
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. V (2010), No. 3, pp. 292-300

A Novel Model for Adaptive Control Systems
A State Machine Approach

F. Valles-Barajas

Fernando Valles-Barajas
Universidad Regiomontana
Information Technology Department
15 de Mayo 567 pte., C.P. 64000 colonia centro, Monterrey, Nuevo León, México
E-mail: fernando.valles@acm.org, fernando.valles@ieee.org

Abstract: In this paper a new model, based on state machines, of adaptive con-
trol systems is presented. Due to its high level of expressiveness, UML was chosen
as the modeling language. In particular the paper presents a model of an indirect
adaptive control system. This model can be used to document and to have a better
understanding of adaptive control systems.
Keywords: adaptive control systems, state machines, Personal Software Process
(PSP), software design

1 Introduction

Adaptive control is one of the research areas of control engineering that deals with time-varying
systems [9]. To control a process using this technique, the first step is to obtain a model of the process
based on measurements of the input and output of the process (these measurements are stored in a vector
called measurement or observation vector φ(k)); this step is called identification and is done by using a
parameter adaptation algorithm (PAA) like the recursive least squares algorithm. Once the parameters of
the process are obtained, the controller is designed using these parameters.

The Personal Software Process1 is a modern methodology that helps the engineer to ensure quality soft-
ware products [7]. The design phase of this methodology requires that the software engineer builds four
models. Every of these models represents a different view of a system; for example there model that
represents the states and the transitions between these states of a particular entity using state machines,
which represent the internal dynamic view of a system.
State machines are used in software engineering to analyze the behavior of complex systems, for example
the rational unified process (RUP)2 uses state machines to model a use case, an operation or an object [2].

In this paper the concepts of state machines will be applied to model an adaptive control system (ACS).
There are several notations to represent state machines (see for example [5], [6], [7]), in this paper the
notation of the UML will be used. The reason for this, is the maturity of this modeling language and the
success shown by UML to model complex systems.

Motivation and contribution of the paper:

1. the graphical model obtained with the state machine will help the control engineer to have a better
understanding of the ACS control law.

2. this model could be used by a software engineer as a base to implement the software of the ACS.

1 c© Software Engineering Institute
2 c© IBM

Copyright c© 2006-2010 by CCC Publications

A Novel Model for Adaptive Control Systems
A State Machine Approach 293

3. by using this new model, a better understanding by the software engineer of an adaptive control
system will be obtained.

4. this model can be used as documentation of the control system.

5. a better communication between the software engineer and the control engineer will be obtained
by using the proposed model.

Conventions used in the paper: In all the paper, for the purpose of clarity, all the parts of the state
machines (states, transitions, events, guard conditions and actions) are printed in italic font. The key
concepts of the state machines will be written in bold font.

Related works: In [4] an adaptive strategy based on state machines is presented.
The events that are considerd in the strategy are: threshold crossings, commands from the operator of
the system and the occurrence of several patterns in the process signals (control error e(k), process input
u(k) and process output y(k)) among others. The occurrence of one of these events may provoke that the
adaptive strategy changes from one state to another.
The states modeled in this strategy are: initial state, open loop state, closed loop state and final state.
The open and closed loop states are composite states, which are states composed of other states [12].
In that paper the author shows a successful example of his proposal.

The paper of [13] shows an application of state machines in fault-adaptive control systems. As stated
in that paper this kind of system can deal with time-varying systems and also with systems that present
faults; the performance of the control system must remain unaffected in spite of these two problems.
To deal with these problems that paper proposes to add to the control system a supervisory controller
module and a reconfiguration management module. The relevant point in the paper is that the supervisor
controller module is represented as a finite state machine (FSM).
That paper contains an example of the application of the roll control of a simulated airplane.

Organization of the paper: Section 2 presents the necessary concepts of the adaptive control theory
to understand the proposed model. In section 3 an explanation of the building blocks for state machines
is given. Section 4 contains the proposed model for an adaptive control system using state machines.
The last section gives some concluding remarks.

2 Adaptive control systems

Fig. 1 shows the configuration of an indirect adaptive control system. In this kind of adaptive control,
the model of the process Gp(z−) is obtained based on a set of input-output measurements (u(k), y(k))
and then the controller is designed with this model. The parameter adaptation algorithm (PAA) block is
responsible for obtaining this model. The controller design block designs the controller Gc(z−) based on
the model obtained by the PAA and on the desired performance specified by the operator of the system.
The adaptive control system must control the process in spite of the disturbances d(k), d(k), the noise
n(k) and the parametric variations of the process.

3 State machines

State machines are graphical models that allow the specification of the states of one entity, the legal
transitions between these states, the events that can occur in the life of the entity and how the entity
manages these events [10]. The transitions from one state to another can be fired by an event. Some

294 F. Valles-Barajas

PAA

Gp(z−)Gc(z−)Σ
y(k)u(k)e(k)yre f (k)

θ̂PAA(k)

Desired
Performance

Controller

Σ
?

d(k)

Σ
?

d(k)

Supervisor Block

-

Σ ¾n(k)

-- -- -

?

-

6

-

¾

¾

6

?

U

?

θ̂CD(k)

Design

Figure 1: Indirect adaptive control system equipped with a supervisor block

condition (called guard condition) can be specified as a requirement to the occurrence of the transition.

To model an entity using a state machine the entity is isolated from the world and the communica-
tion with the rest of the world is specified by detecting events and responding to them. In UML state
machines are represented using state diagrams [12].

A state machine can also be used to model use cases, which are useful to specify the functional re-
quirements of a system. A state machine that describes the external events and its sequence in a use case
is a kind of state diagram of use cases [10]. The external events happen between the actors, which are
any external entity that interacts with the system, and the system [8]. Events that pass between objects
residing in the system are referred to as internal events. Some authors like [10] recommend to use state
machines to model the external and time events and the responses to them instead of using state machines
to model the internal events of objects (instances of a class).

A state machine is drawn inside a rectangle with the name label in the top left-hand side (see fig. 2),
though the frame may be omitted if the context is clear [1]. If the context is an instance of a class, all the
classes related with it are candidate targets for actions and for inclusion in guard conditions [3].
A state is drawn as a rounded rectangle with two compartments: one for the state name and the other for
the internal transitions and the internal behavior (see fig. 2). The second compartment may define entry
and exit actions, activities, internal transitions and deferred events.
There must be only one initial state3, but there may be any number of final states, including no final state
at all. Initial states are pseudostates, they do not have all the properties of a real state. Final states are
real states; they posses all the properties of a real state; this means that while the entity is in a final state
it can perform some activity and can response to some events. The difference between final states and
the rest of the real states is that they do not have transitions out. An initial state is drawn using a solid
black circle and a final state is drawn using a shallow black dot (see fig. 2).
A state machine can have an exit point (drawn as a circle with a cross, as in fig. 2) that indicates the
occurrence of an exception [1].

3It is important to mention that [1] considers that a state machine may have more than one initial state only if each of these
states are labeled with the event that created the entity.

A Novel Model for Adaptive Control Systems
A State Machine Approach 295

state machine name

t
thW

s
¸

state name 1

enter
do

exit
e/defer
e[c]/a -

e[c]/a

y

-

~

initial state

final state

transition

yn

nstate name 2

Figure 2: A state machine example

State machine can model parallel operations; this is important in control systems if we consider the
situation when it is necessary that the system responses to commands from the operator and at the same
time operates the plant.

This section has presented some basic concepts of state machines. The next section contains the model
of an adaptive control system based on state machines. Also in the next section advanced concepts of
state machines will be illustrated using the proposed model.

4 The model

This section explains how an adaptive control system can be modeled by a state machine. The expla-
nation is divided in three section, which correspond to every of the building blocks of a state machine:
the states, the events and the transitions. The actions that occur while a control system is in some state
will be explained in the section of the states and the actions executed when a transition occurs will be
explained in the section of the transitions.

4.1 States

A state describes the condition of an object [11]. This condition for a control system can be expressed
in any of the following ways:

• in the terms of the control system attributes:

– the values of the attributes that define the control system’s structure. For example the values
of the poles of the close loop transfer function (see the polynomial Am(z−) in eq. 1) define
if the system is in stable or unstable state.

Hcl(z−) =
z−d+Bm(z−)

Am(z−)
(1)

The control system will be in the stable state if all the roots of the transfer function denomi-
nator of eq. 1 are inside the unit circle, as it is stated in the eq.

+amz− + · · ·+amnz−n = ⇒ |z| < (2)

296 F. Valles-Barajas

Otherwise the state of the system will be in the unstable state.

– the value of the attributes that define the object’s relationships. In this point it is important
to mention that the entire control system is represented with a class called ACS. When a
fault occurs in the system a fault detection and isolation (FDI) object of the class FDI will be
created to manage this fault. A FDI reference variable will be defined inside the ACS class,
so when the fault occurs an instance of the class FDI will be created inside a method of the
class ACS. If there is no fault in the system, the reference variable of FDI will have the value
of null and the system will be in the no fault state, but when a fault appears the reference
variable will point to the FDI object that will handle the fault and the system will be in the
fault state.

• in terms of a behavior that the object is engaged in:

– a period of time during which a control system performs some outgoing activity. For exam-
ple, one of the activities that a controller must do to achieve robustness against the external
agents to the system (disturbances, noise, faults) is to shape the sensitivity functions. This
state will be called shaping the sensitivity functions. The output sensitivity function S is the
transfer function between the output disturbance d(k) and the plant output y(k); this transfer
function is usually named as sensitivity function and is given by:

Syd (z
−) =

A(z−)S(z−)

A(z−)S(z−)+ z−dB(z−)R(z−)

=
A(z−)S(z−)

P(z−)
(3)

The noise sensitivity function T is the transfer function between the measurement noise n(k)
and the plant output y(k) and is given by:

Syn(z−) =
−z−dB(z−)R(z−)

A(z−)S(z−)+ z−dB(z−)R(z−)

=
−z−dB(z−)R(z−)

P(z−)
(4)

An equation that relates these two transfer functions is

Syd(z
−)−Syn(z−) = S+T = (5)

– a period of time during which an object waits for some event or events to occur. Suppose that
the ACS is equipped with a fault detection and isolation module to manage the faults that can
appear in the system. The FDI system can be modeled as an object. One of the states of the
FDI is the waiting for a fault state.

The response of a control system to an event depends on its state. For example if the system is in closed
loop state and an the event change reference yre f (z−) occurs the system will take y(k) close to yre f (k)
but if the system is in closed loop state and the same event occurs the system will do nothing.

4.2 Events

An event is any occurrence that provokes the reaction of an object, this reaction can be the transition
from one state to another, the execution of one action or do nothing. It is important to mention that
although events starting with UML 2.0 are called triggers; in this paper we will use the term events.
There are four types of events: signals events, time events, call events and change events. They will be
explained in the following sections.

A Novel Model for Adaptive Control Systems
A State Machine Approach 297

Signal events

A signal is an asynchronous event; it is not necessary that a sender waits for the answer of a receiver
when a sender sends a signal to a receiver. Signals can also be triggered by an operation; this kind of sig-
nals are called exceptions. Signals are a one-way asynchronous communication between active objects.

An exception is the most common kind of signals that specifies the abnormal behavior of an opera-
tion [8]. Exceptions are modeled in UML as stereotyped classifiers. The parameters of the exceptions
contain information of the abnormal behavior, and these are modeled as attributes in the exceptions. Be-
cause exceptions are modeled as classifiers, a hierarchy of exceptions can be drawn. Fig. 3 shows some
of the exceptions that can be generated in an adaptive control system. These exceptions form a hierarchy.

«exception»
Lack of PEC

«exception»

θ̂ out of V Z

«exception»
P(k) low

«send»

«send»

Gc(z−)

tune()

«exception»
Exception

setHandler()

«exception»
|Am(z−)|≥

«exception»
S bad formed

PAA

updateP()

«send»

Gp(z−)

updateθ̂ ()

Figure 3: Modeling the exceptions of an adaptive control system

The root of this hierarchy is the abstract class “Exception” which was specified by typing the name of
the class in italic font. The “Exception” class has a method called setHanlder(); this method is useful to
specify the entity that is going to manage the exception, once it occurs. In this proposal, the supervisor
is the entity that handles all the exceptions of an ACS.
Fig. 3 shows some of the exceptions that can be thrown in the methods of the classes PAA, Gp(z−)

and Gc(z−). When Gc(z−) is tuned, the resulting controller may provoke that the closed loop system
changes to the unstable state (the poles of Am(z−) are outside the unit circle; see eq. 1). To specify
that an operation can trigger an exception the exception can be drawn as a stereotyped class and then
a send dependency can be drawn between the operation that can trigger the signal and the signal. See
for example that in fig. 3 a send dependency between the operation updateθ̂ () and the signal “θ̂ is out
of VZ” has been drawn to indicate that the operation updateθ̂ () can trigger the exception “θ̂ is out of
VZ” (V Z is the valid zone which is a zone where the parameters of Gp(z−) are allowed. This can be
obtained from previous knowledge or by association with the physical parameters of the process). Also
the resulting controller may be poorly robust; this can be inspected by looking at the sensitive function S

(see eq. 3) which is a measure of how the disturbance d(k) affects the output of the process y(k).

One of the advantages of the configuration of the fig. 3 is that polymorphism can be used to handle
the exceptions; the handler of the exceptions can be specified in such a way that it handles all the ex-
ceptions of the ACS. Also when we specify a transition, we can specify that any of the exceptions of
the ACS can trigger a transition; in this case the transition is polymorphic and can be triggered by the
exception “Exception” or by any of its specializations, for example the “Lack of PEC” exception [3].

298 F. Valles-Barajas

Signals are used to establish a communication between two objects in an asynchronous way. The recep-
tion of a signal is an event for the receiver. In this paper d(k), d(k), n(k) and the bursting phenomenon
will be modeled as signals as fig. 4 indicates. Is is important to mention that because d(k), d(k) and
n(k) are unknown, they must be estimated.
The entity that generates these signals is the environment and the receiver is the adaptive control system.
Fig. 4 shows that signals are modeled as stereotyped classifiers and because of this a hierarchy of signals

«signal»
d(k)

«signal»
d(k)

«signal»
n(k)

«signal»
Signal

setHandler()

«signal»

Brusting of θ̂

Figure 4: Modeling of the signals for an adaptive control system

can be established. Signals can also have parameters in the form of attributes, these are useful to store
information related with the signals.

When we define signals we are making the opposite procedure for exceptions. When signals are de-
fined the entities that handle the signals are defined and when the exceptions are defined the abnormal
behavior that can generate an operation is defined [3].

In the UML, you model the signals that an object may receive by naming them in an extra compart-
ment of the class, as shown in fig. 5 where the signals that the supervisor block can handle are defined.
Signals do not return values to the caller [8].

Supervisor

d(k)
d(k)

n(k)

lack of PEC

θ̂ out of V Z
Bursting of θ̂

P(k) low
|Am(z−)|≥

Signals

Figure 5: Signals that the supervisor can handle

Time events

A time event evaluates the passage of time as a trigger. It is assumed that the object has some
mechanism to monitor the passage of time. Time can be specified either in absolute mode (time of
day) or relative mode (time elapsed since a given event). Time can be considered as an event from the
environment. The general form of a time event is:

A Novel Model for Adaptive Control Systems
A State Machine Approach 299

after(exp)[guard condition]/ action.

An example of a time event is:

after(5 minutes)[|P(k)| low]/reset P(k)

where 5 minutes is the expression that is evaluated, [|P(k)| low] is called guard condition and reset P(k)
is the action that is executed when the expression and the guard condition are true.

Call events

In the UML, you model the call events that an object may receive as operations on the class of the
object. For example, in fig. 3 the operation of the class Gc(z−) was modeled as a call event.

Signal events and call events involve at least two objects: the object that sends the signal or invokes
the operation and the object to which the event is directed.

Change events

A change event occurs when a boolean expression becomes true. When an event is declared as a
change event, the system always monitors that boolean expression. A change event represents a contin-
uous and potential nonlocal computation (action at a distance, because the value or values tested may be
distant). Another alternative for a change event is to model this as a guard condition in the transition.
The advantage of a guard condition is that it is evaluated only when a transition occurs.
The general form for a change event is:

when(expression) / operation()

where operation() is executed when the expression is true. The persistent excitation condition can be
verified by using the following change event:

when

(
limk→∞

k

k∑

k=

φ(k)φ T (k) ≤

)
/ freezeAdaptation()

5 Conclusions

In this paper a new model for adaptive control systems has been presented. This model is based
on state machines and is useful to document and to analyse control systems. The states of an adaptive
control system, its transitions and the events that may provoke the transition from one state to another
were defined in the proposed model. With this model the software implementation of an adaptive control
system, made by a software engineer, will be easier.

Bibliography

[1] S. Bennett, J. Skelton, and K. Lunn. Schaum’s Outline of UML. McGraw-Hill, USA, 2005.

[2] S. Bergstrom and L. Raberg. Adopting the Rational Unified Process: Success with the RUP. Addison
Wesley, USA, 2004.

[3] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide. Addison-
Wesley Professional, nd edition, May 19, 2005.

300 F. Valles-Barajas

[4] D. Drechsel. An adaptive control system modeled as finite state machine. Proceedings of XVI Annual
Convention and Exhibition of the IEEE In India, pages 124 – 128, 1990.

[5] M. Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language. Addison-
Wesley, rd edition, 2003.

[6] D. Harel. Statecharts: a visual formalism for complex systems. Science of Computer Programming,
pages 231–274, 1987.

[7] W. S. Humphrey. PSPsm : A Self-Improvement Process for Software Engineers (SEI Series in Soft-
ware Engineering). Addison-Wesley Professional, USA, 2005.

[8] IBM. Object Oriented Analysis and Design using UML. USA, 2004.

[9] P. Ioannou and B. Fidan. Adaptive Control Tutorial. Society for Industrial and Applied Mathematics,
2006.

[10] C. Larman. Applying UML and Patterns : An Introduction to Object-Oriented Analysis and Design
and Iterative Development. Prentice Hall, USA, rd edition, 2004.

[11] T. Pender. UML Bible. Wiley, 2003.

[12] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Manual.
Addison-Wesley Professional, nd edition, 2004.

[13] G. Simon, T. Kovácsházy, G. Péceli, T. Szemethy, G. Karsai, and A. Lédeczi. Implementation of
reconfiguration management in fault-adaptive control systems. IEEE Instrumentation and Measure-
ment Technology Conference, 2002. Anchorage, AK, USA.

Fernando Valles-Barajas obtained a graduate degree in Computer Science at Center for Research
and Graduate Programs of La Laguna Institute of Technology (1991). He received an MS in
Control Engineering (1997) and a PhD in Artificial Intelligence (2001) from Monterrey Institute of
Technology (ITESM) campus Monterrey. He was a research assistant at Mechatronics department
of ITESM campus Monterrey (1997-2001). He received certification as a PSP Developer from the
Software Engineering Institute of Carnegie Mellon University (2008). He is member of the IEEE
and ACM. His research interests include topics in Software Engineering and Control Engineering.
Currently, he is full-time professor in the Information Technology Department at Universidad
Regiomontana, Monterrey, Nuevo León, México. He also teaches modules at both BS and MS
levels in Computer Science and Software Engineering.

