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Abstract: Using spectral clustering algorithm is di�cult to �nd the clusters in
the cases that dataset has a large di�erence in density and its clustering e�ect de-
pends on the selection of initial centers. To overcome the shortcomings, we propose a
novel spectral clustering algorithm based on membrane computing framework, called
MSC algorithm, whose idea is to use membrane clustering algorithm to realize the
clustering component in spectral clustering. A tissue-like P system is used as its
computing framework, where each object in cells denotes a set of cluster centers and
velocity-location model is used as the evolution rules. Under the control of evolution-
communication mechanism, the tissue-like P system can obtain a good clustering
partition for each dataset. The proposed spectral clustering algorithm is evaluated on
three arti�cial datasets and ten UCI datasets, and it is further compared with classical
spectral clustering algorithms. The comparison results demonstrate the advantage of
the proposed spectral clustering algorithm.
Keywords: machine learning, spectral clustering, membrane computing, tissue-like
P systems.

1 Introduction

Membrane computing initiated by Gheorghe P�aun [17], was inspired from the structure and
functioning of living cell as well as from the cooperation of cells in tissues, organs, and biological
neural networks. Membrane computing is a class of distributed parallel computing models,
known as P systems or membrane systems. In the past years, many variants of P systems
have been proposed [7, 8, 11, 15, 16, 18, 19, 32, 41, 46], and they have been applied to di�erent
real-world problems [47], for example, combinatorial optimization [42, 44, 48], robots [1], image
processing [4, 5, 22, 25, 40, 43], signal processing [23, 36, 45], knowledge representation [26, 34, 37],
fault diagnosis [21, 28, 33, 35, 38, 39], ecology and system biology [3, 9, 10]. Most of membrane
systems have been proved to be powerful (equivalent with Turing machine) and e�ective (able
to solve the NP hard problems in a feasible time).

In the recent years, P systems were used to deal with data clustering problems. Zhao et
al [49] presented an improved clustering algorithm, in which the rules in cell-like P systems were
used to realize classical k-medoids algorithm. In Peng [24], evolution-communication P systems
are used to deal with fuzzy clustering problems. In [27] and [29], two di�erent mechanisms of
P systems were considered to investigate automatic clustering problems. Liu et al [12] used a
cell-like P systems with promoters and inhibitors to develop a k-medoids clustering algorithm.
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In [20], fuzzy clustering problems were viewed as a multiobjective optimization problem and a
tissue-like P system was designed to solve the optimization problem.

Spectral clustering is a popular method for solving clustering problems in a wide range of non-
Euclidian spaces, linearly non-separable clusters and detecting non-convex patterns [13]. The
key idea in spectral clustering is to achieve graph partitioning by performing eigen-decomposition
of a graph Laplacian matrix. The obtained eigenvectors are used as the low dimensional rep-
resentation of the data, and then the k-means algorithm is applied to generate the clusters.
Spectral clustering approaches di�er in how they de�ne and construct the Laplacian matrix and
thus which eigenvectors are selected to represent the partitioning. Moreover, di�erent objective
functions are used to derive the best cut. Chan et al. [2] proposed the ratio cut to minimize the
total cost of the edges crossing the cluster boundaries, normalized by the size of the k clusters,
to encourage balanced cluster sizes. Shi and Malik [31] established the normalized cut (NCut),
which can measure the dissimilarities among groups and within clusters. In [6], Ding et al. pro-
posed min-max cut criterion, which can avoid to segment the smaller subgraphs that contains
only a few vertices. According to di�erent partitioning criteria and spectral mapping methods,
many di�erent methods have been developed to realize spectral clustering algorithms. Perona
and Freeman [30] proposed PF algorithm based on iterative spectrum, which is the simplest
spectral clustering algorithm. Ng et al. [14] proposed the NJW algorithm, which is based on the
K channel segmentation. However, there are a number of shortcomings in spectral clustering
algorithms, for example, it is di�cult to �nd the clusters with a large di�erence in density and
their clustering e�ect depends on the selection of initial centers.

This paper focuses on application of membrane computing model in spectral clustering to
overcome the shortcomings and presents a novel spectral clustering algorithm based on a mem-
brane computing model, called MSC algorithm. A tissue-like P system is considered as a com-
puting framework, and a membrane clustering algorithm is developed based on the computing
framework and is embedded in a classical spectral clustering algorithm. To the best of our
knowledge, this is the �rst attempt to use membrane computing model for improving spectral
clustering algorithm.

The remainder of this paper is organized as follows. Section 2 reviews classical spectral
clustering algorithm. Section 3 describes in detail the proposed membrane spectral clustering
(MSC) algorithm. Experimental results and analysis are provided in Section 4. Conclusions is
given in Section 5.

2 Spectral clustering and the NJW method

Spectral clustering method is a widely used graph-based approach for data clustering. Given
a dataset X = {x1, x2, . . . , xn} in Rn×d with k clusters. We expect the dataset X will be
transformed into a weighted undirected graph G = (V,E), in which V = {xi}ni=1 is the vertex
set composed of n data points, and E = {wij}ni,j=1 is the set of weighted edges, where wij
indicates the pairwise similarity between the xi and xj . V and E contain all vertices and edges,
respectively, Let W = (wi,j)1≤i,j≤n be the a�nity matrix. Usually, wij in a�nity matrix can be
measured by a Gaussian function:

wij =

{
e−

d(xi,xj)2

σ2 , i 6= j
0, i = j

(1)

The degree matrix D is a diagonal matrix, whose element Dii is the degree of data point xi, i.e.,
Dii =

∑n
j=1wij . Based on the two matrices, we can obtain the Laplacian matrix, L. There are

three forms of Laplacian matrices: (i) unnormalized Laplacian matrix (L = D −W ), and two
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normalized Laplacian matrices, (ii) symmetric Laplacian matrix (Lsym = D−1/2WD−1/2) and
(iii) random-walk Laplacian matrix (Lrw = I −D−1W ).

As a spectral approach for graph partitioning problem, NJW method is one of the most
widely used spectral clustering algorithms. Its idea is to �nd a new representation of patterns on
the �rst k eigenvectors of the Laplacian matrix. Algorithm 1 gives the details of NJW method.

Algorithm 1 NJW method

Input: X ∈ Rn×d, k ∈ N
Output: V = {vi|i = 1, 2, . . . , k}

1: Construct the a�nity matrix W ∈ Rn×n according to Eq. (16);
2: Compute the degree matrix D;
3: Compute the normalized Laplacian matrix Lsym = D−

1
2WD−

1
2 ;

4: Let 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk be the k least eigenvalues of Lsym and p1, p2, . . . , pk be the
corresponding eigenvectors; Construct the matrix P = [p1, p2, . . . , pk] ∈ Rn×k, where pi is
ith column vector;

5: Construct the matrix Y from P by renormalizing each rows of P , i.e., Yij = Pij/(
∑

j P
2
ij)

1/2;
6: Treat each row of Y as a point in Rk, and cluster them into k clusters c1, c2, . . . , ck via

k-means algorithm;
7: Output the clusters that corresponds to the original data set, v1, v2, . . . , vk, where vi =
{xj |yj ∈ ci}.

3 Spectral clustering algorithm based on membrane computing

framework

In this paper, we will try to use membrane computing algorithm (MCA) to replace the
k-means component in classical spectral clustering algorithm to realize the optimal data parti-
tioning. The spectral clustering algorithm optimized by membrane computing model is called
MSC algorithm in this paper. By contrast, classical spectral clustering algorithm is called CSC
algorithm. Figure 5 shows the structural comparison of CSC and MSC algorithms. From Figure
5, we can �nd that �rst component of MSC algorithm is the same to that of CSC algorithm, but
MSC algorithm uses MCA algorithm rather than k-means algorithm in component 2. Therefore,
in the following, we only describe the MCA algorithm. Since the core of MCA algorithm is a
tissue-like P system, we �rst describe the tissue-like P system, and then illustrate the proposed
MCA algorithm.

3.1 A tissue-like P system

We design a tissue-like P system (consisting of q cells) as the computing framework of MCA
algorithm:

Π = (O1, O2, . . . , Oq, R1, R2, . . . , Rq, R
′, io)

where Oi is the set of objects in ith cell, Ri is the set of evolution rules in ith cell, R′ is the set
of communication rules between the cells, and the io = 0 indicates that the environment is the
output region of the system.

Figure 2 shows the tissue-like P system, which consists of q cells labeled by 1, 2, . . . , q re-
spectively. Each cell has m objects, and the environment is labeled by 0. Denote by Zij the jth
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Figure 1: Structural comparison of CSC and MSC algorithms.

object in ith cell, i = 1, 2, . . . , q, j = 1, 2, . . . ,m. The arrows in the �gure indicate the commu-
nication of objects. The communication of objects is between these cells and the environment.
The environment is also the output region of the system. When the system halts, the object in
the environment is the optimal solution (a set of optimal cluster centers).

1 2 q

0

Figure 2: The designed tissue-like P system.

Each object in the cells, Z, is used to represent a set of candidate k cluster centers, z1, z2, . . . , zk ∈
Rd. Thus, object Z can be represented as a k × d dimensional vector:

Z = (z11, z12, . . . , z1d, . . . , zi1, zi2, . . . , zid, . . . , zk1, zk2, . . . , zkd) (2)

where (zi1, zi2, . . . , zid) corresponds to ith candidate cluster center, i = 1, 2, . . . , k.
These objects in cells will be evolved during the computation. Initially, a set of objects is

generated randomly. Based on data points in a data set, we can determine a lower bound and
an upper bound for each dimension, Aj = min{x1j , x2j , . . . , xnj}, Bj = max{x1j , x2j , . . . , xnj},
j = 1, 2, . . . , d. Thus, zij = rand([Aj , Bj ]), where rand() denotes a random function that can
generate the random number in [Aj , Bj ].

The tissue-like P system uses the communication rule of the form < i, a;λ, 0 > to update the
object in the environment, which means that object a in cell i is transported to environment 0,
where λ denotes the empty object. The object in the environment is called the global optimal
object, denoted by Zbest. For each cell, communication rule is used to communicate its best
object to the environment and update the optimal object. The updating formula can be given
as follows:

Zbest =

{
Zi,best, if J(Zi,best) < J(Zbest)
Zbest, otherwise

(3)

where Zi,best is the best object in ith cell. The object judgement is based on the following �tness
function:

J(z1, z2, . . . , zk) =
k∑
i=1

n∑
j=1

(uij)
m ‖ xj − zi ‖2 (4)
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where uij denotes membership degree of xj belonging to ith class, and m is a power exponent.

During the computation, tissue-like P system uses evolution rules to evolve the objects in
cells. In this work, the velocity-location model of PSO is used as the evolution rules. The
velocity-location model can be described as follows:

{
V i
j = wZij + c1r1(P ij − Zij) + c2r2(Zbest − Zij)
Z ′ij = Zij + V i

j
(5)

where V i
j corresponds to the speed of Zij , Z

′i
j is the new value of Zij after evolving, and P ij

is the best position so far for jth object in ith cell; w is the inertia weight constant, c1 and
c2 are learning rate constants, and r1 and r2 are two random real numbers in [0, 1]. In the
implementation of MCA algorithm, a linear decreasing strategy is used, i.e., w = (0.9 − t

2T ),
where t is the current iteration number and T is the maximum number of iterations.

In this paper, the maximum iteration number is used as halting condition. After the system
halts, the best object Zbest in the environment is regarded as the solution. Finally, according to
the optimal cluster centers, c1, c2, . . . , ck, N data points are classi�es into k clusters.

3.2 Membrane clustering algorithm

As stated above, MCA algorithm is used as second component of the MSC algorithm. The
MCA algorithm uses the designed tissue-like P system to automatically search for the optimal
cluster centers for a data set to be clustered. Under the control of the evolution and commu-
nication rules, the P system continuously evolves the objects in cells and updates the global
optimal object in the environment until the system halts. Figure 3 shows the �ow chart of MCA
algorithm.

Randomly generate initial object for q cells

Evaluate each object of the q cells

Communication rule Communication rule Communication rule

Evolution rule Evolution rule Evolution rule

Cell 1 Cell 2 Cell q

Halting?
N

Export final result in the environment

Y

Stop

Figure 3: The �ow chart of membrane clustering algorithm (MCA) used in MSC algorithm
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4 Experimental results and analysis

4.1 Dataset

In order to evaluate the performance of MSC algorithm, three benchmark synthetic dataset
and ten UCI dataset were used in experiments. The three synthetic dataset are Threecircles,
Twommoons and Spirl respectively, shown in Figure 4(a)-(c). Table 1 gives the basic information
for all data sets.

(a) (b) (c)

Figure 4: Three synthetic datasets. (a) Threecircle; (b) Twommoons; (c) Spirl.

Table 1: Data sets used in experiments

Datasets No.of data Dimension No.of clusters

ThreeCircle 3603 2 3
Twommoons 1502 2 2

Spirl 944 2 2
Iris 150 4 3
wine 178 13 3
sonar 208 60 2

diabetes 1151 19 2
glass 214 9 6
ecoli 336 7 8
Heart 297 13 2
liver 345 6 2

ionosphere 351 34 2
sym 350 2 3

4.2 Experimental results

Three commonly used indexes of quality were used to measure the clustering performance.

(1) Adjusted Rand Index (ARI): ρARI ∈ [−1, 1].
This index measures the agreement between two compared partitions, namely, the ground
truth (denoted as U) and the estimated by the tested clustering approach (denoted as V ),
and it is expressed by

ρARI =
a11 − (a11 + a01)(a11 + a10)/a00

(a11 + a01) + (a11 + a10)/2− (a11 + a01)(a11 + a10)/a00
(6)

where a11 ∈ N is the number of sample pairs belonging to the same subset in U and in
V , a10 is the number of sample pairs belonging to the same subset in U and to di�erent
subsets in V , a01 ∈ N is the number of sample pairs belonging to di�erent subset in U and
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to the same one in V , and a00 ∈ N is the number of sample pairs belonging to di�erent
subsets in U and in V .

(2) Purity Index (PUR): ρPUR ∈ [0, 1].
This index matches the clustering partition V with the ground truth U as a weighted sum
of the maximal precision values for each subset.

ρPUR =
1

N

k∑
i=1

max
j
|vi ∩ uj | (7)

(3) Jaccard Index (JAC): ρJAC ∈ [0, 1].
This index matches the similarity among two sets, U and V , as follows:

ρJAC =
a11

a11 + a10 + a01
(8)

In the experiment, two classical spectral clustering algorithms, K-SC and ε-SC, were intro-
duced to implement two MSC algorithms, where membrane clustering algorithm is used to replace
k-means component in the original spectral clustering algorithms. Thus, two MSC algorithms
and the corresponding classical spectral clustering algorithms were compared in experiment. Ta-
ble 2 and Table 3 show the comparison results of these algorithms on synthetic and UCI datasets,
respectively. For each dataset, these tables provide the experimental results of four algorithms
in terms of three indexes. Note that these experimental results are average value of 10 times
independently running for each algorithm on a dataset. Moreover, we also provide the averages
of these algorithms for each clustering index, respectively.

From table 2, we can see that the average value of MSC algorithm is the largest and can
reach 1. The results show that the spectral clustering algorithm based on membrane computing
framework has an obvious advantage in improving the average performance of spectral clustering
algorithm. Comparison results of MSC and TSC on the UCI datasets show that K-SC and ε-
SC algorithms based on membrane computing framework can signi�cantly improve the Jaccard
index, indicating that the proposed MSC algorithm is more robust and has a certain ability to
deal with noise data. For the ARI and the Purity indexes, MSC algorithm achieves a comparable
result in comparison to the classical algorithm.

Iris dataset is used as an example to analyze the in�uences of parameters in MSC algorithm.
Figure 5 (a)-(c) shows the in�uences of three parameters, including bandwidth ε of the Gaussian
kernel function, the number of cells m and the maximum number of iterations Maxstep. As can
be seen from the �gures, MSC algorithm is more sensitive to m and ε, and the curve of parameter
Maxstep rises slowly and �nally tends to straight line, which indicates that the performance of
the algorithm is not improved when the maximum number of iterations is reached.
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Table 2: Clustering quality assessment results (synthetic datasets).

Dataset
Quality K-SC ε-SC
measure k-means MCA k-means MCA

Threecircle
ARI 1.0 1.0 0.51 1.0
Purity 1.0 1.0 0.84 1.0
Jaccard 1.0 1.0 0.56 1.0

Twommoons
ARI 0.37 1.0 0.59 1.0
Purity 0.81 1.0 0.89 1.0
Jaccard 0.56 1.0 0.70 1.0

Spirl
ARI 1.0 1.0 0.89 1.0
Purity 1.0 1.0 0.73 1.0
Jaccard 1.0 1.0 0.95 1.0

Average

ARI 0.79 1.0 0.66 1.0
Purity 0.93 1.0 0.82 1.0
Jaccard 0.85 1.0 0.73 1.0

Table 3: Clustering quality assessment results (UCI repository datasets).

Dataset
Quality K-SC ε-SC
measure k-means MCA k-means MCA

Iris
ARI 0.44 0.66 0.63 0.75
Purity 0.87 0.86 0.84 0.90
Jaccard 0.50 0.64 0.60 0.71

wine
ARI 0.03 0.30 0.29 0.0
Purity 0.57 0.67 0.53 0.40
Jaccard 0.24 0.37 0.38 0.34

Sonar
ARI 0.02 -0.01 0.00 -0.0058
Purity 0.57 0.51 0.55 0.50
Jaccard 0.34 0.48 0.34 0.48

diabetes
ARI 0.16 0.01 0.16 0.0
Purity 0.70 0.53 0.70 0.53
Jaccard 0.43 0.51 0.43 0.50

glass
ARI 0.17 0 0.16 0.01
Purity 0.51 0.36 0.52 0.36
Jaccard 0.25 0.26 0.33 0.26

ecoli
ARI 0.37 0.20 0.48 0.42
Purity 0.56 0.45 0.66 0.70
Jaccard 0.32 0.29 0.42 0.65

Heart
ARI 0.31 0.04 0.37 0.40
Purity 0.78 0.55 0.80 0.75
Jaccard 0.49 0.51 0.52 0.63

liver
ARI 0 -0.02 -0.01 0.12
Purity 0.65 0.58 0.98 0.67
Jaccard 0.36 0.51 0.50 0.56

ionosphere
ARI 0.15 0.01 0.13 0.25
Purity 0.70 0.64 0.68 0.73
Jaccard 0.44 0.54 0.41 0.55

sym
ARI 0.56 0.75 0.49 0.38
Purity 0.68 0.87 0.75 0.54
Jaccard 0.79 0.72 0.43 0.43

Average

ARI 0.28 0.20 0.28 0.23
Purity 0.66 0.61 0.70 0.61
Jaccard 0.41 0.49 0.43 0.52
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(a)

(b)

(c)

Figure 5: Free parameter analysis over UCI datasets based on the Purity: (a) bandwidth ε of
the Gaussian kernel function; (b) the number of cells m; (c) the maximum number of iterations
Maxstep.
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5 Conclusion

In this paper, we used membrane computing framework to develop a novel spectral clustering
algorithm, called MSC algorithm. The core component of MSC algorithm is a tissue-like P system
which is composed of several cells and uses the improved PSO algorithm as evolution mechanism.
We evaluated the performance of the proposed algorithm on three arti�cial data sets and ten
UCI datasets. The results show that compared with the classical spectral clustering algorithm,
the proposed algorithm can improve the clustering performance. This study also demonstrates
the e�ectiveness of using the membrane computing framework to solve data clustering problems.

MSC algorithm used membrane clustering algorithm (MCA) instead of k-means component
in classical spectral clustering algorithm, which searches for the optimal solution by both the
evolution of objects in multiple cells and the communication of objects between the cells. It is well
known that membrane computing is a distributed computing model. However, MSC algorithm
is not implemented in parallel due to limitation of the computer's serial architecture. Therefore,
our further work is to discuss the parallel implementation of MSC algorithm on GPGPU and/or
FPGA.
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