELECTRA presented recently have shown a
significant improvement in language understanding than traditional methods based on LSTM or RNN
with attention mechanisms. So in future work, we will attempt the combination of deep reinforcement
learning and pre-training language models to improve the performance of our agent.

Acknowledgment
This work was supported by the Key Research and Development Program of Hebei Province

Grant No.18210336 and Qinhuangdao City Science, Technology Research and Development Plan Grant
No.202003B043 and Xinjiang Uygur Autonomous Region University Scientific Research Project (Key
Natural Science Project), XJEDU2021I029. The authors also gratefully acknowledge the helpful com-
ments and suggestions of the reviewers, which have improved the paper.

References
[1] BĂJENARU, L.; Marinescu, I. A.; Dobre, C.; DRĂGHICI, R.; Herghelegiu, A.

M.; Rusu, A. (2020). Identifying the Needs of Older People for Personalized Assis-
tive Solutions in Romanian Healthcare System. Studies in Informatics and Control, DOI:
https://doi.org/10.24846/v29i3y202009. ISSN 1220-1766, 29(3), 363-372, 2020.

[2] Bastianelli, E.; Castellucci, G.; Croce, D.; Iocchi, L.; Basili, R.; Nardi, D. (2014). HuRIC: a
Human Robot Interaction Corpus. Proceedings of the 9th International Conference on Language
Resources and Evaluation, 4519-4526, 2014.

[3] Mensio, M.; Bastianelli, E.; Tiddi, I.; Rizzo, G. (2020). Mitigating Bias in Deep Nets with Knowl-

https://doi.org/10.15837/ijccc.2021.2.4115 11

edge Bases: the Case of Natural Language Understanding for Robots. AAAI Spring Symposium:
Combining Machine Learning with Knowledge Engineering, 1, 1-9, 2020.

[4] Kaelbling, L. P.; Littman, M. L.; Moore, A. W. (1995). An introduction to reinforcement learning.
The Biology and Technology of Intelligent Autonomous Agents. Springer, Berlin, Heidelberg, 90-
127, 1995.

[5] Shi, H.; Li, X.; Hwang, K. S.; Pan, W.; Xu, G. (2016). Decoupled visual servoing with fuzzyQ-
learning. IEEE Transactions on Industrial Informatics, 14(1), 241-252, 2016.

[6] Shi, H.; Shi, L.; Xu, M.; Hwang, K. S. (2020). End-to-End Navigation Strategy With Deep
Reinforcement Learning for Mobile robots. IEEE Transactions on Industrial Informatics, 16(4),
2393-2402, 2020.

[7] Shi, H.; Lin, Z.; Hwang, K. S.; Yang, S.; Chen, J. (2018). An adaptive strategy selection method
with reinforcement learning for robotic soccer games. IEEE Access, 6, 8376-8386, 2018.

[8] Shi, H.; Lin, Z.,;Zhang, S.; Li, X.; Hwang, K. S. (2018). An adaptive decision-making method
with fuzzy Bayesian reinforcement learning for robot soccer. Information Sciences, 436, 268-281,
2018.

[9] Feng, W.; Zhuo, H. H.; Kambhampati, S. (2018). Extracting action sequences from texts based on
deep reinforcement learning. Proceedings of the 27th International Joint Conference on Artificial
Intelligence, 4064-4070, 2018.

[10] Hochreiter, S.; Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-
1780, 1997.

[11] Branavan, S. R.; Chen, H.; Zettlemoyer, L. S.; Barzilay, R. (2009). Reinforcement Learning for
Mapping Instructions to Actions. Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural Language Processing of the
AFNLP, 82-90, 2009.

[12] Fillmore, C. J. (2006). Frame semantics. Cognitive linguistics: Basic readings, 34, 373-400, 2006.

[13] Qin, L.; Yu, N.; Zhao, D. (2018). Applying the Convolutional Neural Network Deep Learning
Technology to Behavioural Recognition in Intelligent Video. Tehnicki vjesnik-Technical Gazette,
DOI: 10.17559/TV-20171229024444. 25(2), 528-535, 2018.

[14] Afify, H. M.; Mohammed, K. K.; Hassanien, A. E. (2020). Multi-Images Recognition of Breast
Cancer Histopathological via Probabilistic Neural Network Approach. Journal of System and
Management Sciences, 1(2), 53-68, 2020.

[15] Dumitrescu, C. M.; Dumitrache, I. (2019). Combining Deep Learning Technologies with Multi-
Level Gabor Features for Facial Recognition in Biometric Automated Systems, Studies in Infor-
matics and Control, DOI:https://doi.org/10.24846/v28i2y201910, 28(2), 221-230, 2019.

[16] Vaswani A; Shazeer N; Parmar N, et al. (2017). Attention is all you need. Advances in neural
information processing systems, 5998-6008, 2017.

[17] Devlin, J.; Chang, M. W.; Lee, K.; Toutanova, K (2019). Bert: Pre-training of deep bidirectional
transformers for language understanding. Proceedings of the 2019 Conference of the NorthAmer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
1, 4171–4186, 2019.

[18] Li, Y.; He, J.; Zhou, X.; Zhang, Y.; Baldridge, J. (2020). Mapping Natural Language Instructions
to Mobile UI Action Sequences. arXiv preprint arXiv:2005.03776, 2020.

https://doi.org/10.15837/ijccc.2021.2.4115 12

[19] Azaria, A.; Srivastava, S.; Krishnamurthy, J.; Labutov, I.; Mitchell, T. M. (2020). Mitchell.
An agent for learning new natural language commands. Autonomous Agents and Multi-Agent
Systems, 34(1), 6, 2020.

[20] Zhuo, H. H.; Feng, W.; Xu, Q.; Yang, Q.; Lin, Y. (2019). Federated reinforcement learning. arXiv
preprint arXiv:1901.08277, 2019.

[21] Kumar, G.; Foster, G.; Cherry, C.; Krikun, M. (2019). Reinforcement Learning based Curricu-
lum Optimization for Neural Machine Translation. Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, 1, 2054-2061, 2019.

[22] Shi, Z.; Chen, X.; Qiu, X.; Huang, X. (2018). Toward diverse text generation with inverse rein-
forcement learning. Proceedings of the 27th International Joint Conference on Artificial Intelli-
gence, 4361-4367, 2018.

[23] Raffel, C.; Ellis, D. P. (2016). Feed-forward networks with attention can solve some long-term
memory problems. International Conference on Learning Representations, 2016.

[24] Dozat, T. (2016). Incorporating Nesterov Momentum into Adam. International Conference on
Learning Representations, 1, 2013–2016, 2016.

[25] Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. (2014). Empirical evaluation of gated recurrent
neural networks on sequence modeling. CoRR abs/1412.3555, 2014.

Copyright ©2021 by the authors. Licensee Agora University, Oradea, Romania.
This is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonCommercial 4.0 International License.
Journal’s webpage: http://univagora.ro/jour/index.php/ijccc/

This journal is a member of, and subscribes to the principles of,
the Committee on Publication Ethics (COPE).

https://publicationethics.org/members/international-journal-computers-communications-and-control

Cite this paper as:
Andonie, R.; Dzitac, I. (2021). How to Write a Good Paper in Computer Science and How Will It
Be Measured by ISI Web of Science, International Journal of Computers Communications & Control,
15(5), 4115, 2021.

https://doi.org/10.15837/ijccc.2021.2.4115

	Introduction
	Related Work
	Deep Learning-Based Methods
	Reinforcement Learning-Based Methods

	Our Agent
	Word Embedding
	State
	Our Deep Q-network
	Reward
	Training

	Experiments
	Conclusion

