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Abstract: In the present paper, a fuzzy codesign approach is proposed to deal with
the controller and scheduler design for a networked control system which is physically
distributed with a shared communication network. The proposed fuzzy controller is
applied to generate the control with different sampling-actuation periods, the config-
uration supposes a strict actuation period disappears the jitter. The proposed fuzzy
scheduling is designed to select the sampling-actuation period. So, the fuzzy codesign
reduces the rate of transmission when the system is stable through the scheduler while
the controller adjusts the control signal. The fuzzy codesign guarantees the stability
of all the system if the network uncertainties do not exceed an upper bound and is a
low computational cost method implemented with an embedded system. An unstable,
nonlinear system is used to evaluate the proposed approach and compared to a hybrid
control, the results show greater robustness to multiple lost packets and time delays
much larger than the sampling period. This paper is an extension of [20].a
Keywords: codesign, dynamic scheduling, fuzzy control, networked control system.

aReprinted (partial) and extended, with permission based on License Number
4275590998661 IEEE, from "Electrical Engineering, Computing Science and Automatic Con-
trol, 2017 14th International Conference on".

1 Introduction

This paper is an extension of [20]. The system model with sampling-actuation periods in [20]
is modified using the one-step control input, the network imperfection estimation is improved,
the feedback matrices are calculated in a simpler way. Finally, the analysis of stability and the
analytical codesign are also presented.

Networked control systems (NCSs) are composed of physically distributed agents that can
sense the environment, act on it, and communicate with one through a communication network
to achieve some common goals. These characteristics have made them a topic of current interest
in the control area.

By including a communication network within the control loop, considerations are presented
for its design. Among these considerations the most important are time delays [13] [27] [11] [12],
packet losses [13] [27] [11] [12], signal quantization [14] [21] and scheduling [6] [28]. These have
been investigated with results reported in the literature. In addition, because of the advantages
of reduced system wiring, simple installation, increased system flexibility and resources sharing,
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NCSs have been finding applications in DC motors [5] [9], robot control [28], vehicle robot [25]
and ball maglev system [11], among others.

Time delays in NCSs are the major cause of system performance deterioration and poten-
tial system instability. Time delays have been modelled by using various formulations such as
constant delay [22], independently random delay [1] and random delay governed by Markov
chain [32]. Sometimes, the time delays are included as time-varying input delays of the sys-
tem [30]. Yi, An and Choi performed a control system over a wireless network with communi-
cations only in the control channel. They employ a full-order observer to estimate the system
states without time delays. The control-actuator time delay is measured at the plant and the
observed states are used as a predictor to generate the system state with the expected time delay.
Finally, they employ a LQR control to generate the control signal based on the next estimated
states.

Therefore, the analysis and synthesis of NCSs with both time delays and packet losses is a
persistent problem in the challenging but practical problem. In the literature, some important
methodologies, such as stochastic control [11], predictive control [5] [10] [30], robust control [12],
and state feedback control [31], are proposed to compensate time delays and/or packet losses
have been proposed.

At the last years, fuzzy logic control has received great attention from academic and industrial
communities. More recently, the fuzzy control has developed strategies for NCS, In the work of
Peng and Yang [24], a delay distribution-dependent design method for NCS Takagi Sugeno fuzzy
systems [26] was proposed taking into consideration of the probabilistic interval distribution of
the communication delay. Tong, Qian and Lui [29] used a fuzzy predictive controller to counteract
time delays in the feedback channel. Where the fuzzy controller estimates the variations of the
control signal based on the differences between the reference error and the control error applied.
Chai et al. [4] investigated the state feedback and dynamic output feedback controller design
for membership functions and time delays in premise variables into the controller design. The
resulting conditions were expressed in terms of SOS-based inequalities.

In the case of lost packets, commonly the effect has been modelled by a Bernoulli process and
strategies in static/dynamic output feedback and model predictive control problems for discrete-
time T-S systems with lost packets were investigated in [7] [34]. In [15], Li, Wu, and Feng used a
fuzzy model to describe a nonlinear plant with an output feedback controller H∞ and modelling
the lost packets as a Bernoulli random binary distribution.

It is noticed that most of the existing control methodologies for NCSs adopt a sampling
period regardless of network Quality-of-Services (QoS) variations. In practical circumstances,
the network QoS always fluctuates due to changes in the traffic load and available network
resources.

In regard to QoS, Tipsuwan and Chow [28] proposed a gain scheduling controller for NCSs,
where the control parameters were adjusted on-line based on network QoS variations and Chow [6]
optimized the control parameters for gain scheduling controller to improve the NCSs performance.
However, these works only focused on the controller design. More recently, BenĂtez et al.
[3] presented a frequency control of multiple network control systems, this takes into account
information from the network transmissions, where asymptotic stability of the systems is ensured
when the time delay is bounded.

This paper shows a fuzzy NCS codesign controller-scheduler to adapt simultaneously the
control signal and sampling period with estimated network imperfections. This introduces a
neural model to estimate the time delay and lost packets as a compound time. A fuzzy control
with the estimated compound time as the antecedent part is used to minimize the network
effects. Finally, a fuzzy scheduler is designed to modify the sampling-actuation period based on
the system performance and network utilization.



Control-Scheduling Codesign for NCS based Fuzzy Systems 253

The paper is organized as follows: section 2 introduces a dynamic model based on actuation
periods and shows a recurrent neural network to estimate some network imperfections. In section
3 the fuzzy model with different actuation periods and the stability analysis is presented. Section
4 summarizes the design of a fuzzy scheduler to modify the actuation period. Section 5 presents
an analytical codesign and section 6 presents the experimental case to evaluate the codesign
performance, it is compared with a hybrid controller. Finally, the conclusions are provided in
section 7.

2 Preliminaries

2.1 Periodic Actuation Model

NCS is defined as: A feedback control system closed via a communication channel, it may
be shared with other control loops or nodes outside the control system. A spatially distributed
system for a single control loop is shown in Figure 1, where the sensor, controller, and actuator
nodes exchange information via a communication network.

Figure 1: Configuration of NCS with traffic nodes

The most general continuous state-space representation of a linear system with m inputs, p
outputs and n state variables is written in the following form

ẋ(t) = Ax+Bu(t)
y(t) = Cx(t)

(1)

where A ∈ Rnxn, B ∈ Rnxm and C ∈ Rpxn are the system, input and output matrices of the
continuous-time state space respectively. xk ∈ Rn is the process state vector, uk ∈ Rm and
yk ∈ Rp are the inputs and outputs of the process.

The continuous linear system Eq. 1 can be discretized assuming a zero-order hold [2] for the
input vector with a sampling period h to

xk+1 = Φhxk + Γhuk
yk = Cxk

(2)

where the matrices Φh ∈ Rnxn and Γh ∈ Rnxm are obtained by

Φh = eAh, Γh =
∫ h

0 e
AsBds (3)
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For standard closed-loop operation of the discrete system (Eq. 2), a controller can be designed
using feedback control as follows

uk = Kxk, K ∈ Rmxn (4)

where K is the state feedback matrix obtained using standard control design methods.
The application of the control signal (Eq. 4) to the process forces to computing it with

zero time. Nevertheless, this is physically impossible even for processor-based systems due to
algorithm computational time.

Taking into account this limitation. The discrete model (Eq. 2) can be augmented to cope
with a time delay due to the insertion of a network/processor within a control loop, as in the
case of NCS [2]. The standard model that incorporates a time delay τ less than one sampling
period (τ < h), is

xk+1 = Φhxk + Φh−τΓτuk−1 + Γh−τuk (5)

The equation 5 has been often taken as the essential control model for design and analysis
of NCS. This model assumes a time reference given by the sampling instants with a fixed time
delay from sampling to actuation. However, this model is useless if the time delay is variable
and/or greater than one sampling period or the sampling interval is variable. [17].

The task execution model proposed is shown in figure 2. It aims is to use strict periodic
sampling and actuation [18] into the space state model decreasing the variability in the time
delays and the sampling intervals. This model estimates the states as a function of the actuation
periods [16], making only necessary to estimate the compound time in a set of multiples of the
actuation period.

The model synchronizes the operation of each control loop at the actuation instants. Hence, tk
is the actuation instant, the actuation interval is the time elapsed between consecutive actuation
instants, named tk−1 and tk, h is the actuation period. Within this actuation interval, the system
state is sampled, named xs,k(ts.k) ∈ [tk−1, tk] where ts,k is the sampling time recorded. Eq. 6
represents a time delay τk used to estimate the state at the actuation instant and the Eq. 7
represents the discrete system with periodic actuation.

τk = tk − ts,k (6)

x̂k = Φτkxs,k + Γτkuk−1 (7)

Finally, making use of x̂k, the control command is computed as

uk = Kx̂k, K ∈mxn (8)

where K is the feedback matrix that is designed in next section.
The control command uk is held constant within actuation period with a zero-order Hold

(ZOH).
At each control cycle the information flow in the NCS, the sensor node begins sampling the

process xs,k in time ts,k, the time delay and lost packets are estimated. It sends the data to the
codesign node where is used to generate uk (Eq. 6)-(Eq. 8), also the scheduler generates the
next actuation period if it is necessary. The control and period are sent to the actuator node
applying the control to the process. Finally, the actuator node sends tk and the period to the
sensor node to apply the sampling period and calculate the time delay and lost packets. The
cycle starts again.

With the strict periodic sampling and actuation h, the time delay τ is restricted to multiples
of the actuation period and the sampling intervals can be used to control the network bandwidth
consumption. The model has several properties for controllers, it is compatible with standard
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Figure 2: Periodic Actuation Model

scheduling because does not demand any specific timing constraints. The scheduling jitter is
absorbed with a priori knew of time reference tk and the sampling jitter disappears using the
periodic actuation model (Eq. 7) absorbs the irregular sampling and variable actuation intervals.

The next section presents an approach to estimate the time delay and lost packets with a
recurrent neural network.

2.2 Time delay and lost packets estimation

One major challenge for NCS design is the effect of time delays and lost packets in a control
loop. The time delays occur when the system components exchange data across the network. It
can degrade the performance or even destabilize the system. The time delay τk assumes lower
and upper bounds. In case of time delays is

0 < τmin ≤ τk ≤ τmax (9)

On the other hand, lost packets can be the consequence of a link failure, generated pur-
posefully to avoid congestion or guarantee the most recent data to be sent. Normally, feedback
controllers can tolerate a certain amount of lost packets. However, consecutive lost packets have
an impact of degradation on the overall system performance. Hence, the next actuation period
is a compound time υ between time delays and lost packets formed as follows

υ ≡ tk+1 − tk = (ξ̄ + 1)h+ τk+1 − τk (10)

where h denotes the actuation period, tk the actuation instant and ξ̄ the estimated lost packets.

Figure 3: Time delays and time elapsed between lost packets with traffic (50 - 80 s).

Eq. 10 defines a compound time with the analytic bounds for time delay and lost packets,
the aim is to design a recurrent neural network (RNN) using compound time values as input, and
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time delay forecast as output. The collection of time delay data (τk) is analyzed and modelled
to achieve the lowest discrepancies between the observed delay and the predicted delay (Fig. 3).
Figure 3 illustrates the time delays and time elapsed between consecutive lost packets. Heavy
traffic is generated into 50-80 s showing a maximum compound time of 300 ms.

The RNN is formed with three layers (Fig. 4), the input layer with 6 delayed inputs, one
feedback input and bias, the hidden layer with 10 tansig nonlinear neurons, and the output layer
with one linear discriminatory purelin neuron and bias.

I = {τk−i, Ôk−1, b1} i = 1− 6

Hj = tansig
[∑7

i=1 IWijIi

]
τ̂k+1 = O = purelin

[∑10
j=1OWjHj + b2

] (11)

The Levenberg-Marquardt algorithm was used for training. The number of hidden nodes
selected was the RNN with the best validation performance.

Figure 4: Structure of recurrent neural Network for time delay estimation

3 Fuzzy control

A new modelling method for nonlinear NCS with compound time is presented in this section.
The process under consideration is a nonlinear discrete-time system represented by the TSK
fuzzy model [26], It has the compound time υ̂ as antecedent input and linear discrete models
(Eq. 7) with different sampling periods hj as consequent output. By modelling the system
dynamics in function of the compound time.

So, defining r fuzzy rules, the j-th rule has form

if υ̂ is αj then xj = Φjxs,k + Γjuk−1 (12)

where xk ∈ Rn is state vector, uk ∈ Rm is input vector, αj is the j-th membership function.
The overall fuzzy model is:

x̂k =

r∑
j=1

ψj [Φjxs,k + Γjuk−1] (13)

with the normalized fire strength ψj as
r∑
j=1

ψj = 1 ψj ≥ 0 ψj =
αj
r∑
s=1

αs
(14)



Control-Scheduling Codesign for NCS based Fuzzy Systems 257

and

αj = exp

[
− [υ̂ − ρj ]2

σ2
j

]
(15)

αj is a Gaussian membership function with parameters [ρj , σj ]. On the other hand, [Φj ,Γj ] are
the matrices of j-th linear discrete model discretized with a sampling period [hj , j = 1 . . . r], the
discrete local models are:

xj = e[Ahj ]xs,k +

∫ hj

0
eAsdsBuk = Φjxs,k + Γjuk−1 (16)

So, [hj , ρj , σj ] for j = 1, . . . , r are assigned by user according to range of the compound time.
With this fuzzy model, the estimated system state is obtained by compensating the time

delays, variable sampling intervals and lost packets. The action is to smoothly switch between
discrete models to generate the best estimate of the state according to the estimated compound
time υ̂.

Once designed the fuzzy model x̂k using the estimated compound time υ̂ a fuzzy controller
is proposed. This is a fuzzy feedback control law like:

uk = −
r∑
j=1

ψjKj x̂k j = 1, . . . , r (17)

where Kj is the feedback matrix of the j-th fuzzy rule. This control law is designed like a LQR
(Linear Quadratic Regulator) [33] to minimize a performance index. The control design by LQR
for each local model requires the algebraic solution of the Ricatti equation for the Hj matrix.
So, the feedback matrices are calculated like:

Kj = R−1
j ΓTj Hj j = 1, ..., r (18)

The closed loop system is:

xk+1 =
r∑
i=1

r∑
j=1

αiβj [Ψi − ΓiKj ]xk =
r∑
i=1

r∑
j=1

αiβjΛijxk (19)

with Λij = Φi − ΓiKj i = 1, . . . , r j = 1, . . . , r
The properties of the antecedent part (Eq. 14) are considered for the stability analysis of

fuzzy control uk, the Eq. 20 are complementary properties of fuzzy sets.

ψiψj ≥ 0
r∑
i=1

r∑
j=1

ψiψj = 1

r∑
i=1

ψ2
i + 2

i<j∑
i,j
ψiψj = 1

(20)

3.1 Stability analysis

Based on the properties of fuzzy control and assume that two-overlapped fuzzy memberships
at most, a stability analysis of closed loop fuzzy control is presented. First, it is necessary to
define the following lemma to prove stability analysis.

Lemma 1. [8] For any real matrices Ai, Bi for 1 ≤ i ≤ r, P > 0 ∈ Rnxn, we have

2
r∑
i

r∑
j
ψiψjATi PBj ≤

r∑
i

r∑
j
ψi
[
ATi PAi +BT

i PBi
]

(21)

where he normalized fire strength ψi has the properties showed in Eq. 20 and Eq. 14.
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So, the stability of the fuzzy model (13) and the fuzzy control (17) can be guaranteed if the
following Theorem is fulfilled.
Theorem 1. The equilibrium state xe = 0 of closed loop system with control input (19 with
two-overlapped fuzzy memberships at most, is asymptotically stable in the large, if there exist
µ positive definite matrices Ps = P Ts > 0 such that:

[Λij + Λji]
T Ps [Λij + Λji]− 2Ps < 0 i ∈ Ss s = 1, . . . , µ (22)

ΛTiiPsΛii − Ps < 0 i ∈ Ss j ∈ Ss i < j ∈ Ss (23)

Λij = Φi − ΓiKj where S = {S1, S2, . . . , Sµ} are µ regions where two fuzzy rules are fired at
most (two overlapped fuzzy memberships), where Ss contains the indexes of fired membership
functions in s region.

Proof: We suppose that there exist µ matrices Ps = P Ts > 0 so (22) and (23) are satisfied.
Considering a candidate Lyapunov function like:

Vk =

µ∑
s=1

λs
[
xTk Psxk

]
(24)

where

λs [υ̂] =

{
1 υ̂ ∈ Ss
0 υ̂ /∈ Ss

µ∑
s=1

λs [τ̂ ] = 1 (25)

It can be easily showed that V [0] = 0, Vk > 0 for xk 6= 0, and V [x]→∞ as ‖xk‖ → ∞, it is
only sufficient shows that ∆V [xk] < 0 to prove that Vk is a Lyapunov function and the theorem
is fulfilled. 2

So, we have:

∆Vk = Vk+1 − Vk =
µ∑
s=1

λs
[
xTk+1Psxk+1

]
−

µ∑
s=1

λs
[
xTk Psxk

]
By reordering and set the matrix V s

k = xTk Psxk

∆Vk =
µ∑
s=1

λsLs

Ls = V s
k+1 − V s

k

(26)

It is enough to show that:
Ls < 0 s = 1, ..., µ (27)

Substituting V s
k+1 and V s

k in (26) we have:

Ls =

[ ∑
i∈Ss

∑
j∈Ss

ψiψjΛijx

]T
Ps

[ ∑
i∈Ss

∑
j∈Ss

ψiψjΛijx

]
− xTPsx (28)

Ls ≤ xT

[ ∑
i∈Ss

∑
j∈Ss

ψiψj

[
ΛTijPsΛji − Ps

]]
x (29)

≤ xT


∑
i∈Ss

ψ2
i

[
[Λii + Λii]

T Ps [Λii + Λii]− Ps
]

+

∑
i∈Ss

j<i∑
j∈Ss

ψiψj

[
1

2
[Λij + Λji]

T Ps [Λij + Λji]− 2Ps

]
x

Ls < 0→ ∆Vk < 0

(30)
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The first term in (30) is negative definite by (22). The second term is negative definite by
(23). Thus, the definite positive quadratic function (24) is a Lyapunov function for the fuzzy
control (17), this implicates asymptotically stability in the large. The proof of the theorem is
complete.

4 Scheduling

In this section, the scheduling theory is used to design an online feedback scheduler for the
NCS based on the performance of the control system and the load conditions of the communi-
cation network. The scheduler adjusts the sampling/actuation period in function of the QoC
and the QoS, the next period is selected like a multiple of the period base (h) between the lower
and upper bounds obtained by an analysis of the process. The idea is to keep the deadline rate
and the system performance at the reference level by adjusting the transmission period. It is
proposed a local fuzzy scheduler for each sensor node present in the communication network,
which based on external traffic, perform a dynamic scheduling also called feedback scheduling.

The codesign controller/scheduling has as aim to minimize the effects of the time delays and
lost packets using the fuzzy controller, while the fuzzy scheduling minimizes the transmission
messages without degrading the process performance, modifying the sampling/actuation period
into the range that the fuzzy controller guaranteed the stability.

The proposed dynamic scheduling has the configuration shown in Figure 1, its behaviour is
as follows: the sensor node sends packets with the system information and its execution period.
The controller node adds the error and control signal to the packet and sends it to the actuator
node. The actuator computes the system performance and the deadline rate each scheduling
period and sends it to the sensor node. Finally, the sensor node modifies the period h+ based
on the information of the deadline rate and the system performance. A deadline occurs when a
packet is upgraded after a time limit hmax or when the packet is lost.

In terms of control, the manipulated variable is the actuation period and the controlled
variables are the deadline rate and system performance.

The actuator node module calculates the system operation ∆e through the mean absolute
error (MAE) of n received packets with a scheduling period δ. While the deadline rate ∆h is
calculated with the m packets received that have exceeded their deadline hmax plus the lost
packets ξ during the scheduling period.

∆e =
∑
k∈n |ek|
n

m = {∀k ∈ n|τk > hmax}+ ξ
∆h = m

δ

∑
k∈n hk

(31)

The deadline rate as a controlled variable is a common metric for the quality of service (QoS).
from a real-time point of view is also an important factor that degrades the quality of control
(QoC). The QoS controls the number of lost deadlines at an acceptable low level.

In addition, The ∆h as a controlled variable can simultaneously address the problems of
variable time delays and lost packets. When ∆h is kept at a low level, the delays of most packets
are less than the deadline and the number of packets lost is limited. As a consequence, the
impact of the delay and the lost packets in the QoC is minimized.

The sampling period affects the lost deadline rate, with short sampling periods increasing
network utilization, which inherently causes that the network imperfections increase and vice
versa. With heavy traffic load, the probability of collisions between nodes is greater, which
potentially increases both the time delay and the lost packets and at the same time the lost
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deadline rate. On the other hand, a largely lost deadline rate can generally be reduced by
increasing the sampling period, particularly when the network is overloaded.

According to the control theory of sampled data, short sampling periods generate better QoC.
In this context, QoC can be improved by increasing the utilization efficiency by adjusting the
sampling period. This justifies the choice of the sampling period as a manipulated variable that
is adjusted with respect to the network conditions, where variations in the unpredictable and
dynamic traffic load in the NCS can be effectively compensated.

With the metric of the QoC (∆e) and QoS (∆h), the fuzzy scheduler is designed as a con-
trol problem, where the metrics form the antecedent part and the consequent part are parallel
feedback matrices. The i-th fuzzy rule has the form of:

if ∆e is β1j and ∆h is β2j then h̄ = Fz (32)

where β are the membership functions and z ∈ R2 with z = [∆e ∆h], F is the feedback scheduling
matrix. the overall fuzzy scheduler is:

h̄ =
M∑
i=1

2∏
j=1

βijFiz (33)

where M is the number of fuzzy rules. The new sampling period is assigned in the interval:

h+ = {hmin ≤ h̄ ≤ hmax} (34)

Given the absence of a mathematical model that describes the relationship between the
lost deadline rate, the EAM and the sampling period, the bounds and the fuzzy scheduler are
determined based on experimentation.

4.1 Analytical codesign

If the fuzzy model is locally controllable, i.e. (Φi,Γi), i = 1, ..., l, are controllable pairs, the
feedback control matrices Ki, (i = 1, 2, ..., l) can be calculated using eq. (18), with matrices Ri
and Qi to get a desired performance.

The procedure of the fuzzy codesign is as follows:
Step 1: Define the intervals of the compound time based on the measurements of the network

to define the bounds of the compound time.
Step 2: For the plant (eq. 1), define the hi actuation periods for each Fi matrix in the fuzzy

scheduler. Define the membership functions for the control error ∆e and deadline rate ∆h.
Step 3: Discretize the model (eq. 1) for each hi to set Γi and Φi in the fuzzy controller.
Step 3: Verify that all local discrete systems are controllable. That is, rank(Γi,ΦiΓi, ...,Φ

n−1
i Γi) =

n, i = 1, ..., l.
Step 4: Calculate the feedback matrices Ki of each local system via LQR assigning the

matrices Ri and Qi according to the desired performance (Eq. 18).
Step 5: Find all the µ regions with almost two overlap rules and apply Theorem 4.1 to check

the stability of the closed-loop. If the system is not stable, go back to step 4 to reassign the
matrices Ri and Qi.

5 Experiments and results

The fuzzy codesign approach is tested in a nonlinear MIMO system with an Ethernet network,
the experiment generated variable traffic into the network with external nodes. The performance
is compared with a Hybrid controller [11].
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5.1 Case study

The case study is a MIMO nonlinear, open-loop unstable and time-varying system. It is a
2-DOF helicopter system integrated to an Ethernet network (Figure 5), detailed information can
be found in [19]. The sensor and actuator nodes are Pentium 4 with 1028 Mb RAM with an
INTEL 10/100 Mb Ethernet card, each has an XPC target operative systems and are connected
through a switch, the controller is an embedded system with a microcontroller board based on
the ATmega32u4 and the Atheros AR9331. The Atheros processor uses Linino OS a Linux
distribution. The board has built-in Ethernet slot, a 16 MHz crystal oscillator. The sensor node
has an A/D 10 bits resolution and the actuator has a D/A 8 bits resolution. The tasks for the
NCS are set as follows, 5 ms as minimum sampling period of sensor and actuator nodes, the
controller node is driven by event.

The experiment consists of a 2D helicopter simulator mounted on a fixed base with two
propellers that are driven by DC motors as is shown in Figure 5. The front propeller controls the
elevation of the helicopter nose about the pitch axis and the back propeller controls the motion
about the yaw axis. The pitch and yaw angles are measured using high-resolution encoders.

Figure 5: Networked Control System with workload

The Euler-Lagrange method is used to derive the nonlinear equations describing the motions
of the helicopter [19]. From its nonlinear equations of motions, the linear continuous state space
models with x = [θ ψ θ̇ ψ̇] and u = [Vp Vy] are

ẋ = Ax+Bu
y = Cx

(35)
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A =


0 0 1 0
0 0 0 1

0 0 − Bp
Jp+ml2

0

0 0 0 − By
Jy+ml2



B =


0 0
0 0
Kpp

Jp+ml2
Kpy

Jp+ml2
Kyp

Jy+ml2
Kyy

Jy+ml2


C =

[
1 0 0 0
0 1 0 0

]

(36)

where Kpp is the thrust torque acting on pitch axis from pitch motor, Kpy the thrust torque
acting on yaw axis from pitch motor, Kyp the thrust torque acting on pitch axis from yaw motor,
Kyy the thrust torque acting on yaw axis from yaw motor, Bp the viscous damping coefficient
about pitch axis, Bp the viscous damping coefficient about yaw axis, l the center of mass length
along helicopter bod, g the gravity constant, m the total moving mass of the helicopter, Jp the
total moment of inertia about pitch pivot, Jy the total moment of inertia about yaw pivot, Vp
the voltage of pitch motor, Vy voltage of yaw motor, θ the angle about pitch axis and ψ the angle
about yaw axis.

5.2 Results

The fuzzy model is obtained discretizing the helicopter model (Eqs. (35)-(36)) with different
sampling-actuation periods hj = [5, 10, 15, 20] ms, the compound time is previously analyzed
generating the bounds υ = [5 − 300] ms. The fuzzy model has four rules with the antecedent
parameters

ρ = [5, 10, 15, 20]x10−3

σ = [12, 24, 30, 30]x10−4

The fuzzy controller is designed by LQR method and the Lyapunov conditions are fulfilled
(22)-(23).

K =

[
15.4 1.53 4.91 0.677 12.2 0.718
−1.97 17.3 −0.241 6.2 −1.24 7.03

]
The fuzzy scheduler is designed with the sampling-actuation periods hj = [5, 10, 15, 20] ms.

The range of the lost deadlines is ∆e = [0, 1], the MAE is ∆h = [0, 1.4] and the scheduling
period δ = 1 s.

The network imperfections and the system performance were measured to show the codesign
approach with a square reference. The overall system performance is compared with a hybrid
control designed to be stable in the compound time range.

The network behaviour with medium traffic generates a peculiar behaviour in the delay and
the loss of deadlines (6). The time delay increases at the start of traffic with a maximum of 31
ms and average of 5 ms, but as the traffic increases, delays become deadlines with a 5.8% and
average of 132 ms between missed deadlines. The upper graph shows the time delay where the
average traffic starts in 50 s, however, the effect starts seconds later and decreases around the
second 55, giving rise to an increase in the lost deadlines (80 s), but its effect extends to the 85s
because the switch continues to empty the queue.

In this case, the fuzzy scheduler change the assignment policy for the sampling-actuation
period (7) (inf.), When medium traffic appears, the EAM (sup.) had variations greater than 0.1,
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Figure 6: Time delays and time elapsed between lost packets with medium traffic (50 - 80 s).

which represents an error in steady state greater than 2% , and added to the presence of 5.8
of lost deadlines (med.), the fuzzy scheduler decides to decrease the sampling period slowly but
without overloading the network and gradually improve the performance of the system.

Figure 7: MAE, lost deadlines and the sampling-actuation period with medium traffic.

With medium traffic, the fuzzy codesign and the hybrid control remain stable (Fig. 8), but
the fuzzy codesign (sup.) is the one that fulfils the control criteria. The codesign (sup.) with
medium traffic has an overshoot of ζ = 15◦, with a stable steady error ess = 0.5 and an setting
time Ts = 4 s.; while the hybrid control (inf.) degrades its performance against average traffic
with an overshoot of ζ = 34◦, with a stable steady error ess = 6 and with oscillations. At this
level of traffic, the hybrid control ensures system stability but with poor performance.

In the case of heavy traffic (Figure 3), the time delay and the lost deadlines were increased,
the maximum delay was 30 ms, with an average of 12 ms, and deadlines were 7.3% and the
average time of 122 ms between lost deadlines. The heavy traffic started at 50 s, however, its
effect was visible until the 85 s even when the traffic was finished in the 80 s.

Figure 9 shows the pitch position for both the fuzzy codesign and the hybrid controller. In
case of the heavy traffic measured (Figure 3), the hybrid controller has an erratic behavior with
an overshoot ζ = 36◦, a steady stable error ess = 10 and setting time Ts > 9 s. While, the
fuzzy codesign curves indicate a stable behavior with an overshoot ζ = 30◦, a steady stable error
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Figure 8: Comparison between the codesign and an hybrid controller with medium traffic.

ess = 0.8 and setting time Ts = 2 s.

Figure 9: Comparison between the codesign and an hybrid controller with heavy traffic.

The fuzzy scheduler changes the sampling period (Figure 10), Because the MAE (sup.) has
variations greater than 0.25 representing a steady-state error greater than 5%, And added to
the presence of 7.8% of lost deadlines (med.), The fuzzy scheduler decides to slow down the
sampling period in order to correct the error even when traffic on the network increases. This
demonstrates that the fuzzy codesign can apply a dynamic control dependent on the network
behaviour with a stable design in all the range of υ.

6 Conclusion

A fuzzy codesign approach was presented to minimize the effects of the network-induced
imperfections. The approach was designed with a controller and scheduler together in function
of the network imperfection measurements and the continuous model of the system. The fuzzy
controller is designed to select the control signal depending on the compound time estimation,
with multiple discrete model that represents the process in function of the actuation periods dis-
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Figure 10: MAE, lost deadlines and the sampling-actuation period with heavy traffic.

appeared the sampling and communication jitter. The fuzzy scheduler was designed to control
the sampling-actuation period in function of the system performance and the behaviour of the
network. The codesign approach is applied to a nonlinear, time-varying MIMO system intercon-
nected with an Ethernet network and employing an embedded system as the controller-scheduler.
The codesign performance was compared with a hybrid control designed to counteract the effects
of delay in the same range as codesign. The fuzzy codesign had the best performance within the
entire range of compound time.
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