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Abstract

Natural Calamities like floods cause wide-range of damage to human existence as well as sub-
structures. For automatic extraction of flooded area in multi-temporal satellite imagery acquired
by Sentinel-1 Synthetic Aperture Radar (SAR), this paper presents two neural network algorithms:
Feed-Forward Neural Network, Cascade-forward back-propagation neural network. This work cur-
rently focuses on Uttar Pradesh in India, which was affected due to floods during August 2017.
The two models are trained, validated and tested using MATLAB R2018b. The models are first
trained using a variety of input data until the percentage of error with respect to water body detec-
tion is within an acceptable error limit. These models are then used to extract the water features
effectively and to detect the flooded regions. Finally, flood area is calculated in sq. km in during
flood and post-flood imagery using these algorithms. The results thus obtained are compared with
that from the binary thresholding method from previous studies. The results show that the Feed-
Forward Neural Network gives better accuracy than the Cascade-forward back propagation neural
network. Based on the promising results, the proposed method may assist in our understanding of
the role of machine learning in disaster detection.
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1 Introduction
Environmental calamities caused by weather variations can source above $500 billion damages [47]

impacting humans, substructures and earth’s atmosphere [19, 28]. Floods are one of the recurrently
befalling environmental disasters [27]. The momentary enclosing of terrestrial by water which is not
usually enclosed by water is termed as ‘flood’ which is stated by the European Union (EU) floods decree
[46]. During monsoon season, substantial ejection commencing from watercourses sources extensive
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range floods [2]. When a river catchment obtains water from rain, unfreezing snowflakes or snow
beyond its capacity [46], river or rivirine overflowing generally befalls [27].

Over the preceding limited centuries, the Indian Himalayan expanse oversaw unparalleled flooding,
aimed at the case in point Ganga River Floods in 2010 [3], Brahmaputra Floods in 2012 [5], and
Jhelum Floods in 2014 [4]. Dense shower aimed at an extended period and massive input of water
from upstream sources trigger floods [26]. The flood data can be sourced from in-situ, aerial or satellite
imagery [17]. The flood level determined via in-situ can remain impractical, imprecise and expensive
[6]. Despite being pricey towards attaining the airborne images, they also have limited spatial and
temporal resolution [9]. The gauge stations extent the water elevation but not the level of flood
[19]. The satellite broadcasting images define the level of flooding above huge terrestrial zones casing
unreachable extents in recurrent interludes of period [3]. When the flood event occurs, the satellite
can be programmed to collect the flooded area information. It also facilitates a long-lasting record
and retrieval of such data [31].

2 Literature review
Flood detection using remote sensing imagery comprises of information collecting, data extraction

and examination, managing and integration using additional information bases as well as statistics
constancy. Asia is extremely inflated with respect to large-scale natural disasters in comparison to
other continents over the preceding eras, according to universal statistics [35].Of the global aggregate,
disasters occurring in Asia comprise 39% [18]. Numerous researchers in literature have presented var-
ious approaches for water body extraction from multi-sensor remote sensing images and have utilized
this retrieved information to depict water distribution, often termed as ‘inundation‘detection, ‘water
mask’ derivation, ‘or ‘water body’ or ‘flood mask’ extraction [21]. The water bodies can either be
permanent water surfaces such as lakes, ponds, rivers, etc., or temporarily inundated areas. However,
all the temporarily inundated wetland areas cannot be addressed as flooded. The term “flood” is usu-
ally used, if the temporarily inundated wetland area is impacting the livelihood of mankind, causing
damage to the infrastructure, etc., Flood is a dramatic and one of the recurring natural disasters which
affects several areas in the world often causing loss of lives and damage to properties [10]. Precise
flood mapping is imperative to flood impact assessment and disaster management.

Satellite imagery can capture massive surface ground area in a single image [1]. Hence flood
detection using satellite imagery is the most sought after method. Challenges exist in the derivation
of water surface from both optical as well as microwave data [21]. Most authors prefer to derive ‘water
mask’ from optical data such as those from MODIS, IKONOS, QUICKBIRD, SPOT, Sentinel-2A/2B,
Landsat and AWiFS [24] and AVHRR/3. Derivation of water surface using optical data is hindered
by the fact that the earth’s surface imagery cannot be acquired during cloud-coverage. This is one of
the main drawbacks, as the cloud cover is ubiquitous during rainy season, and often prevails during
flood situations [24]. However, if the image acquired is not impeded by the cloud cover, optical data
enables derivation of water surfaces, including characteristics related to water, such as turbidity [13],
dissolved colored organic content [7], and water depth in clear and shallow water areas [21]. These are
impossible to achieve using the microwave data [8, 15, 21].

Several authors and studies have determined that [21] remote sensing Synthetic Aperture Radar
(SAR) imagery is a beneficial source of information for water detection during occurrence of floods [10]
based on sensors such as RADARSAT-1/2, COSMO-SkyMed, Sentinel-1A/1B/1B , ALOS PALSAR,
ENVISAT ASAR and TerraSAR-X(TSX) [21, 24]. Smooth water or calm body of water appears very
distinct in SAR imagery hindering diffuse reflection [21]. The ground surface which is covered by
smooth water yields very low to no backscattering, and thus it appears as very dark to purely black
regions in SAR imagery. Due to its longer wavelength, the microwaves can penetrate through clouds,
rain droplets, water vapor, and aerosol layers. This allows for observation by the SAR sensors even
during cloud-covered conditions. No matter which sensor, remote sensing is the best tool for water
detection [21]. The extracted ‘water mask’ can be concluded as either temporarily inundated wetland
area or severe flood, usually based on the additional information such as loss of human lives, agriculture
crops damages, roads and building damages etc., Prompt action is imperative to successfully manage
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natural disasters like floods [1].
In the literature, the authors have mainly focussed on change detection occurring due to disasters,

depending only on sensors [32] and used the suitable image processing techniques [22] such as image
algebra (band differencing and band rationing) [30], post-classification comparison and object-based
change detection method [11]. In recent years researchers are focusing on machine learning techniques
for accurate automatic detection of the disaster region compared to the normal methodologies adapted
previously [1, 10]. Due to the frequent occurrence of natural disasters, detection of the disaster area has
gained a great attention [10]. Artificial Neural Networks (ANNs) are excellent tools that are capable
of finding meaningful solutions to the engineering problems which are too complex for the human
programmers to teach the machine to recognize the patterns [10, 33]. Even when the input data is
incomplete and contains errors, ANNs give solutions by learning and generalizing from examples and
experience. Different types of neural networks can be created by giving different types of connections
among the nodes. However, the most common type of connection is the layered connection i.e.,
with input, hidden and output layers. In order to improve the accuracy of water-body detection, in
this study, two different ANN approaches are implemented namely Feed-forward Neural Network and
Cascade-forward back-propagation neural network for detection of the disaster region using multi-
temporal Sentinel-1 satellite imagery acquired before, during and after occurrence of floods in August
2017.

3 Study area and data used
This section discusses the study area and the data set used in the study of flood area detection.

The Sentinel-1 SAR data captured during August 2017 floods in the state of Uttar Pradesh, India
throw light on water body extent and flooded area [22]. The study area chosen corresponds to few
districts of Uttar Pradesh, India where River Rapti merges into River Ghaghara. The location map
of the study area is shown in the Figure 1. Geographically the study area lies between 83◦14’ 52.07”
East to 84◦10’ 25.78” East latitude and 26◦0’ 38.89” to 26◦45’ 45.21” North longitude. Uttar Pradesh

Figure 1: Location map of the study area (Source: Google map)

is one of the states in India affected by rivirine floods almost every year. Rivirine or fluvial flooding
occurs when excessive rainfall over an extended period of time causes a river to exceed its capacity
[20]. Uttar Pradesh state lies in the Northern part of India and it falls within the periphery of "Indian



https://doi.org/10.15837/ijccc.2020.3.3616 4

Flood Prone Areas" [42]. Heavy rains occur during the summer monsoon from June to September and
the glaciers provide their greatest amount of water to the rivers during the same period [43]. Due to
heavy rainfall in August 2017, river flooding has affected around 3097 villages in 24 districts of Uttar
Pradesh state in India [41].

River levels increased after heavy rainfall on 10th August 2017 in parts of the Uttar Pradesh state
and river catchments in Nepal. This has resulted in devastating floods over the following days. As
per the media report on 25th August 2017, owing to the pressure exerted by overflowing Rivers Rapti,
Rohini and Ghaghara, two dams were damaged in the Gorakhpur district of Uttar Pradesh, India [44].
This has worsened the flood situation. River Rapti is a tributary of Ghaghara River and Ghaghara
River is one of the main left bank tributaries of River Ganga. According to CWC (Central Water
Commission) reports, various Rivers were reported to be in spate due to rise in the water level, thus
causing flood in many districts of Uttar Pradesh [2]. According to National Disaster Response Force
(NDRF) reports, Gorakhpur is one of the most affected districts.

For flood detection and comparison, three categories of SAR images acquired by Sentinel-1 at
different intervals were used in this study. One is pre-flood image (refer Table 1) and the next category
is during-flood images (refer Table 2, Table 3 & Table 4) and the third category is post-flood image
(refer Table 5).

Table 1: Imaging information from Sentinel-1 used in this study (Dataset1)
Product name S1B_IW_GRDH_1SSV_20170211T001858

_20170211T001924_004245_0075C7_5879.SAFE
Satellite Sentinel-1B
Beam/Mode Interferometric Wide (IW) swath
Product type Ground Range Detected (GRD)
Resolution class High (H)
Processing level 1
Product class Standard (S)
Polarization Single VV (SV)
Start Date/Time 11th of February 2017 at 00:18:58
Stop Date/Time 11th of February 2017 at 00:19:24
Pass Descending
Pixel * pixel spacing 10m * 10m
Polarization Vertical Transmit-Vertical Receive (VV)

Table 2: Imaging information from Sentinel-1 used in this study (Dataset2)
Product name S1A_IW_GRDH_1SDV_20170813T122948

_20170813T123013_017905_01E071_F531.SAFE
Satellite Sentinel-1A
Beam/Mode Interferometric Wide (IW) swath
Product type Ground Range Detected (GRD)
Resolution class High (H)
Processing level 1
Product class Standard (S)
Polarization Dual VV+VH (DV)
Start Date/Time 13th of August 2017 at 12:29:48
Stop Date/Time 13th of August 2017 at 12:30:13
Pass Ascending
Pixel * pixel spacing 10m * 10m
Polarization Vertical Transmit-Vertical Receive (VV)



https://doi.org/10.15837/ijccc.2020.3.3616 5

Table 3: Imaging information from Sentinel-1 used in this study (Dataset3)
Product name S1A_IW_GRDH_1SDV_20170825T122949

_20170825T123014_018080_01E5C1_50D7.SAFE
Satellite Sentinel-1A
Beam/Mode Interferometric Wide (IW) swath
Product type Ground Range Detected (GRD)
Resolution class High (H)
Processing level 1
Product class Standard (S)
Polarization Dual VV+VH (DV)
Start Date/Time 25th of August 2017 at 12:29:49
Stop Date/Time 25th of August 2017 at 12:30:14
Pass Ascending
Pixel * pixel spacing 10m * 10m
Polarization Vertical Transmit-Vertical Receive (VV)

Table 4: Imaging information from Sentinel-1 used in this study (Dataset4)
Product name S1A_IW_GRDH_1SDV_20170828T001939

_20170828T002004_018116_01E6D5_AB09.SAFE
Satellite Sentinel-1A
Beam/Mode Interferometric Wide (IW) swath
Product type Ground Range Detected (GRD)
Resolution class High (H)
Processing level 1
Product class Standard (S)
Polarization Dual VV+VH (DV)
Start Date/Time 28th of August 2017 at 00:19:39
Stop Date/Time 28th of August 2017 at 00:20:04
Pass Descending
Pixel * pixel spacing 10m * 10m
Polarization Vertical Transmit-Vertical Receive (VV)

Table 5: Imaging information from Sentinel-1 used in this study (Dataset5)
Product name S1A_IW_GRDH_1SDV_20170909T001939

_20170909T002004_018291_01EC31_DF22.SAFE
Satellite Sentinel-1A
Beam/Mode Interferometric Wide (IW) swath
Product type Ground Range Detected (GRD)
Resolution class High (H)
Processing level 1
Product class Standard (S)
Polarization Dual VV+VH (DV)
Start Date/Time 09th of September 2017 at 00:19:39
Stop Date/Time 09th of September 2017 at 00:20:04
Pass Descending
Pixel * pixel spacing 10m * 10m
Polarization Vertical Transmit-Vertical Receive (VV)
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The pre-flood and the post-flood images help in the overall flood assessment. Comparing the pre-
flood image with the during-flood images helps to evaluate the flood until that point in time. The
Sentinel-1 is a C-band SAR instrument operating at a central frequency of 5.404 GHz [39]. Sentinel
1A and 1B are near-polar, sun-synchronous orbit satellites with a revisit cycle of 12-days [37]. With
both these satellites operating the revisit cycle comes down to 6 days [37]. Sentinel-1 data products
are distributed by European Space Agency (ESA) using a Sentinel-specific variation of the Standard
Archive Format for Europe (SAFE) format specification [38]. The images used are Level-1 multi-looked
and Ground Range Detected (GRD) [40] high resolution data products projected to ground range
using the Earth ellipsoid model WGS84 (World Geodetic System) [36]. All the images are acquired
in Interferometric Wide (IW) swath mode with same spatial and spectral resolutions on different
dates and are of Vertical Transmit-Vertical Receive (VV) polarization. In the following sections, the
methodological background and design of the two machine learning approaches are presented.

4 Methodology
The objective of this work is to extract the water layer and flooded area from the satellite imagery

acquired by Sentinel-1 using neural network algorithms. In recent years, many researchers have been
implementing machine learning algorithms for accurate automatic detection of the disaster region
instead of normal methodologies like image differencing, image algebra, post-classification comparison
and object-based change detection [1]. Two different neural network algorithms namely Feed-Forward
Neural Network and Cascade-forward back-propagation neural network are implemented in this work
for detection of the flood region using multi-temporal satellite imagery acquired before, during and
after occurrence of floods. All the images are acquired with same spatial and spectral resolutions on
pre-flood, during flood and post flood dates.

A visual check is carried out on each collected sample flood imagery in order to determine the
visibility of flooding [14]. For flood inundation mapping, the pre-processing steps like sub-setting,
geometric rectification and speckle noise removal were carried out by creating a batch processing in
Erdas imagine tool. Batch processing allows processing chain by creating a graph and can be applied
on the set of images. Sub-setting of the image is carried by selecting the Area of Interest (AoI) around
the river where the flooding has occurred, to reduce the process time. Geometric rectification was
performed by designating the pre-flood image captured on 11th February 2017 as the master image
and other images as the sensed images. It is a crucial step in change detection applications. It is the
mechanism of geometrically aligning multiple images of the same scene into a single integrated image
[12]. Speckle noise is a random noise and is one of the inherent characteristic of the SAR imagery
which reduces the quality of the image [23, 24, 25]. Hence applying filtering techniques for suppression
of this kind of noise and obtaining a smoother image is a typical pre-processing step, to improve the
results in later stages of processing [12, 24].Various techniques have been proposed in the literature to
diminish this kind of noise. This study uses 3 x 3 kernel size median filter, as it achieves better noise
reduction by preserving the image details [23, 24, 25].

The proposed system mainly consists of three stages namely training phase, validation phase and
testing phase. For this study, the focus is on the floods that occurred on August 2017 in Uttar Pradesh,
India. The data set is divided into 60:40 i.e., 60% of data for training and in the remaining 40% of
data, 20% is used for validation and 20% for the testing. In neural networks, for obtaining better
results, the model needs to be first trained with labeled data.

4.1 Training phase

In the training phase, the system is made to learn the features and characteristics of the disaster
impacted geographical area. Neural networks can be trained to solve problems that are difficult for
conventional computers or human beings. The training phase of the neural network is shown in Figure
2. In the training phase, the user provides the inputs manually and trains the system. The system
will learn the features that the user provides. When a new input is given to the system during testing
phase, it can recognize the features automatically with better precision. The training set is used to
build the model. This contains a set of data that has pre-classified target and predictor variables.
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Figure 2: Training Phase of the Neural Network

The Feed-Forward Neural Network and Cascade-forward back-propagation neural network are
implemented using MATLAB R2018b with sigmoid hidden neurons and linear output neurons as
shown in the Figure 3 and Figure 4 respectively. Feed-Forward Neural Network and Cascade-forward
back-propagation neural network are classes of multi-layer neural networks, which consist of series of
layers called input, hidden and output layers. The information of the neural network will be stored
in the form of weights and bias. The extracted features are given as input labelled data to the neural
network for training. The network will be trained by adjusting the weights w0, w1, w2, ... , w15 in the
hidden layer so that the error or the difference between the output produced in the output layer and
the desired output is minimal. The number of neurons in hidden layer is fixed to 15 in the designed
neural networks (refer Figures 3 & 4 ). There is a trade-off between time and accuracy. As the number
of neurons in the hidden layer increase, the training will be good but it takes more time. Based on
the application, the number of neurons should be decided, so that time taken is less and accuracy is
more. Each neuron in the hidden and output layers will have weight and bias. In the learning process
of neural network, weights are modified to correct the output. By using Levenberg-Marquardt back-
propagation training algorithm the system is trained [16, 29, 34]. This training algorithm requires
more memory but less time. The training algorithm automatically stops training the neural network,
when generalisation stops improving which is indicated by an increase in the Mean Square Error
(MSE) of the validation samples.

Figure 3: Feed-Forward Neural Network

Figure 4: Cascade-forward back-propagation neural network

Training stage is very crucial in machine learning, as in this phase the model adjusts according to
the errors. In the training phase, the system will learn all the features and characteristics from the
input data sets the user provides i.e., tunes itself to the quirks of the training data sets. Input labeled
data set is created by extracting and classifying the features present in the Sentinel-1 SAR satellite
imagery. The extraction and classification of features is done by applying the binary thresholding
method [24, 45]. While selecting the threshold limit, care should be taken so that, it does not falsely
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classify the water as non-water and vice versa. Threshold T is set as 42, permits separation of the
features present in the Sentinel-1 satellite imagery into two classes.

• Pseudocode:

For preparing training data
Step 1: Load the dataset
Step 2: Check the pixel values of the image manually and apply binary thresholding method

if (DN < = T) => water; otherwise non-water.
Where, DN represents Digital Number or pixel value in SAR image, T is threshold
limit/value

Step 3: Generate labeled data file of the image i.e., defined the features as water/non-water
with respect to DN values of the image

For training the neural network
Step 1: Initialize the weights with adequate values; Input is taken from the training data

and the input is formatted as {input, target}
Step 2: Calculate the error from the difference between output and target
Step 3: Calculate the weight updates
Step 4: Adjust the weights to reduce the error
Step 5: Repeat Steps 2 to 4 for all training data i.e., iterate
Step 6: Repeat steps 2 to 5 until the error reaches acceptable level i.e., till the best model

is found

4.2 Validation phase

After training the model and before going for testing, the model is validated using hold-out dataset
or validation set i.e., the data set is used to compare the performances of the prediction algorithms
that were created based on the training set. This phase facilitates early detection and correction of
errors in the model to ensure accurate results in timely way and for choosing the algorithm that has
the best performance.

4.3 Testing phase

Typically a hold-out dataset or test set is used to evaluate how well the model does with data
outside the training set. The test set contains the pre-classified results data but they are not used when
the test set data is run through the model until the end, where the pre-classified data are compared
against the model results. The model is adjusted to minimize error on the test set.

5 Experimental Results

5.1 Training phase

In this work, the following two different types of machine learning algorithms are implemented
using MATLAB R2018b for water surface extraction from Sentinel-1 satellite data:

• Feed-Forward Neural Network

• Cascade-forward back-propagation neural network

The objective of the neural network is to transform the inputs into meaningful outputs. Neural
networks are composed of simple elements called nodes operating in parallel [45]. Connections or
weights between the nodes largely determine the network function. Typically, neural networks are
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trained to perform a particular function by adjusting the values of the weights between nodes so that
a particular input leads to a specific target output [10]. Figure 3 and Figure 4 illustrate such a network
design, consisting of an input layer, hidden layer and an output layer. Here, the network is adjusted,
based on a comparison of the output and the target, until the network output matches the target.
Typically, many varieties of inputs are required to train a network.

The images selected for the flood area detection in this study are the microwave images captured
by Sentinel-1and are shown in the Figures 5 (a), (b), (c),(d) & (e). Due to diffuse reflection property,
the smooth water pixels appear dark and due to specular reflection property, non-water pixels appear
bright in the microwave images (refer Figures 5 (a), (b), (c), (d) & (e)). The input data is sent to the
training modules of Feed-Forward Neural Network, Cascade-forward back-Propagation neural network.
The training process generates models which can classify the test images. The average training time
of the Feed-Forward Neural Network is 3.5 seconds and for Cascade-forward back-propagation neural
network is 1.2 seconds as shown in Figure 6.

Figure 5: (a), (b), (c), (d) & (e) - Input images acquired on 1st February, 13th August, 25th August,
28th August and 9th September respectively

For training the network, the labeled input data is prepared by applying the binary thresholding
technique. In the training phase, the neural networks are trained with Levenberg-Marquardt back
propagation algorithm by giving the labeled data, desired output as inputs to the input layer [45].
The number of iterations depends on the performance of the network. Feed-Forward Neural Network
is trained with 35 epochs and Cascade-forward back-propagation neural network is trained with 19
epochs as shown in training state plots (refer Figures 7 (a) & (b)). Gradient Descent is an iterative
optimization algorithm used in machine learning to find the best results (minima of a curve).The
iterative quality of the gradient descent helps an under-fitted graph to make the graph fit optimally to
the data. The Gradient descent has a parameter called learning rate. The process of learning Neural
Network is called learning rule. An epoch is the number of iterations over the data set in order to
train the neural network. Passing full dataset multiple times to the same neural network is iteration.
To optimize the learning, the network is trained with scaled conjugate gradient back propagation.
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Gradient Descent is an iterative process. Therefore, updating the weights with single pass or one
epoch is not enough. As the number of epochs increases, number of times the weights are changed in
the neural network increases and the curve goes from under fitting to optimal to over fitting curve.
The number of epochs is related to how diverse the data is.

Figure 6: Average training time

Figure 7: (a). Training state of Feed-Forward Neural Network and (b). Cascade-forward back-
propagation Neural Network

After each iteration, error is checked. If the Mean Square Error (MSE) rate is maximum, the
weights are adjusted and the network is trained until the error rate becomes minimum as shown in the
performance plots of Feed-Forward Neural Network and Cascade-forward back- propagation network
(refer Figures 8 (a) & (b)). The plots (Figures 8 (a) & (b)) show the best performance for training,
validation, and test phases of the Feed-Forward and Cascade-forward back-propagation neural network
plotted between MSE and epoch. As shown in the plots (refer Figures 8 (a) & (b)), the error reduces
after some epochs of training i.e., the networks’ MSE drops rapidly when it learns, but might start
to increase on the validation data set as the network starts over fitting the training data. The blue
line (refer Figures 8 (a) & (b)) shows the decreasing error in the training data. The green line (refer
Figures 8 (a) & (b)) shows the validation error. The training stops when the validation error starts
increasing. The red line (refer Figures 8 (a) & (b)) shows the error on test data indicating how well the
network will generalize the new data. MSE is the average squared difference between outputs and the
targets. Lower MSE values are desired and zero implies no error. Feed-Forward Neural Network MSE
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(refer Figure 8 (a)) is approaching ideal (∼0) at 29 epochs. The Cascade-forward back-propagation
neural network MSE (refer Figure 8 (b)) is approaching ideal (∼0) at 13 epochs, which is known as
best validation performance with lowest validation error.

Figure 8: Performance plot of (a). Feed-forward neural network and (b). Cascade-forward back-
propagation neural network

Regression(R) Analysis of Feed-Forward Neural Network and Cascade-forward back-propagation
neural network is shown in Figure 8 (a) & Figure 8 (b) respectively. It is the plot between the targets
and the outputs. Regression R values measure the correlation between the output and the target. An
R value of 1 means a close relationship i.e., a very good accuracy, 0 a random relationship. Feed-
Forward Neural Network model has a good training accuracy with R value 0.999120 (refer Figure 9
(a)) compared to Cascade-forward back-propagation neural network, whose R value is 0.979387 (refer
Figure 9 (b)).

Figure 9: Regression (R) analysis of (a). Feed-forward neural network and (b). Cascade-forward
back-propagation neural network

5.2 Testing phase

The testing phase is essential for evaluation of the performance of the system based on the extracted
or detected disaster regions. The average testing time for Feed-Forward Neural Network is 0.68
seconds and for Cascade-forward back propagation Neural Network is 0.58 seconds as presented in
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Figure 10. The images used in this study are microwave images obtained by Sentinel-1 instrument in
Interferometric Wide (IW) swath mode [11] (refer Figures 5 (a), (b), (c), (d) & (e)). The machine
learning algorithms are implemented in this study of a flood that occurred in Uttar Pradesh, India in
August 2017. Based on the knowledge gained by the model in the training phase, it should be able to
classify the features accurately as either water or non-water bodies, when a new input data is given
[10].The expectation is that the highest prediction values with label ‘water’ should be extracted or
highlighted as the disaster region. The research in this work focuses on detection of changes between
i) pre-disaster imagery and during disaster imagery and ii) pre-disaster imagery and post- disaster
imagery [1]. Detection of changes indicates the occurrence of disaster in that area.

Figure 10: Average testing time

To reduce the speckle noise and to minimize classification errors, median filter of window size 3x3
is applied on pre-flood, during-flood and post-flood imagery [21]. In the study area, it can be observed
that the water areas are relatively smooth and therefore appear dark in the imagery [21] (refer Figures
5 (a), (b), (c), (d) & (e)). Water body extraction is rarely affected by water look-alike areas (refer
Figures 5 (a), (b), (c), (d) & (e)). The classification result strongly depends on the selected threshold
value in areas of low contrast between open water surfaces and the surrounding non-water areas. The
binary thresholding method is applied with threshold limit T< = 42 and the training data file is
created [24]. From the pre-disaster imagery, the water mask of permanent water bodies such as river,
pond is generated. The Sentinel-1A SAR data acquired during flood and post flood time provides
information regarding water body extent and flooded area [25]. The system is trained, tested and
the results obtained are shown in Figures 11 (a), (b), (c) & (d); and Figures 13 (a), (b), (c) & (d).
The two neural network algorithms are observed to give similar results with respect to water layer
extraction, which can be observed in Figures 11 (a), (b), (c) & (d); and Figures 13 (a), (b), (c) & (d).

Wherever water body is present in the during flood and post flood imagery, the two algorithms
correctly identified and classified them as water. This is and highlighted in color(s) and is shown in
Figures 11 (a), (b), (c) & (d); and Figures 13 (a), (b), (c) & (d). Then the extracted water permanent
mask from pre-flood image is overlaid and only the flooded region is extracted from the during flood
and post flood imagery as shown in the Figures 12 (a), (b), (c) & (d) and Figures 14 (a), (b), (c) &
(d). Finally, from the resultant images, highlighted flooded area (in white color (refer Figures 12 (a),
(b), (c) & (d); and Figures 14 (a), (b), (c) & (d))) is calculated in sq. km. as shown in the Table 6.

In the resultant image, flooded area and normal water area can easily be distinguished (refer
Figures 12 (a), (b), (c) & (d); and Figures 14 (a), (b), (c) & (d)). When a natural calamity like flood
occurs, a methodology which can give accurate and timely results with respect to flood area detection is
required. For the flood area calculation purpose, results obtained from Binary thresholding technique
using GIS tool are used as a reference. The flood area obtained by Feed-Forward Neural Network
matches 97% with that from traditional method (Binary thresholding technique using GIS tool) (refer
Table 7). Feed-Forward Neural Network algorithm is found to detect the flooded area with greater
accuracy ( 97%) when compared to the Cascade-forward back-propagation neural network (refer Figure
15).
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Figure 11: Water layer detection using feed-forward neural network on (a). 13th August, (b). 25th

August, (c). 28th August and (d). 9th September 2017 respectively

Figure 12: Flood area detection by feed-forward neural network on (a). 13th August, (b). 25th August,
(c). 28th August and (d). 9th September 2017 respectively
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Figure 13: Water layer detection using cascade-forward back-propagation neural network on (a). 13th

August, (b). 25th August, (c). 28th August and (d). 9th September 2017 respectively

Figure 14: Flood area detection by cascade-forward back-propagation neural network on (a). 13th

August, (b). 25th August, (c). 28th August and (d). 9th September 2017 respectively
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Table 6: Total flood area detected by two neural network algorithms

Date

Algorithm
By Feed-Forward Neural
Network (in sq. km)

By Cascade-forward back-
propagation neural network
(in sq. km)

13th August 2017
(During flood)

229.67 216.005

25th August 2017
(During flood)

379.82 353.809

28th August 2017
(During flood)

485.63 458.07

9th September 2017
(post flood)

172.61 166.97

Table 7: Performance comparison of feed-forward neural network with traditional method

Parameter

Results from Bi-
nary thresholding

technique with GIS
tool (Source: [24])

Results from
Feed-Forward

Neural Network

Accuracy
in %

Total Flooded area de-
tected in sq. km
on 13th August 2017
(During flood)

237.066 229.67 96.88

Total Flooded area de-
tected in sq. km
on 25th August 2017
(During flood)

392.098 379.82 96.87

Total Flooded area de-
tected in sq. km
on 28th August 2017
(During flood)

498.472 485.63 97.42

Figure 15: Comparison of accuracy of the two neural network algorithms
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6 Conclusion
Remote sensing data is an active source for disaster detection. In the monitoring of flood disaster,

extracting flooded area is of utmost importance. It forms the basis for calculating the flood impacted
area, evaluation of loss of human and animal lives, reconstruction of flood-hit area. As SAR data is not
influenced by weather, season factor, day and night and has high temporal resolution, it is widely used
in disaster management. The flood impacted area in the state of Uttar Pradesh, India is chosen as
the study area. In this paper, automatic detection of flood area effectively using the machine learning
algorithms Feed-Forward Neural Network and Cascade-Forward Back-Propagation neural network is
discussed using multi-temporal Sentinel-1 imagery. A two-layer feed-forward network, with sigmoid
hidden and linear output neurons is designed for Feed-Forward Neural Network, Cascade-forward back-
propagation neural network using MATLAB R2018b. Neural network stores information in terms
of weights i.e., to train the neural network with new information, weights are modified. Training
performance of a neural network is evaluated using its MSE and regression analysis. Compared the
time complexities of the two neural network algorithms. The two neural network algorithms are
observed to give similar results with respect to water layer extraction. The highlighted region (in
white) is the flood affected region. Flood area on different flood dates is calculated in sq. km for the
two machine learning models. Since ground truth image of the study area is not available, results from
Binary thresholding technique with GIS tool is used as a reference for flood area calculation. The
flood area assessment obtained by Feed-Forward Neural Network matches closely with that fetched
from standard source (Binary thresholding technique using GIS tool). The accuracy ( 97%) thus
obtained confirms that Feed-Forward Neural Network yields better results in calculating the extent of
the flooded area for disaster management purposes.
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