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Abstract: Identification of essential proteins plays an important role for under-
standing the cellular life activity and development in postgenomic era. Identification
of essential proteins from the protein-protein interaction (PPI) networks has become
a hot topic in recent years. In this work, fruit fly optimization algorithm (FOA) is
extended for identifying essential proteins, the extended algorithm is called EPFOA,
which merges FOA with topological properties and biological information for essen-
tial proteins identification. The algorithm EPFOA has the advantage of identifying
multiple essential proteins simultaneously rather than completely relying on ranking
score identification individually. The performance of EPFOA is analyzed on dynamic
PPI networks, which are constructed by combining the gene expression data. The
experimental results demonstrate that EPFOA is more efficient in detecting essential
proteins than the state-of-the-art essential proteins detection methods.
Keywords: essential proteins, protein-protein interaction (PPI), dynamic PPI net-
works, subcellular localization data, fruit fly optimization algorithm (FOA).

1 Introduction

Protein plays an important role in the cellular life activity, and essential proteins are critical
for the growth and development of organisms under a variety of conditions [27]. The absence
of a single essential protein is sufficient to cause lethality or infertility [50]. Some recent results
suggest that a comprehensive analysis of essential proteins can provide a deeper understanding
of the relationship between mutations and human diseases, revealing the general principles of
human diseases [12,15,59]. Therefore, the identification of essential proteins is closely related to
disease prediction and drug design [53].

With the development of high-throughput technologies, various biological data are available,
e.g., yeast-two-hybrid, tandem affinity purification, and mass spectrometry. In [2], a greedy
algorithm is proposed to optimize the detection of protein communities.

Existing methods for identifying essential proteins can be roughly divided into two types.
The first type includes the biological experiment-based methods, e.g., gene knockouts [11], RNA
interference [7], and conditional knockouts [35], which are expensive and time-consuming. The
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other type includes the topology-based centrality method, e.g., Degree Centrality (DC) [14],
Betweenness Centrality (BC) [24], Closeness Centrality (CC) [52], Subgraph Centrality (SC) [9],
Eigenvector Centrality (EC) [3], Information Centrality (IC) [40], Neighborhood Centrality (NC)
[20], and Local Average Connectivity-based method (LAC) [19]. By defining and computing
the topologically potential value of each protein, these methods can obtain a precise ranking
score reflecting the importance of proteins in the protein-protein interaction (PPI) network [18].
Some centrality analysis tools and RNA detection tools [54] have been developed. For example,
CytoNCA [43], a Cytoscape plugin, integrated eight centrality measures, i.e., DC, BC, CC,
EC, IC, SC, NC and LAC. Obviously, the topology-based centrality methods can improve the
efficiency with less cost. However, these centrality methods also have their own shortcomings. It
is well known that the performance of topology-based methods is closely related to the quality
of the PPI networks, but there are many false positive and false negative in the PPI networks.

In order to deal with the drawbacks of these methods, some new methods are proposed to
predict essential proteins by integrating their topological properties with their biological prop-
erties. Considering the interaction data and Gene Ontology (GO) annotations, Hsing et al.
introduced a method to predict highly-interacting proteins [13]. Later, a new prediction method
called PeC was proposed by Li et al. [21], and another method called WDC was proposed by
Tang et al. [41], which integrate network topology with gene expression profiles. Afterwards,
Tang introduced a new method to identify essential proteins in which topological features of PPI
network is combined with subcellular localization information [42]. Next, a new centrality mea-
sure is proposed by Ren et al. to discover essential proteins, named harmonic centricity, which
merges subgraph centrality with protein complexes to discover essential proteins [34]. Recently,
a new prediction method, named UDoNC, that combine the domain features of proteins with
their topological properties in PPI networks, was proposed by Peng et al. [30]. Some machine
learning methods, e.g., Support Vector Machine, Naive Bayes, Bayes Network, and NBTree, were
also adopted to predict essential proteins by using different features. For example, the random
forest was adopted to predict essential proteins by Qin et al. [32]. These methods that combine
the network topological features with biological data is capable of improving the accuracy and
efficiency of prediction significantly. These existing methods regard the PPI networks as static
networks that ignore the time-course of the networks. The real PPI networks in cell keeps chang-
ing over different stages of the cell cycle [31], and they can be classified into stable or transient
PPI networks [46], which are usually described as dynamic PPI networks (DPIN). Thus it is im-
portant to construct dynamic PPI networks to investigate the temporal properties of individual
proteins and protein interactions. Based on dynamic network topology and complex informa-
tion, Luo and Kuang proposed a new method to predict essential proteins [22]. The results show
that the identification of essential proteins in dynamic networks is more conducive than in static
networks.

Fruit fly optimization algorithm (FOA) is a novel swarm intelligent algorithm that mimics
the foraging behavior of fruit flies for global optimization [25]. FOA is easy to be understood
and implemented, which has few parameters to be adjusted. Due to its simplicity and efficiency,
FOA showed great success in solving some real-world complex problems like multidimensional
knapsack problem [48]. Here, FOA will be used to find the essential proteins.

In this work, we present a new algorithm, called EPFOA, in which FOA is merged with
topological properties and biological information for essential proteins identification. To the best
of my knowledge, most of the methods of essential proteins identification focus on static PPI
networks and ignore the intrinsic features of organisms.

In our method, we first integrate gene expression data with static PPI network to construct
the dynamic network model. Then a new topological centrality method that combines GO
annotation and edge aggregation coefficient (ECC) is proposed to measure the topological char-
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acteristic of PPI networks with modular local average connectivity (LAC) in dynamic networks.
Furthermore, the distribution of proteins in each compartment according to subcellular localiza-
tion data is obtained, and the role of components in identifying essential proteins is analyzed.

Finally, EPFOA is designed to identify essential proteins. To assess the performance of
our method, EPFOA is compared with some existing methods including DC, EC, IC, SC, NC,
LAC, PeC and UDoNC, and the experimental results indicate that our method significantly
outperforms with the existing methods.

2 Method

2.1 Fruit fly optimization algorithm

Fruit fly optimization algorithm (FOA) is a novel method for global optimization, which is
inspired by the foraging behavior of fruit flies. In sensory perception, the fruit fly is superior
to the other species, especially in olfactory and vision. The olfactory organs of fruit flies can
collect all kinds of scents floating in the air, even smell the food source from 40 kilometers away.
After the fruit fly gets close to the food, it can also use the sensitive vision to find food and the
companyĄŻs flocking location, and fly to the direction [25]. The procedure of FOA is presented
in pseudo code as follows.

Step 1. Randomly initialize the location of the fruit flies (Xaxis, Yaxis).

Step 2. Give the random direction and distance for the search of food using osphresis by an
individual fruit fly. {

Xi = Xaxis +RandomV alue

Yi = Yaxis +RandomV alue
(1)

Step 3. The distance (Disti) to the origin is estimated, then the smell concentration judgment
value (Si) is calculated, which is the reciprocal of the distance.{

Disti =
√
x2 + y2

Si = 1
Disti

(2)

Step 4. Substitute smell concentration judgment value (Si) into smell concentration judgment
function (or called fitness function) to find the smell concentration (Smelli) of the individ-
ual location of the fruit fly.

Smelli = Function(Si) (3)

Step 5. Find the individual with the maximal smell concentration among the fruit fly swarm
according to the smell concentration value.

[bestSmell bestInedx] = max(Smell) (4)

Step 6. Maintain the best smell concentration value x and y, where the fruit fly swarm will use
vision to fly towards that location.

Smell = bestSmell

Xaxis = X(bestIndex)

Yaxis = Y (bestIndex)

(5)

Step 7. Repeat steps 2-5 until the smell concentration is superior to the previous smell concen-
tration; otherwise, go to step 6.
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2.2 Dynamic PPI network model construction

Gene expression data is valuable for revealing the dynamic properties of proteins and PPI.
We integrate gene expression data with high-throughput PPI data to construct a dynamic PPI
network. Note that protein does not always become active at a cell cycle, a protein is active at the
highest gene expression level. In order to mark the active time of each gene, the active threshold
of each gene should be calculated, and the gene is active if its expression value is greater than
the active threshold. The calculation of active threshold is proceeded on the 3-sigma model [45].

AT (p) = µ(p) + 3× σ(p)× (1− 1

1 + σ(p)2
), (6)

where µ(i) is the mean gene expression value of protein i and σ(i) is the algorithm standard
deviation of the expression values over time 1 to T for protein i. Since the gene expression data
has three cycles and each cycle has 12 times tamps, the final gene expression at each time point
is the average of the three cycles, which is defined as follows [16]:

FT (i) =
T (i) + T (i+ 12) + T (i+ 24)

3
, (i ∈ [1, 12]), (7)

where T (i) denotes the gene expression value at time point i. At a certain times tamp, if
both proteins are active with an interaction, the interaction of the two proteins is also active.
Eventually the entire PPI network was divided into 12 sub-networks, the dynamic PPI network
was constructed.

2.3 Topological characteristics of dynamic networks

A PPI network is not only an important biological network but also a typical complex network,
which meets the topological characteristics of complex network, such as small-world [49], scale-
free [51], and modularity [10]. In this part, the role of the topological characteristics in the process
of essential proteins identification is investigated, and a new topological centrality method based
on the ECC and GO annotation is proposed. Furthermore, the modularity of the network that
applied LAC is also considered.

Dynamic network topology centrality strategy

A PPI network can usually be expressed as an undirected graph G = (V,E), where the set of
vertices V represents protein, and E represents all of interactions between pairs of proteins. In
order to assess the centrality of dynamic network topology, we introduce the GO annotation (since
the ECC cannot fully reflect the characteristics). GO annotation provides valuable information
and a convenient method to study the gene function similarity, some researches have shown that
the adoption of GO semantic similarity term can improve the prediction accuracy of protein
complexes gene and disease [36, 56,57].
Weighting the networks via ECC

In order to measure the tightness of the two nodes, we use the ECC [41], which is defined
as follows:

ECC(u, v) =
|Nu ∩Nv|+ 1

min{du, dv}
, (8)

where Nu (or Nv) refers to the set of neighbours of node u (or v) in PPI networks, |Nu ∩ Nv|
is the number of common neighbor nodes of u and v, which is consistent with the number of
triangles which edge (u, v) belongs to du (or dv) indicates the degrees of node u (or v).
Weighting the networks using the Gene Ontology
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The GO information consists of three sub-ontologies: Biological Process (BP), Cellular Com-
ponent (CC) and Molecular function (MF) [6]. In order to measure the semantic similarity
between the GO terms to protein annotations in an interaction network, we applied the method
developed by Wang et al. [47]:

GO_sim(u, v) =

∑
t∈Tu

⋂
Tv

(Su(t) + Sv(t))∑
t∈Tu Su(t) +

∑
t∈Tv Sv(t)

, (9)

where where Tu and Tv are the annotations of protein u and v; Su(t) is the S-value of GO term
t related to term u and Sv(t) is the S-value of GO term t related to term v.

Generating new weighted networks
Based on the definition of the ECC and gene functional similarity, a new centrality measure,

named EG, is proposed. For a protein u, the essentiality EG(u) is defined as the probability
between the ECC and GO information:

EG(u) =
∑
v∈Nu

ECC(u, v)×GO_sim(u, v), (10)

where N(u) denotes the set of all neighbors of node u. When computing dynamic EG(u), we
should consider the number of times that each node appears in a dynamic PPI network, since
some nodes are not included in all the time networks. Dynamic EG(u) can be defined as the
follows:

DEG(u) =

∑N
i=1EG

i(u)

tim(u)
, (11)

where N is the number of temporal networks in the dynamic network, EGi(u) the EG of node u
in the ith time point, tim(u) the number of time networks that contain node u. If node u does
not appear at time point i, EGi(u) is equal to zero.

Dynamic local average connectivity

The LAC of a node indicates its closeness [49], and the LAC of a node v is defined as:

LAC(u) =

∑
v∈Nu deg

Cu(v)

|Nu|
, (12)

where Nu is the neighbors of node v, |Nu| the number of nodes in Nu, and Cu the subgraph
induced by Nu. For a node u in Cv, its local connectivity in Cu is represented as deg(Cu)(v).
Similar to DEG(u), we define Dynamic LAC as follows [30]:

DLAC(u) =

∑N
i=1 LAC

i(u)

tim(u)
, (13)

where N is the number of temporal networks in the dynamic network, LACi(u) the LAC of
node v in the ith time point, and tim(u) the number of time networks that contain node u.

2.4 Subcellular localization score

Subcellular location is divided into different compartments, different compartments play dif-
ferent roles in cell activities. In order to understand the relationship between subcellular local-
ization and essential proteins, we analyze the number of essential proteins in each subcellular
location and propose a method to evaluate subcellular localization in previous research. Assume
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that in the Nucleus, the wider the distribution of the proteins is, the greater the possibility of
essential protein becomes [17].

Let Cmax denote the protein with the largest number of times appearing in subcellular lo-
calization of the nucleus, |u| represents the number of times of the protein u appearing in the
nucleus. The importance of protein u, denoted as NSL(u), is calculated by the ratio of its size
to the largest size of the nucleus. The value of NSL(u) is in the range of (0, 1].

NSL(u) =
|u|
|Cmax|

(14)

2.5 EPFOA algorithm

In order to make up for the shortcomings of traditional identification of essential proteins
one by one, we propose the algorithm EPFOA. The algorithm can identify p candidate essential
proteins simultaneously, which greatly improves the recognition efficiency. In what follows, we
introduce the algorithm EPFOA. First, initialize the position of fruit fly and set the rules of
location updating. Then find p candidate essential proteins according to the characteristic of
FOA. Finally, the identified p essential proteins are compared with known essential proteins to
verify the number of essential proteins identified correctly.

The initialization and update of the location of fruit flies
The initialization and location update rules of fruit fly play an important role in the perfor-

mance of EPFOA. The position of the fruit fly is encoded as an integer set of p-dimensional set
Xi = (xi1, xi2, . . . , xip), (i = 1, 2, . . . , n) which denotes a candidate essential protein set. Each
element xij (xij ≤ |N |, j = 1, 2, . . . , p) in Xi is the sequence number of a protein. First we
randomly selected p proteins to initialize a fruit fly position Xi. Then we compare the selected p
proteins with the known essential proteins and keep the proteins that are successfully matched.
After that the remaining positions that represent proteins are updated. In order to speed up the
convergence of the proposed EPFOA algorithm, we sort all the proteins based on degree except
selected p proteins. A random value is assigned to the individual that is not essential protein in
the Xi and update the position in a sequence that is ranked by degree.

Encoding and decoding of EPFOA
The framework of EPFOA is shown in Fig.2. We set every fruit fly as essential protein

candidate set, and the location of fruit fly is the serial number of the candidate proteins. For the
purpose of evaluating the topological characteristics of the network comprehensively, we combine
LAC that represents the network modularity with the new network centrality. Thus, when a
fruit fly is in a certain position, we suppose its smell concentration judgment value S(i) can be
calculated as following equation:

S(i) =

p∑
j=1

(DLAC(µj) +DEG(µj)), (15)

where DLAC(uj) denotes the dynamic local average connectivity of the jth protein among the
p candidate essential proteins and DEG(uj) denotes dynamic network topology centrality of the
jth protein among the p candidate essential proteins.

The topological characteristics and biological data are both indispensable in the process of
identifying essential proteins and subcellular localization data plays an important role in essential
proteins identification. We set the following smell concentration judgement function to measure
the possibility of essential proteins represented by a fruit fly individual:

Fit(i) = α× S(i) + (1− α)×
p∑
j=1

NSL(µj), (16)
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Figure 1: The framework of the algorithm EPFOA.
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where NSL(uj) denotes subcellular localization score of the jth protein among the p candidate
essential proteins and α ∈ [0, 1], α is a parameter that regulates the proportion of the network
topology and biological information in the process of identifying essential proteins. If α = 0,
only subcellular location information works; else if α = 1, only network topology works.

Pseudo code of EPFOA

The process of EPFOA can be divided into two steps. The first step calculates the topological
and biological characteristics of protein nodes. The second step applies the process of FOA
algorithm to seek the optimal to find the essential proteins. The pseudo code of EPFOA is
shown in Algorithm 1.

Algorithm 1 The pseudo code of EPFOA
Ensure: G = (V,E) (the PPI network), Gene expression data, Gene Ontology GO, Subcellular

location data.
Require: Essential protein set.
1: Construct the dynamic PPI network
2: for each interacting protein pair (a, b) in PPI do
3: Calculate ECC /*The closeness of the two nodes*/
4: Calculate GO /*The functional similarity of the two nodes based on GO annotation*/
5: end for
6: for each node in G do
7: Update the centrality DEG(u)
8: Calculate DLAC(u)
9: Calculate subcellular location score NSL(u)

10: end for
11: for fruit fly i do
12: Initialize location x(i) and its best location b_x(i)
13: Calculate the smell concentration smell(i)= Fit(S(i))
14: end for
15: for m in [1,maxiter] do
16: for fruit fly i do
17: Update location X(i) = X(i) + random
18: if smell(i)<Fit(S(i)) then
19: b_x(i) = X(i)
20: end if
21: end for
22: end for

3 Results and discussion

In this section, we first introduce the experimental data. Then we analyze the parameter A
towards the performance of EPFOA. Next, in order to evaluate the performance of EPFOA more
synthetically, we not only compare EPFOA with some topology-based centrality methods (DC,
EC, IC, SC, NC, LAC) but also with some methods that integrate their topological properties
with their biological properties (PeC and UDoNC). In order to assess the essentiality of proteins
in PPI networks, these methods are ranked in descending order based on their ranking scores
including eight existing centrality methods (DC, EC, IC, SC, NC, LAC, PeC and UDoNC). After
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that, top 1%,5%, 10%, 15%, 20% and 25% of the ranked proteins are selected as candidates for
essential proteins. In this paper, the size of the set of essential proteins candidate is 1274.
Taking into account of the random optimization process of FOA, we conduct ten experiments
and then use the average of ten experiments as the final result to to analyze the parameter
towards the performance of EPFOA. The ten experiments are listed in the attachment 1. To
further evaluate the EPFOA performance, we randomly choose a candidate essential proteins
from ten experiments to compare with other methods. The performance is presented in the form
of histograms of the number of essential proteins predicted by each algorithm and also use six
statistical measures to evaluate them. And precision-recall curves and jackknife curves are also
used to evaluate the performance of the proposed EPFOA method and the other eight methods.
Finally,we analysis the modularity of identified essential proteins.

3.1 Experimental data

To evaluate the performance of our proposed algorithm EPFOA, we adopt PPI networks
of S.cerevisiae which has been well characterized by knockout experiments and widely used in
the evaluation of methods for essential proteins discovery. The PPI data of S.cerevisiae was
downloaded from DIP database [58], which contains 5093 proteins and 24743 interactions after
removing the repeated interactions and the self-interactions. The known essential proteins data
of S.cerevisiae contains 1285 essential proteins among which 1167 essential proteins present in
the DIP network, which are collected from four databases: MIPS [23], SGD [4], DEG [55], and
SGDP (http://www-sequence.stanford.edu/group). The gene expression data of S.cerevisiae
are downloaded from GEO database [44] that contains 7074 gene expression products. The
Gene ontology annotation data of S.cerevisiae is obtained from GO Consortium [5]. Subcellular
localization dataset of S. cerevisiae is downloaded from knowledge channel of COMPARTMENTS
database [1], which includes 5095 yeast proteins and 206,831 subcellular localization records.

3.2 The effect of parameter α on performance

In our proposed algorithm EPFOA, evaluation function of proteins is changed with different
values of α. To study the effect of parameter α on performance of EPFOA, we evaluate the
prediction accuracy by setting different values of α, ranging from 0 to 1. The detailed results
are listed in Table 1. As shown in Table 1, the results are similar with α, ranging from 0.4 to 1.
Synthetically, we consider the optimal values to be α = 0.1.

Table 1: Effect of parameter α on the performance of EPFOA

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1TOP

1% 37 45 42 40 40 40 39 40 40 39 39
5% 181 183 183 184 184 185 177 178 177 176 178
10% 350 341 334 317 304 295 287 289 288 284 284
15% 444 451 445 429 423 417 415 409 409 400 415
20% 563 542 537 532 531 528 529 530 530 529 544
25% 610 628 624 621 618 612 616 617 617 616 616
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3.3 Comparison with other prediction measures

In order to demonstrate the advantage of our proposed EPFOA, we compare EPFOA with
eight existing methods including DC, EC, IC, SC, NC, LAC, PeC and UDoNC. The essential
proteins candidate population size p is set to 1274 (5093*25%=1274). The top 1, 5, 10, 15, 20
and 25% proteins are selected as candidate essential proteins, respectively. Then the prediction
results are compared with the known essential proteins, and the experimental results are shown
in Fig. 3. It can be observed that the percentage of essential proteins predicted by EPFOA
is consistently higher than that achieved by the eight compared methods. Taking top 1% (top
51) predicted essential proteins as an example, 46 essential proteins are correctly identified by
EPFOA while SC and EC have correctly predicted 24 essential proteins.

DC IC SC EC NC LAC PeC UDoNCEPFOA
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Figure 2: EPFOA compared with several existing methods.(a) Top 1% (Top 51), (b) Top 5%
(Top 255), (c) Top 10% (Top 510), (d) Top 15% (Top 764), (e) Top 20% (Top 1019), (f) Top
25% (Top 1274).

3.4 Validation using six statistical measures

In order to evaluate the performance of EPFOA, we compare EPFOA with the other methods
using six statistical measures: sensitivity (SN), specificity (SP), positive predictive value (PPV),
negative predictive value (NPV), F-measure, and accuracy (ACC). Each statistical measure is
defined as follows:

SN =
TP

TP + FN
, (17)

SP =
TN

TN + FP
, (18)

PPV =
TP

TP + FP
, (19)

NPV =
TN

TN + FN
, (20)

F −measure =
2× SN × PPV
SN + PPV

, (21)

ACC =
TP + TN

TP + TN + FP + FN
, (22)
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where TP is the number of essential proteins correctly identified as essential proteins, FP is the
number of nonessential proteins mistakenly identified as essential proteins, TN is the number
of nonessential proteins correctly identified as nonessential proteins, and FN is the number of
essential proteins mistakenly identified as nonessential proteins. The comparison results between
EPFOA and the other predicted essential proteins methods by six statistical measures performed
on DIP are shown in Table 2. Obviously, we can see that EPFOA significantly outperforms all
the compared methods.

Table 2: Comparison of EPFOA and the other methods in terms of SN, SP, PPV, NPV, F-
measure, and ACC on the PPI networks.

Method SN SP PPV NPV F-measure ACC

DC 0.4302 0.8033 0.394 0.8258 0.4113 0.7178
EC 0.4002 0.7944 0.3666 0.8167 0.3826 0.704
IC 0.4319 0.8038 0.3956 0.8263 0.4129 0.7186
SC 0.4002 0.7944 0.3666 0.8167 0.3826 0.704
NC 0.467 0.8143 0.4278 0.8371 0.4465 0.7347
LAC 0.473 0.8161 0.4333 0.8389 0.4523 0.7374
PeC 0.4225 0.801 0.387 0.8235 0.4039 0.7143

UDoNC 0.491 0.8214 0.4498 0.8444 0.4695 0.7457
EPFOA 0.5373 0.8352 0.4922 0.8586 0.5137 0.7669

3.5 Comparison of the experimental results based on precision-recall curves

To further validate the performance of EPFOA, we study the Precision-Recall (PR) of EPFOA
on the PPI networks and compare with the other methods. The precision and recall of the top
n ranked proteins are defined as follow:

Precision(n) =
TP (n)

TP (n) + FP (n)
, (23)

Recall(n) =
TP (n)

P
, (24)

where TP (n) is the number of true predicted essential proteins among the top n ranked proteins,
FP (n) is the number of false predicted essential proteins among the top n ranked proteins, P
is the total number of essential proteins under consideration. Fig. 4 shows the PR curves of
EPFOA and the other eight methods on the PPI networks. Obviously, EPFOA obtains the best
performance, which demonstrates that the algorithm EPFOA works well in identifying essential
proteins.

3.6 Validation using jackknife curves

A more general comparison between the proposed algorithm EPFOA and the eight previously
proposed methods is tested by using a jackknife curves. The experimental results validated by
Jackknife curves are shown in Fig. 5 the X-axis represents the proteins ranked in descending
order from left to right according to the values computed using the corresponding methods, and
the Y-axis represents the number of true essential proteins among the top n proteins, where n is
the number along the X-axis. The area under the curve is always used to measure the generality
of a method. As shown in Fig. 5, EPFOA clearly performs better than the other methods.



376 X. Lei, S. Wang, L. Pan

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n

DC
IC
SC
EC
LAC
NC
PeC
UDoNC
EPFOA

Figure 3: The PR curves of GSP and that of other methods.

3.7 The modularity of essential proteins predicted by EPFOA

Proteins usually perform tasks in biological system with protein complexes or functional
modules and rarely act alone. Therefore, protein modularity may be an appropriate measurement
to evaluate the significance of essential proteins identified by EPFOA. In order to examine the
modularity of essential proteins identified by EPFOA, we compare EPFOA with DC that fully
depend on network topology and PeC that combine network topology with biological information.
We show the top 1% identified essential proteins of each method. As illustrated in Fig. 5, the
number of essential proteins identified by EPFOA is higher than DC and PeC obviously. It also
can be seen in Fig. 5, it is worthy to note that the essential proteins identified by EPFOA show
more significant modularity than DC and PeC. It indicates that EPFOA is effective in identifying
essential proteins.
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Figure 4: The jackknife curves of GSP and the other nine methods.

Figure 5: The modules formed by the top 1% identified essential proteins predicted by DC, PeC
and EPFOA. Yellow circles are the essential proteins predicted by EPFOA, and blue circles are
the non-essential proteins that incorrectly predicted.
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4 Conclusion

It is believed that identification of essential proteins is very useful for understanding the min-
imal requirements for cellular life, and even the disease study and drug design. Although there
are many methods have been proposed, it is still a challenge to improve the predicted precision.
It is a strong potential way to use computational methods to identify essential proteins. In this
study, we propose a novel algorithm EPFOA to boost the performance of essential proteins. We
not only analyze the network topological characteristics in the dynamic PPI networks with GO
annotation, but also analyze the biological characteristics with the subcellular location infor-
mation. By comparing with other existing methods, FOCA can more effectively identify the
essential proteins with the higher precision. As future work, it would be interesting to apply the
EPFOA to other studies, such as gene and disease prediction.
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